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Two-Dimensional Apparent Masses 
for Cross-Flow Sections of Wing-' 
Store Configurations 
On the basis of the assumption that the external stores are small compared with the 
wing, an approximate method has been developed for estimation of two-
dimensional apparent masses for the cross-flow sections of wing-store com­
binations. The results obtained may be applicable to the analysis of the effects of 
the stores on the aerodynamic stability derivatives in slender-body theory. The 
theory has also been applied to estimate the rolling moment due to sideslip for high-
wing configurations. The presented results are in agreement with those of other 
investigations. 

1 Introduction 

In view of the increasing variety of stores used on current 
combat aircraft, the problems of the interference among the 
aircraft and the external stores have received considerable 
attention in the last decade. Some of the recent investigations 
were reported in [1-6]. It is well known that the estimation of 
aerodynamic stability derivatives based on slender-body 
theory is not very accurate except possibly for small aspect 
ratio and low supersonic Mach number. However, other 
methods to achieve quantitative results for wing-body store 
configurations, such as the numerical methods based on 
singularly distribution, would be considerably more com­
plicated. Moreover, a comparison of the various com­
binations on the basis of slender-body theory would possibly 
still show the trend of their relative behavior. 

As indicated by Nielson [7], in slender-body theory most of 
the stability derivatives for certain classes of slender con­
figurations can be calculated by means of apparent mass 
coefficients. The apparent masses for some simple cross 
sections have been given by Nielsen [7] and Sedov [8]. Some of 
the complex wing-body combinations were investigated by 
Portnoy [9], Andrens [10], Crowell and Crowe [11], Keldysh 
[12], and Huang [13]. However, the estimation of the ap­
parent masses for very complex cross sections, such as those 
of wing-store configurations, is by no means a simple matter. 
It is the purpose of this paper to consider these kind of cross 
sections. The method is based on the assumption that the 
stores are small compared with the wing, so that the stores in a 
cross-flow plane can be simulated by two-dimensional 
doublets. The result obtained is written as a ratio of the in­
crement of the apparent mass produced by the stores to that 

Currently, Visiting Associate Professor, Department of Aerospace 
Engineering Sciences, University of Colorado, Boulder, Colo. 80309 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, October, 1981; final revision, May, 1982. 

of the wing alone, which may be used to analyze the effects of 
the stores on the aerodynamic stability derivatives for air-
crafts. 

In addition, the two-dimensional apparent mass theory 
relates closely to the least-induced drag theory. In many cases, 
the results of these two theories can be applied to one another. 
Some of the exact results calculated numerically by Jundry 
and Lissaman [14] will be used for comparison with the 
present approximate results. 

2 The Analogy Between a Doublet and an Arbitrary 
Cross Section 

Let yoz be a cartesian coordinate system. With the same 
notation as that of [7], we represent apparent masses by m#, 
i,j=\, 2, 3, where 1 and 2 denote, respectively, they and z 
directions, and 3 the rotation. The cross-sectional area is 
denoted by Sa and the density of the fluid by p. We have 
mll = m2\=0 if the cross section has at least one axis of 
symmetry. 

Suppose that there is an incompressible flow past a two-
dimensional body with oncoming velocity components L̂  and 
U2 along y and z directions, respectively. The complex 
potential of the flow can be expressed by 

W(Z) = (Ul-iU2)Z+,£-2 (1) 
K = l ^ 

where Z=y + iz is the complex variable and A„ is the complex 
constant. The constant A { relates to the apparent masses of 
the body section by (see [7]) 

2 ^ 1 = l / 1 ( ^ + S . ) + K / 2 ( ^ + S . ) (2) 

It is obvious that the term Ax/Z of the expression (1) is 
nothing else but the contribution due to a doublet, which may 
be used to approximate the perturbation effect due to the 
body if its cross section is small: The doublet strength Ay is 
determined once the apparent masses of the body section are 
known. 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/471 
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Table 1 Doublet analogy and apparent mass increments for a variety of configurations 

CONFIGURATION 

z= y+iz 
PLANE 

o-=|+i7] 

PLANE 

cr=£+;77 

PLANE 
DOUBLET 
ANALOGY 

A 771; 22 

(m22), •22/WING 

A17I3 

(m^y 33/WING 

fZ 

O 

tu2 

!u2 

2K 

h - s—< 

3 
UTT 

L-sJ 
|U2 

V!±l 

lu2 

2 A i-iy m 
*m I-2Y 

4 
- s • 

^ IK 

EQ.(5) 

t 

EQ.(I3) 

3 mn for Wing-Body Store Configurations 

We first consider the configuration 1, a wing carrying two 
small stores of circular cross section at wing tips, shown in 
Table 1. Suppose that there is an incompressible flow past the 
wing store in a cross-flow plane with oncoming velocity U2 
along the direction z. As shown in Table 1, the use of the 
transformation Z=a+s2/4a turns the wing into a circle of 
radius r0 =5/2 in <r-plane, where 5 is the local semispan of the 
wing. The stores are turned into half circles with radius *Jr0R 
under the assumption of small stores. It is obvious that in a-
plane the velocity of the local oncoming flow past the stores is 
2U2. The strength of the doublets for simulating the stores in 
<T-plane can be determined by equation (2), so that the 
complex potential can be written as 

W(a)=-iU2(a-^)+2iU2r0R(-^—+^—) (3) 

Turning back to the Z-plane and expanding in series, we can 
find the coefficient of the term containing 1/Z. Then, m22 for 
the combination is found by equation (2). 

The same procedure has been applied to the configurations 
2 and 3. The approximate formulas derived for estimating the 
apparent mass increment &m22 due to the stores are given in 
Table 1, where (w22)Wing>tne apparent mass for a single wing 
alone, is equal to irps2. In derivation for the configuration 3, 
the wing with winglets, it was required to know the apparent 
mass for a F-form section in which each wing makes an angle 
of JIT with the symmetry plane. By using the conformal 
mapping given in Section 39 of [15] and the equation (2), it 
can be shown that the apparent mass for such F-form section 
is 

m 22 

2,0r " 

CONFIGURATION 

PRESENT THEORY A , 

EXACT / ' ' 

y R E F , 12 

REF, 14 

Fig. 1 Apparent mass increment Am22 for the configurations 1,2, and 
3 

\dZ U 
1 

2Vl-(/As)2 

where / is illustrated in Table 1. 
A similar procedure yields 

A/MM r (W22)store (h^2 ' " X 2 

(m22) 22/wing t^®'«(! ) ] ;£ 
m22

: •- •KPS2
1 (ih) 

1-27 

(4) c -**)' (5) 

where st is the semispan measured in each wing plane. 
Figure 1 presents the approximate results for three con­

figurations and the exact ones calculated numerically in [12, 
14]. The comparison demonstrates that a correlation is 
achieved even when the stores are small. 

For configuration 4, the wing-pylon store combinations, we 
first assume that the store pylons are not close to the wing 
tips, and are very small compared with the wing. It is well 
known from the conformal mapping theory that the shape of 
the store pylons in a-plane would be the same as that in Z-
plane, but their scale is changed by a factor of 

where (m22)store is the apparent mass for the section that 
consists of the store-pylon section and its mirror image with 
reference to the wing plane. The value of (W22)store c a n De 

found in Fig. 1. 
If there are only pylons of height h beneath the wing, 

equation (5) becomes 

A"?22 = /h\ 2 I2 

(W22)wing \S/ S2-!2 

This formula fails as s—7. In fact, I da/dZ IA — °° in this 
extreme case. 
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ATTl 
(TTl 2 2 ) W I N G 

.3 
• - PRESENT THEORY 
— EXACT, REF.I4 

EQ.(6). 

Ea.(7). 

o J .2 .3 .4 .5 f 
Fig. 2 Apparent mass increment Am22 due to pylons and fences 

By matching the expression (6) with that for the con­
figuration 3 with /x = 0, a unified approximation, valid for 
both cases that the pylons are close to the wing tips or not, can 
be obtained as 

is) — ^ — <7> (m22) 22/wing ( yJ3h\ 

Figure 2 shows the application of equations (6) and (7). The 
first application is to the case where there are two pylons 
mounted beneath the wing and two fences on its upper sur­
face. Suppose that they are not close to the wing tips, so that 
equation (6) could be used. The total increment of the ap­
parent mass is a simple superposition of the contributions 
from the pylons and the fences. The second example is the 
case when the pylons are close to the wing tips, so that 
equation (7) should be used. Both of the results are close to 
the exact ones even if h/s is as high as 0.5. 

For a wing-body store combination, there may be some 
cross-flow sections without pylons, which is the case named 
by configuration 5 shown in Table 1. The complex coor­
dinates of the centers of the stores are denoted by Z0 and -
Z0- o=f(z) is an analytical function mapping the region 
outside the wing-body combination in Z-plane into that 
outside the circle of radius r0 in tr-plane, which has the 
property t ha t / ' (oo) = l. 

Let 

W0(Z) = W0(o)=-iU2(<,-ty 

be a complex potential of the flow past the combination 
without stores, and the stores are replaced by two doublets at 
tf=<7o=/(zo) a n d a=-a0. The circle theorem [16] is em­
ployed to keep the transformed circle to be a stream line, so 
that the total complex potential can be written by 

B B B B 
fi = W0(cr)+ r^-+~, ~. (8) 

-oo tJ+ffO r2 

o-0 
a 

+ o"o 

where B, the strength of the doublets in a-plane, is to be 
determined. 

Note that 
B _ B 1 

0--O0 / ' ( Z 0 ) Z-Z0 

The strength of the doublets in Z-plane is then B/f (Z„). The 
use of equation (2) yields 

B 

r<z, £[^+*.]+>£[—+sl (9) 

/ (Z0) 2ir L p J 2TL p J 
where the subscript a refers to a single store alone. Vx and V2, 

0.6 o 
•1.0 

EQ.(I4) 

EXACT, REF. 12 

Fig. 3 The ratio of the apparent mass m22 for the wing-necelle cross 
section to the sum of the apparent masses for the wing and necelles as 
they are alone 

the local velocity components of the flow past the wing body 
without stores, can be evaluated by 

( dW\ / v^ \ 

^ L z 0 = - ^ ( 1 + i > ' ( Z ° > <l0> 
By applying equation (2) to the wing-body store com­

bination, the increment of the apparent mass, produced by 
two stores located symmetrically, can be obtained as 

Am12=
2^AA-2pSa (11) 
lU2 

where AA is given by 

AA=~& (U-W0(a))d-^do 
2m J c da 

Here the integration path C is around the wing-body store 
section. The integral is then evaluated by the residue theorem. 
We obtain 

A/4 = 2 i / > « [ f l ( l + ^ f ) l (12) 

where Im denotes the imaginary part. Substituting the 
equation (12) into equation (11), the final result is 

U2, -'[(§)* ^ Q ) ' ^ ] 
<•[(£)'•(£)'-] *1SM%) +{u-J -'i (13) 

As a simple example, consider the case in which the stores 
are of circular cross section. We have 

Am 22 
-2TTR Ka) , + 2 (S) ! - ] <"> P <- -u2-

where R is the radius of the store sections. 
In view of the fact that, according to slender-body theory, 

the lift of a configuration is proportional to m22, we conclude 
from equation (14) that the maximum increment of the lift 
would be achieved if the stores are located at the places where 
the local cross-flow velocity is maximum. Another extreme 
case is where the store is located just beneath the body, where 
the cross flow is stationary. The lift increment would be a 
minimum in this case. 

Figure 3 presents an example for a particular wing-store 
configuration in which the centers of the stores lie in the wing 
plane. In the figure, J denotes the ratio of the apparent mass 
for the wing-store combination to the sum of the apparent 
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-s m 
(R/S) 2 

I 2 3 
ASPECT RATIO A 

Fig. 4 High-wing configurations and their stability derivatives for the 
roiling moment due to sideslip 

masses for the individual wing and stores, the dashed line is 
the result calculated by equation (14), and the solid line is the 
exact one given by Keldysh [12]. It is shown that there is close 
agreement when the stores are far from the wing tips. 

4 m33 for Wing-Store Combinations 

It is well known that in slender-body theory the rolling 
moment in roll is proportional to the apparent mass m33. 
However, the evaluation of m33 is very difficult except for 
some simple cases. An approximate method will be suggested 
here for a wing carrying stores at its tips. 

For a single wing alone, we have seen from [7] that 

{m22)vlm„ = -Kps2, (m33)Wing,= 
TTPS* 

Suppose that the semispan of the wing has a small increment 
5. The corresponding increments of the apparent masses can 
be calculated to the first order by 

Am-, Am, 

V/W22.'wing 5 l'W33.'winB 5 

An equivalent increment of the semispan can be found for a 
wing with stores at its tips such that it has the same increment 
of m21 as given by (15). Then the increment A/n33 follows 
immediately from equation (15). The results obtained in such 
a way are also shown in Table 1 for the three configurations 
considered. Unfortunately, we have no other theories for 
comparison. 

5 m,3 for Wing-Store Configurations 

ml3 is another one of the apparent masses which is difficult 
to evaluate. To begin, consider a high-wing configuration 
shown in Fig. 4. According to [7], ml3 is defined by 

(16) mn=-p§ fa—dt 

where fa and fa are the potentials due to the motion of the 
cross section with unit velocities in translation along y and in 
rotation, respectively, n is the outward normal. The in­
tegration path C is around the cross section of the wing-body 
combination, and dt is the contour element. The boundary 
condition shows that dfa/d « = 0 on the wing surface, so that 
we need only to evaluate the integral around the body. 

Let 
fa=<p3+Afa (17) 

where <p3 is the corresponding potential for the single wing 
alone, and Afa is the increment due to the body. Inserting 
equation (17) into (16), we have 

f dfa f dd>, 
ml3=-P\ V3~dt-p\ Afa-j^dt (18) 

J body On J body dn 

^fr ^ ^ 

Fig. 5 Flow direction around the wing rotated with unit angular 
velocity 

The exact <p3 for a rotated plate has been given in [16]. The 
corresponding tangential velocity of the flow on the lower 
surface of the plate is thus obtained as 

, 2 _ 2 y 
( K , ) _ 0 = ^ = -

1 S2 

The flow direction around this plate is shown in Fig. 5 

2 

(19) 

and we 
have 

(V,)t 

aty = Q. 
The assumption is made that the body section is much 

smaller than that of the wing. As a consequence, fa can be 
approximated by the potential of the flow with unit oncoming 
velocity past the configuration consisting of the body and its 
image with reference to the wing plane if the wing is con­
sidered as a reflected plate. Afa can be considered as the 
potential of the flow with oncoming velocity (V,)z=_0 past 
such a configuration, so that y=0 

Afa~(V,)z=_0fa s 

" 2 * 
The second integral of equation (17) can be evaluated as 

follows 

-i dfa 
Afa -P- dt 

body dn -vl dfa S 
body dn 2 

l)body (20) 

where (mu)body is the apparent mass for the section that is 
made up of the body section and its image. For the body of 
the circular cross section, (mn)body refers to eight-form 
section. Using the complex potential given in Section 6.52 of 
[16], the apparent mass for this section can be obtained by the 
use of equation (2) as 

(Wn)body = 2 ( j - l ) 1 r p / ? 2 (21) 

where R is the radius of the body section. 
To perform the first integration in equation (18), we first 

expand <p3 into Taylor series 

<p3 = constant + (V,)z=-0y+ • • • 

By taking into account the boundary condition 

dfa 
dn 

dt = cos (n ,y) dt = dz, 

we have 

r d$_ 
J body dn 

-dt = Q and 
J body OH J body 

ydz=S] body 

where Sbody is the area of the body section. 
Thus, 

•I body dn 
•P(V!)Z=^0SI 

y=0 
body (22) 

Substitution of equations (20) and (22) into (18) yields 

mn = l[PSbody+^f^] (23) 
Two special cases will be considered. The first one is that 

the body has a circular cross section. By using equation (21), 
we have 
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m. 
TT3SR2 

12 
(24) 

The second one is that the body has a square cross section with 
the width denoted by a. (mu)body of this case refers to a 
rectangular section, which can be evaluated by the formula 
given in [10]. Thus we have 

1.23ir3M2 

™.3= ^ — (25) 

The other cases, such as the wing mounted at any height 
above the central line of the body, can be considered as the 
superposition of the contributions from the portions of the 
body above and below the wing. 

This approach can be easily extended to configuration 4 
shown in Table 1. We have 

-2(K,)Z=_ PSst 
(Wn) s l (26) 

where Sstore is the cross-sectional area for a single store, 
(OTn)store refers to the section that consists of the store-pylon 
section and its image, and (Vt)z=~o evaluated at y = l/2 by 
equation (19) is 

1 s2-2l2 

W-o-i^Tji (27) 

Since the assumption has been made that the planar wing can 
be considered as a reflected plane, the results obtained apply 
only to the case where the store pylons are not close to the 
wing tips. 

6 Applications 

Two examples of application will be presented for their 
practical interest. 

As a first example, we consider a combination that consists 
of a high delta wing and body of revolution. The angle of 
attack is assumed to be zero (a = 0). Let Cw be the stability 
derivative for the rolling moment due to sideslip. By use of the 
relationship given in [7] between the stability derivative C/(3 
and the apparent mass m 13, we have 

-3 / j R x 2 

(Q/3)a = 0 - 24 ' ( * ) • 

(28) 

where A is the aspect ratio. Unfortunately, this expression 
applies only to slender configurations. As indicated by 
Nielsen [7], lift-curve slopes are overestimated by slender-
body theory if the configurations are not slender. However, 
this fact does not preclude the use of slender-body theory for 
nonslender configurations since, in certain instances, the ratio 
of the lift of the wing-body combination to that of the wing 
alone can be accurately predicted by slender-body theory, 
even though the magnitude of the lift-curve slope might be 
incorrect. As a consequence, Piter et al. [17] proposed that the 
ratio of the accurate lift-curve slope CLa for the wing alone to 
that predicted by slender-body theory could be used as a 
modification factor to nonslender configurations. It is thus 
proposed that, with the same modification factor for non­
slender configurations, equation (28) is modified as 

(C/0)a = O-
12CL"\S) 

(29) 

Figure 4 presents the results given by equations (28) and 
(29) and those by an empirical formula of [18]. In Fig. 4, the 
calculation by equation (29) was carried out for delta wings at 
low speeds because the empirical formula was demonstrated 
by experiment in this speed range for such wings. The 

comparison shows that the modified results agree very well 
with the empirical ones. 

The second application is to the configuration 4. We know 
from equation (27) that (K,)z=_0 »0 when //s«0.7. For such 
a case, {C^)^=a is nearly zero according to equation (26). 
Otherwise, the negative dihedral effect results when the store 
pylons move inward and the positive effect results when they 
move outward. The same tendency has been shown ex­
perimentally in [20]. 

7 Conclusions 

The approximate formulas derived in this paper for 
estimating the apparent mass increments due to stores 
represent the leading approximations if the characteristic scale 
of the stores is assumed to be a small parameter. These 
formulas apply to cases where the stores are very small, but 
the comparison with the exact results shows that the theory 
provides a fair estimation of the apparent mass increments 
even when the stores are not small. 
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On the Mean Reynolds Equation in 
the Presence of Homogeneous 
Random Surface Roughness 
Assuming that the surface roughness is of small amplitude and can be modeled by a 
homogeneous random function in space, the classical Reynolds equation is 
averaged using a method due to J. B. Keller. The mean Reynolds equation is ac­
curate up to terms of0(e2), where e is the dimensionless amplitude of the surface 
roughness and has a nonlocal character. Furthermore, by exploiting the slowly 
varying property of the mean film thickness, this nonlocal character is eliminated. 
The resulting mean Reynolds equation depends on the surface roughness via its 
spectral density and, in the limits of either parallel or transverse surface roughness, 
it reduces to Christensen's theory. 

1 Introduction 

Thin-film hydrodynamic lubrication of rough surfaces has 
been a subject of intense research during the past two decades. 
A recent summary of the state of the arts can be found in 
Wilcock [1] where two types of surface roughness are 
recognized: the Reynold roughness and the Stokes roughness. 
In the former case the classical Reynolds equation [2] applies 
and in the latter case the full solution to the Stokes equations 
must be sought. 

Basically, a surface roughness is said to be of the Reynolds 
type when its amplitude is considerably less than, and its 
characteristic wavelength is considerably greater than the 
mean film thickness [3]. More quantitatively, for a squeeze-
film [4] or a slider bearing [5] with parallel surface roughness 
an error of about 10 percent is made when using the Reynolds 
equation to correct for the presence of the surface roughness 
provided that w„h < 0.5, where w„ is a characteristic 
frequency of the surface roughness and h is the mean film 
thickness. Furthermore if wnh > 2, the predictions of the 
Reynolds equation cannot be trusted even qualitatively [4-5]. 

Most of the existing work in the lubrication of rough 
surfaces concerns the Reynolds roughness where the Reynolds 
equation is averaged using some heuristic or "dishonest" (in 
the terminology of Keller [6]) arguments. An "honest" [6] 
approach using Keller's [6] method has recently been ad­
vanced by the writer [7, 8] to obtain the mean Reynolds 
equation which is correct up to 0(e2), where e is the dimen­
sionless amplitude of the surface roughness. In [7] and [8] the 
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mean Reynolds equation was used to correct the surface 
roughness in a two-dimensional squeeze-film bearing and 
slider bearing with exponential mean film thickness, 
respectively. In particular it was shown in [8] that the theory 
of Christensen [9] accurately predicts the load enhancements 
when the surface roughness is either transverse or parallel to 
the flow, the only two cases intended for the theory to apply 
[9]. It was conjectured in [8] that Christensen's theory is 
correct to 0(e2) for two-dimensional bearings with parallel or 
transverse surface roughness. 

One of the purposes of this communication is to prove this 
conjecture. Furthermore, neglecting terms of the order 0(e4, 
e2h/l), a new mean Reynolds equation is derived which 
correctly yields Christensen's [9] theory when the surface 
roughness is either parallel or transverse to the flow. 

2 Surf ace Roughness 

The geometry of any rough surface is so irregular that it 
requires a statistical description [10]. In general, the 
probability of the surface height must be known to fully 
specify the surface roughness. However, in practice this 
complete statistical information is expensive to obtain and 
only the rms, or at most second-order statistics of the surface 
roughness are measured. Partly to reflect this practice and 
partly to simplify the analysis we assume a homogeneous 
surface roughness with the consequence that only second-
order statistics enter in the calculations. That is, the only 
quantity that we need is the spatial correlation of the surface 
roughness or equivalently its Fourier transform, commonly 
known as the spectral density of the surface roughness. 

Specifically we consider the quasi-static and isothermal 
flow of an incompressible viscous fluid in a bearing whose 
surfaces are described by 

Zi = eami(x,y); z2 = h (x,t) + eam2(x,y), (1) 
where a is a length scale, e is the dimensionless amplitude of 
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the surface roughness, h is a given function of x and time t, 
mk (x, y)\k = 1,2 are surface profiles and x, y, z are cartesian 
coordinates, with x being the primary direction of flow. In 
writing (1), we wish to leave e and mk dimensionless; a is thus 
a dummy length scale. 

As a consequence of adopting the Reynolds equation as our 
starting point, only the total film thickness 

H=z2-Zi=h + eam; m = m2-m2 (2) 

enters in the governing equation. From now on we call m the 
total film roughness, or simply the surface roughness. 

Without loss of generality mk (x,y) are assumed meanless; 
the mean film thickness is <H> — h, with the angular 
brackets denoting either an ensemble average or a spatial 
average if mk are ergodic or periodic in space. 

As mentioned previously, tnk (and thus m) are assumed to 
be homogeneous in space when the film roughness can be 
represented as (the spectral representation of m [11]) 

In (3) r and X are two-dimensional vectors (x, y) and (X, /*), 
respectively, and, in the interest of brevity we write the double 
Fourier-Stieltjes integral as indicated in the second equality of 
(3) where Z(dX) is an interval random function of dX = dM/j. 
which satisfies 

<Z(rfX)>=0, (4) 

<Z(diX)Z*(dj\)>=diJ fi(X,) dj\. (notsum) (5) 

Here x* denotes the complex conjugate of x, rf,X, a two-
dimensional interval center at X;, 5,y is the Kronecker delta, 
and Q(X) is the spectral density of w(r), defined by the 
Wiener-Khintchine relations [11]: 

i?(s)= < m ( r + s)w(r)> = \eiX-sQ(X)dX, 

Q(X)=~ \e~*-°R(s)ds 

(6) 

(7) 

3 Christensen's Theory 

Consider a bearing whose surfaces are given by (1) and the 
upper bearing plate moves with velocity (U(x), 0, V(t)). 
Assuming that the surface roughness is of the Reynolds type, 
the pressure distribution obeys the following Reynolds 
equation [2] 

v • (H3
 V P ) = 6J? — (UH)+ 12VV, 

ax 3* J by w 

P(0,y) = P(l,y) = 0, (9) 

where T/ is the fluid (constant) viscosity. 
Owing to the stochastic nature of H, equations (8)-(9) 

become a stochastic differential equation. Since only mean 
bearing performance is required, various attempts have been 
made to average (8). A notable success is due to Christensen 
[9] who was concerned with two special cases of surface 
roughness: 

For a parallel surface roughness, where m = m(y), 
Christensen [9] gives 

dx ' (<*>^K(<* b<P> 

3y • 

c TJd<H> ,„ b<H> 
= 6VU —— + 12JJ-

dx bt 

and for a transverse surface roughness, where m 
Christensen's theory gives 

(10) 

m(x), 

m(x,y)=\ [ e'(Xjr+^»Z(dXd^i) = fe''x-rZ(rfX). (3) —(<H d<P> 

dx ) • * ( 
<&> 

d<P> 
) dy \ by 

b<H> „ rr d / <H2> \ ,„ b<H> 
= 6riU— ( 5 +127) (11) 

bx\ <H"l> ) bt 

In both cases the boundary conditions are 

<P(0,y)> = <P(l,y)>=0 (12) 

For the film thickness given by (2), and keeping only terms up 
to 0(e2) it can be easily shown that (10) and (11) reduce to, 
respectively, 

a .[(*3+3ev*<™*>)^:] 
bx\ 

+ 5 [(»'-«•'''*<«•>) ^ ] 

= 6V—(Uh) + l2r,V, 
bx 

(13) 

and 

b 

~bx [(,-«,.w>)q£>] 

= 6r,— \u(h-3t2~<m2>)]+12r,V (14) 

No i 

a 
G(r . r ' ) 

h 
H 

I\,h 
L, L ] , L2 

I 
mum2 

m = m2-mx 

P 
P0 

R(s) 

U, V 
r , r ' 

Hl( 

= 

= 
= 
= 
= 
= 
= 
= 
= 
= 

= 

= 
= 

piif l a ture 

length scale 
Green function of the operator L, defined 
in (17) 
mean film thickness 
total film thickness, h + tarn 
defined by (20)-(22) 
differential operators defined by (15) 
bearing length 
surface corrugations on the bearing plates 
total film, or surface roughness 
pressure distribution 
pressure distribution if the surface 
roughness was not present (e = 0) 
correlation of the surface roughness, 
<m(r)m(T + s)> 
bearing velocities 
two-dimensional vectors (x, y) and (x', 
y') 

x,y,z 

Z(dX) 
V 

8U 
e 

X = (X,M) 

co„ 

fi(X) 
4>\, 02 

V 
< • > 

O(-) 
1 

= 
= 

= 
= 

= 

= 

= 
= 
= 
= 
= 
= 

Cartesian coordinates, with x being the 
primary direction of flow 
random interval function of dX = dXdfj, 
two-dimensional gradient operator, i b/bx 
+ j b/by 
Kronecker delta 
dimensionless amplitude of the surface 
roughness 
two-dimensional Fourier wavenumbers; 
they take values in (real numbers)2 

a characteristic frequency of the surface 
roughness 
spectral density of /n(r), defined in (7) 
functions defined in (23) 
lubricant constant viscosity 
ensemble average of (•) 
order symbol 
unit tensor 
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4 Mean Reynolds Equation 

4.1 Two-Dimensional Bearing. The mean Reynolds 
equation, which is correct up to 0(e2), has been derived in [7], 
For continuity we record the essential steps leading to the 
final result. 

First we denote by L, L , , L2 the differential operators 

L = v • A3 v , L , = 3 « v 'h2mv, L2=3a2v • m2hv . 

terms of order 0(h/l) are neglected in /] and I2. (This leads to 
an error of 0(e2h/l) in the final results because terms involved 
Ii and/ 2 in (19) are of order 0(e2).) 

Since m can be represented by (3) and in anticipating that / , 
and I2 are stationary inj ' we write 

(15) 
then (8) is formally equivalent to, in symbolic notation, 

P^Pa+Ge-qaL-1 — (mU) -L~l(iLl + e2L2)P+0(e3), (16) 

where P0 is the pressure distribution if the film roughness was 
not present (e = 0) and by L ~' we mean the integral operator 

h = \e^4>k(x)Z(d\); * = 1 , 2 , 

where a direct substitution of (23) into (20)-(22) yields 

*,(0) = 0 , (0=0 , 

and 

/,->/(!•)= J G ( r , r ' ) / ( r ' ) t f r ' 

!(,£)_,.*„.!(„-). 
with G(r, r ' ) being the Green function of the self-adjoint 
operator L which has the relevant boundary conditions (9) 
embedded in it. 

A successive iteration can be made on (16) and we have 

(L + tLl+t2L2 + 0(zi))P 

= 6r,— (hU)+\2r,V+6r,ea~{mU) (17) 
dx ox 

Noting that <Li > = 0 we find that < P > = P0 + 0 (e2). 
Equation (17) is then averaged. Also in any term of 0(e2), 
<P> may be replaced by P0 with a resulting error of 0(e4). 
We finally obtain [7] 

v • [ ( / ! 3+3« 2 / !e 2<m 2>)v <P>] 

(23) 

(24) 

(25) 

(26) 

*2(0) = 02(0 = 0. (27) 

In (24)-(27) we note that h(x), dP0/dx and U are slowly 
varying functions of x (otherwise Reynolds equation will not 
be applicable); and exp(/Xx) is a fast varying function of x. 
The latter is due to the fact that \h « 0.5 and thus Xx ~ 
0(x/h). These suggest that we should look for a solution of the 
form 

4k=<t>F + 64>P+...,k=l,2, (28) 
where 5 = 0(h/l) is the slope of the bearing (say h = h0e

bx{x) 

for some function x(x))-
Neglecting terms of 0(h/[) (that is, treat all slowly varying 

functions of x as constants) the solutions to (24) and (26) are 

* i = 

- 9 e 2 « 2 < v • [h2mv \G(T,T') 

v • (h2{x')m(.t')v <P(x')>)dx'\> 

--6i}—(Uh) + \2t]V 
dx <t>2 

1 rl d / dP0\ iXrfPp-1 

X2 + ̂ 2 U 3 dx\ dx J h dx 1 

, sinh ox „ coshu(l-x) „,, „ 
+A{ -—^ +B{ -—r^ + 0(A//), 

sinh fit cosh /i/ 

x2 + ^ 2 L// 3 dx v J 

(29) 

-18e 2 i j a 2 <v • \h2mv \G(r , r ' ) 

~ (m(r')U(x'))dr']> 

sinhiuc „ cosh u(l—x) „,, „ 
+A2 . , _ , . , +B2 — ^ , +<Kh/l), (30) 

d 

~b~x' 
(18) 

where the relevant boundary conditions are (12) and, as 
before, we have written r, r ' for (x, y) and {x', y'), respec­
tively. It should be noted that (18) is correct up to 0(e2). 
Alternatively, noting that <P> can be replaced by P0 in any 
term of the order 0(e2) we have, in place of (18) 
V • [(/!3+3fl2/!£2</M2>)V <P>] 

- 9 e 2 a 2 < v • (h2mvli)> 

= 6r)—(t//i) + 127/K-18e27;«2< v .(h2mvl2)>, (19) 

where, using the definition of G(r, r ' ) and noting that P0 = 
P0{x), 11 and 12 are given by 

d / . , dP0 

sinh ixl cosh jxl 

where Ak,Bk,k= 1, 2 can be found from (25) and (27); but 
we have no need of them here. This is because the terms in­
volved Ak and Bk are also slowly varying functions of x; they 
only contribute to the mean Reynolds equation through terms 
ofO(h/l). 

Now we are ready to calculate the terms involving / , and I2 

in (19). First we have 

< v • h2mvlk> - < ! ! • 

.[/,2e-,A .r v ^ e W ] Z ( d X ) Z* (d\')> +0(H/[), 

which gives, owing to (5), 

d / . „ ..,.. d<j>k 

dk 
<v>h2mvIk> = ̂  — (h2e-i}"-^)Q(\)d\ + 0(h/r). 

(31) 

v >h3 v / , = 
dx (*••£)• 

v.hivI2= — (mU), 
dx 

(20) 

(21) 

Next, using (29) and (30) in (31) we obtain 

X2 

h (0 J O = / , V,y) =h(.o,y) =hd,y)=o. (22) 

Equations (19)-(22) and (12) are the mean Reynolds equations 
and boundary conditions. 

We now show that the mean Reynolds equation (19) in­
cludes as special cases Christensen's theories (13)-(14), if 

,o r d / , dP0\ f X2 

d_ 
dx 

and 

,9 , d (U\ (• X2 
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d_ 

dx 

1 dU 
)[• 

i\ 
h dx / J X2 + ix.' 

Q(X)dX + 0(h/l). (33) 

In deriving (32) and (33) we have used the result that the x-
derivative of a slowly varying function of x is of the order 
0(h/l) (i.e., the slope of that function). Furthermore the 
second terms on the right-hand sides of (32) and (33) vanish 
because Q(X, it) is even in its first argument. 

Thus the mean Reynolds equation (19) becomes, noting that 
<P> = <P> (x), 

d\{h>+3a2he<m2»d-^] 
I dx J dx\ 

dx \ dx ('£)! -£-^Q{\)d\ 
X2 + iT 

= 6ri—(Uh) + l2riV 

,„ , o d /U\f X2 

Q(\)d\. (34) 

It should be noted that the error in (34) is of the order 0(e4, 
e2h/l). Finally, in place of P0 we can write <P> + 0(e2) and 
recognizing that 

<m2>= \ U(\)d\, 

we obtain 

= 6r,— (Uh) + l2rjV 

• 18eV 
dx (i)i:.s: 

X2 

-fl(X,/i)G?Xdfl 

+ 0(e\e2h/l). (35) 

Subjected to the boundary conditions (12), this is the mean 
Reynolds equation that is sought. 

For a parallel surface roughness fi(X, ft) = S(X) fl(^) and 
(35) reduce to equation (13) of Christensen's [9] theory. On 
the other hand if the surface roughness is transverse to the 
flow fi(X, fi) = 8(ix) fi(X) and (35) reduce to equation (14) of 
Christensen's [9] theory. Thus Christensen's theory is correct 
to0(e2). 

In a squeeze-film bearing, h = h(t) and (35) reduce to 

(hi-3e2a2h\j 
2X2 -M

2 

X2 + ^: 
2 f i ( H^ <p> 

(36) = l2riV+0(e\e2h/l) 

thus the effective gap thickness Heis is given through 

^ f f = ^ ( l - 3 e 2 ^ - { | ^ n ( X ) r f x ) . (37) 

Since the normal load is proportional to H~{f, there will be a 
load enhancement factor of 

l+3e2 a2 f°° f" 
"A2" ] - » J. 

2X2-
X2 + ^2 fi(X,/i) dX.dfi 

which was found in [7] using equation (19). 

4.2 General Bearings. If the mean film thickness is a 
function of x and y and/or the boundary ds of the bearing is a 
closed curve in x-y plane, then instead of (13) the relevant 
boundary condition for the mean pressure is 

< P ( r ) > = 0 for rids (38) 

Also the boundary conditions for (22) Ik must be replaced by 

4 ( r ) = 0 for rtds, £ = 1 , 2 . 

Thus Ik are not homogeneous in y anymore and the 
representation (23) is not appropriate. Instead one can only 
write that 

h = \*k(x,y) Z(d\), (39) 

with 4>k(x, y) now being functions in both x and y. The 
equations for <j>k (r) read 

7 . ( A 3 7 ( j i 1 ) = 7 . ( / i V A , r v P 0 ) ; </>!=() on ds (40) 

v . ( / ; 3 v<t>2) = d(UeiX-')/dx; <l>2=0cmds (41) 

Again exp(/X»r) is a fast-varying function of x and y while h, 
v P 0 , and U are slowly varying functions of x and y. Thus 

regarding the slowly varying functions to be constants, the 
solutions to (40) and (41) are 

*i = - n 2 , is,., ( v 'h% vPo + '> • P0h
2)e^ 

4>2= -

(X2+/i2)/!3 

+ homogeneous slowly varying terms, 

1 /dU ., 
1 — +/X 

(42) 

+ i\U A eix-x 
2 (\2+^2)h3\dx 

+ homogeneous slowly varying terms, (42) 

where the homogeneous terms in (42)-(43) satisfy the 
homogeneous equations (40)-(41) where the right-hand sides 
are zero. Thus we obtain instead of (32) and (33) 

' W x 2 ^ Q(\)d\ vi> 'o)+0(A/0 (44) 

and 

< v . h2m v I2 > = v . ( - j — Q(X) d\\ +0(h/l) (45) 

Then the mean Reynolds equation becomes 

v . ( ' r ( / ! 3 +3e 2 a 2 / !< /n 2 >) 1 

-9e2a2H\l\l^QM d^]'" <P>) 
= 6 J ;4 - (Uh)+ \2i\V 

dx 

(
TJ fl oo p Oo \ \ \ 

with an error of the order 0(e4, e2h/l). 
Again, for a transverse surface roughness we can integrate 

li out in (46) and obtain (14). On the other hand, for a parallel 
surface roughness we integrate X out in (46) and obtain (13). 
That is, Christensen's [9] theory is correct to the order 0(e2) in 
the surface roughness amplitude. For a surface roughness of a 
general two-dimensional form a naive approach of combining 
(13) and (14) additively will not yield the correct answer, 
which is equation (46). 

S Conclusions 

In summary, we have derived a mean Reynolds equation 
that is accurate to terms of order 0(e2), where e is the 
dimensionless amplitude of the film roughness defined in (2). 
The final result is given in (46) and is dependent on the 
spectral density fi of the surface roughness defined in (6)-(7). 
It is noteworthy that the new mean Reynolds equation reduces 
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to Christensen's theory in the appropriate limits where either 
the film roughness is parallel or transverse to the flow 
direction. In these cases only the mean square of the film 
thickness, <m2>, enters in the final equation, cf. (13) and 
(14). 

The mean Reynolds equation (46) is intended to be used for 
small-amplitude surface roughness. This is not seen as a 
stringent restriction since the application of the Reynolds 
equation requires that eaoi„ < < 1 (ratio of surface roughness 
amplitude to wavelength). Also from the Stokes solutions to 
squeeze-film and slider bearing with parallel surface 
roughness [4-5] we require that wnh s 0.5. This means ea/h 
< < 1 or that e < < 1, which was assumed in this paper. 

Acknowledgment 

The support of the Australian Research Grants Committee 
(ARGC grant F7915597R) is gratefully acknowledged. 

References 

1 Wilcock, D. F., "Effects of Surface Roughness in Lubrication,' 
Journal of Lubrication Technology, Vol. 100,1978, pp. 6-11. 

ASME 

2 Reynolds, O., "On the Theory of Lubrication and Its Application to Mr. 
Beauchamp Tower's Experiments," Phil. Trans. Roy. Soc, Vol. A 177, 1886, 
pp.157-234. 

3 Sun, D. -C , and Chen, K.-K., "First Effects of Stokes Roughness on 
Hydrodynamic Lubrication," ASME Journal of Lubrication Technology, Vol. 
99, 1977, pp. 2-9. 

4 Phan-Thien, N., "On the Effects of Parallel and Transverse Stationary 
Random Surface Roughness in Hydrodynamic Lubrication," Proc. Roy. Soc. 
London, Vol. A 374,1981, pp. 569-591. 

5 Phan-Thien, N., "On the Effects of Reynolds and Stokes Surface 
Roughness in a Two-Dimensional Slider Bearing," Proc. Roy. Soc. London, 
Vol. A 377, 1981, pp. 349-362. 

6 Keller, J. B., "Wave Propagation in Random Media," Proc. Symp. 
Appl. Math., Vols. 13 and 16, Amer. Math. Soc , Providence, R.I., 1962 and 
1964. 

7 Phan-Thien, N., "On the Mean Reynolds Equation in the Presence of 
Surface Roughness: Squeeze-Film Bearing," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 48, 1981, pp. 717-720. 

8 Phan-Thien, N., "On the Effects of Homogeneous Reynolds Roughness 
in a Two-Dimensional Slider Bearing With Exponential Film-Thickness," 
ASME Journal of Lubrication Technology (in press). 

9 Christensen, H., "Stochastic Models for Hydrodynamic Lubrication of 
Rough Surfaces," Proc. Inst. Mech. Eng., Vol. 184,1969-70, pp. 1013-1026. 

10 Longuet-Higgins, M. S., "The Statistical Geometry of Random Sur­
faces," Proc. Symp. Appl. Math., Vol. 13, American Math. Soc , Providence, 
R.I., 1962. 

11 Yaglom, A. M., An Introduction to the Theory of Stationary Random 
Functions, translated and edited by R. A. Silverman, Prentice-Hall, Englewood 
Cliffs, N.J.,1965. 

CONFERENCE LISTING 
Worldwide Mechanics Meetings 

(Continued on page 486) 

ITEMS FOR THIS CALENDAR SHOULD BE SENT TO PROF. MICHAEL H. HVER. DEPT. 
OF ENGINEERING SCIENCE E MECHANICS* VIRGINIA TECH, BLACKSBURG. VA. 24061 
ITEMS SHOULD INCLU0E NAME OF ORGANIZATION, NAME OF MEETING,PLACE,DATES, 
AND NAME E ADDRESS OF CONTACT. CURRENT LISTS ARE AVAILABLE ON RECUEST. 

DATE : SEPTEMBER 1 -3 , 1982 LOCATION: DARMSTADT, W GERMANY 
TITLE: FLOW AND MASS TRANSFER IN PLASMA FILTRATION & ARTIFICIAL KIDNEY 
SPONS: EUROMECH 158 CONTACT: PROF. OR.- ING. J.K.SPURK 

TECH.HOCHSCHULE DARMSTADT,PETERSENSTRASSE 30,6100 DARMSTADT,FDR 

UATE : SEPTEMBER 6 - 1 0 , 1982 LOCATION: R0SKIL0E, DENMARK 
TITLE: FATIGUE AND CREEP OF COMPOSITE MATERIALS 
SPONS: RISO NATIONAL LAd CUNTACT: THE SECRETARIAT 

METALLURGY DEPT.. OK-4000 ROSKILCE, DENMARK 

DATE : SEPTEMBER 6 - 10, 1982 LOCATION: CAMBRIDGE, ENGLAND 
TITLE! IUTAM SYMP. ON METALLURGICAL APPLICATIONS OF MHO 
SPONS: UNIV. OF CAMBRIDGE CONTACT: J . A. SHERCLIFF 

ENGINEERING, CAMBRIDGE CB2 1PZ, UK 

DATE : SEPTEMBER 6 - 9 , 1982 LOCATIONS BERLIN* GERMANY 
TITLE: PERIODIC FLO* AND HAKE PHENOMENA 
SPONS: EURQHECH 160 CONTACT: PROF. OR.- ING. E. BERGER 

TECH.U.BERLIN,STRASSE 0ES L7.JUNI 135, 1000 BERLIN 12,GERMANY 

DATE : SEPTEMBER 14 -16 , 1982 LCCATION: NICE, FRANCE 
TITLE: SPECTRAL METHODS IN COMPUTATIONAL FLUID MECHANICS 
SPONS: EUROMECH 159 CONTACT: DR. R- PEYRET 

DEPT.MATH.,U.NICE,PARC VALROSE,06034 NICE CEOEX, FRANCE 

DATE : SEPTEMBER 1 5 - 1 7 , 1982 LOCATION: LONDON, ENG 
TITLE: COALESCENCE ANO DEPOSITION OF AEROSOL PARTICLES 
SPONS: EUROMECH 161 CONTACT: PRDF. L. M. HOCKING 

OEPT. HATH., UNIV. COLLEGE LONDON,GOMER ST..LONDON WC1E 6BT.ENG 

DATE : SEPTEMBER 20 -23* 1982 LOCATION: JABLONNA, POLAND 
TITLE: STABILITY ANO EVAPORATION OF THIN LIQUID FILMS IN THO-PHASE FLOW 
SPONS: EUROMECH 162 CONTACT: PROF. KRZVZANOHSKl 

POLISH ACAD.SCI»UL.GEN.J.FISZERA 14 ,80-952 GDANSK.POLAND 

OATE : SEPT 2 0 - 2 4 , 1982 LCCATION: PH1LA..PA 
TITLE: ENGINEERING IN MEDICINE AND BIOLOGY 
SPONS: ASHE CONTACT: ASME 

UNITEO ENGR. CENTER, 345 E. 47TH ST . , NEH YORK, NY 10017 

DATE : SEPT. 2 1 - 2 4 , 1982 LOCATION: HUPPERTAL, GERMANY 
TITLE: EXPERIMENTAL ANALYSIS OF NONLINEAR PROBLEMS IN SOLID MECHANICS 
SPONS: EUROMECH 152 CONTACT: PROF.-ING.K.-H.LAERHANN 

FACH.ll-BAUT.PAULUSKIRCHSTRASSE 7,5600 HUPPERTAL 2.GER. 

DATE : SEPTEMBER 22 - 2 4 , 1982 LOCATION: LOEBEN, AUSTRIA 
TITLE: 4TH EUROPEAN CONFERENCE CN FRACTURE 
SPONS: METALLKUNQE&WERKSTUFFPRUFUNG CONTACT: K. MAURER 

HONTANUNIVERSITAT, A8700 LOEBEN* AUSTRIA 

DATE : SEPT. 28-OCT. 1 , 1962 LOCATION: BUDAPEST, HUNGARY 
TITLE: 8TH CONGRESS ON MATERIALS TESTING 
SPONS: SCIENTIFIC SOC. OF MECH. ENG. CONTACT: DR. ISTVAN HAVAS 

CONGRESS OF MATERIALS TESTING, H-1372 BUDAPEST,BOX 451,HUNGARY 

DATE : OCTOBER 4 - 7 , 1982 LOCATION: WASHINGTON* D.C. 
TITLE: SYMPOSIUM ON ADVANCES AND TRENDS IN STRUCTURAL AND SOLID MECHANIC 
SPONS: GEORGE HASHINGTQN U.CNASA-LAN CONTACT: PROF. AHMED K. NQGR 

MAIL STOP 2 4 6 , NASA LANGLEY RESEARCH CENTER, HAMPTON* VA 23665 

DATE : OCTOBER 9 - 1 3 , 1982 LOCATIONS PHILADELPHIA, PA 
TITLE: ENGINEERING IN ME01CINE ANO BIOLOGY 
SPONS: ASME CONTACT: ASHE 

UNITEO ENGR. CENTER, 345 E. 47TH ST. , NEH YORK, NV 10017 

DATE : OCTOBER 11-13 ,1982 LOCATION: LISBON, PORTUGAL 
TITLE: SURFACE MOUNTED BLUFF BODIES IN A TURBULENT BOUNDARY LAYER 
SPONS: EUROMECH 163 CONTACT: PRQF.A.R.JANEIRG BORGES 

UNIV. NOVA OE LIS80A,1899 L1SB0A COCEX,PORTUGAL 

DATE : OCTOBER 12-14* 1982 LOCATION: SIEGEN* GERMANY 
TITLE: OPTIMIZATION METHOOS IN STRUCTURAL DESIGN 
SPONS: EUROMECH 164 CONTACT: PROF. DR. H. ESCHENAUER 

INST. HECH.&REGELUNGSTECHNIK,UNIV.-GH-SIEGEN,5900 SIEGEN Zl,6ER. 

DATE : OCTOBER 18-20 ,1982 LOCATION: MADISON,HI 
TITLE: SYMP ON HAVES ON FLUID INTERFACES 
SPONS: MATHEMATICS RESEARCH CENTER CONTACT: MRS. GLAOY MORAN 

610 WALNUT ST..HADISON, Hi 53706 

DATE : OCTOBER 20 -23 ,1982 LCCATION: KRAKOW,POLAND 
TITLE: 1ST INT SYM TRIBOLQGICAL PRGBS OF ELEMENTS IN CONTACT 
SPONS: INSTYTUT PODSTAH BUDOHY HASZY CONTACT: PROF STANISLAH PYIKO 

30-059 KRAKOW, AL. HICKIEHICZA 30 POLAND 

OATE : OCT. 24 - 28 , 1982 LOCATION: ST. LOUIS, HO. 
T ITLE: SYMP. ON MODELLING STRUCTURE AND PROPERTIES OF AMORPHOUS MATERIAL 
SPONS: THS - AIHE CONTACT: DR. V. VITEK 

DEPT. OF MATERIAL SCIENCE, UNIV. OF PENN, P H I L . , PA 19104 

DATE : OCTOBER 2 5 - 2 8 , 1982 LOCATION! TOKYO, JAPAN 
TITLE: FOURTH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 
SPONS: TMS-AIME/JSCM CONTACT: PROF. T . HAYASHI 

J.SOC.COHPOSITE HAT.,2-4-16,YAYOI,BUNKYO-KU,TOKYO 113, JAPAN 

DATE : SEPTEMBER 21 - 23 , 1982 LCCATION: SOUTHAMPTON. ENGLAND 
TITLE: 4TH INT. CONF. ON BOUNDARY ELEMENT METHODS IN ENGINEERING 
SPONS: UNIVERSITY OF SOUTHHAMPTON CONTACT: DR. C.A. BREBBIA 

UNIV. OF SOUTHAMPTON,SOUTHAMPTON S09 5NH, ENGLAND 

DATE : OCT 26 -28 ,1982 LOCATION: DANVERS, 
TITLE: 53RO SHOCK AND VIBRATION SYMPOSIUM 
SPONS: SHOCK L VIBRATION CENTER CONTACT: 

CODE 5804, NRL, WASHINGTON, DC 20375 

480/Vol. 49, SEPTEMBER 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R.H.Tien 
Associate Research Consultant. 

0. Richmond 

U.S. Steel Corporation, 
Research Laboratory, 

Monroe, Pa. 15146 

Theory of Maximum Tensile 
Stresses in the Solidifying Shell of 
a Constrained Rectangular Casting 
A theoretical model is derived for determining the stresses that develop during the 
early stages of solidification in flat-sided ingot molds. The model requires flatness 
of the solidifying skin and is strictly valid only up to the time when an air gap begins 
to form at the corners. Here it is argued that the model continues to provide a valid 
estimate of the maximum stresses in the central portion of the flat sides, where mold 
contact is maintained long after the first appearance of an air gap at the corners. 
This argument is supported by the fact that the lateral contraction of this portion is 
inhibited both by mold friciton and by tensile forces transmitted through the 
contracted corners from adjacent faces of the skin. Specific calculations are made 
for low-carbon steel by using physical property data from the literature. The 
maximum tensile stresses occur at the outer face and have values between 500-1500 
psi, depending on the cooling rate. The theory is believed to be relevant to the in­
terpretation of "center-line" cracking. 

Introduction 

The stresses that develop in the solid shell during 
solidification are of considerable practical importance 
because when sufficiently large, they may cause longitudinal 
cracking. It is the objective of the present work to describe a 
method for estimating such stresses and to give some actual 
numerical results for the solidification of steel in a mold with 
flat sides. 

If the solidifying shell is subjected to uniform but non-
steady surface temperature and pressure, and if it remains flat 
during solidification, then the theoretical problem in the early 
stages reduces to a one-dimensional nonsteady problem on 
each side of the ingot except for small corner effects. Weiner 
and Boley [1] have considered such a problem for a square 
mold. They assumed that the newly formed solid behaved as a 
rate-independent elastic-plastic material. This led to con­
traction immediately upon cooling, causing an "air gap" 
between the mold and the solid shell (Fig. 1(a)). Continued 
flatness of the skin was nevertheless assumed on the basis that 
fluid pressures and inelastic corner rotations were negligible. 
The resultant lateral strain in the shell was negative (con­
tracting) and the resultant lateral force was zero. 

Richmond and Tien [2] took a different approach. They 
assumed that the newly formed shell behaved as a viscoelastic 
material and that the fluid pressure was not negligible. This 
caused the shell to remain in contact with the mold for some 
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Fig. 1 Illustration of solidification problems 

time after cooling began (Fig. 1(b)). The fluid pressure forced 
the shell against the mold, causing the resultant lateral force 
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to be compressive in the early stages and the lateral strain to 
be zero. If the cooling rate was sufficiently rapid, however, 
the lateral force changed in time from compressive to tensile, 
and the time of this transition was taken as the beginning of 
air-gap formation at the corners. After this time the solution 
was considered invalid because the shell would no longer 
remain flat. 

It is the contention of the present work, however, that the 
approach of Richmond and Tien can be used to obtain an 
estimate of the stresses in the central portion of the face of the 
ingot even after the air gap begins to form. As illustrated in 
Fig. 1(c), the air gap is visualized as growing from the corners, 
but the central portion of the skin is kept flat against the mold 
by the fluid pressure. Furthermore, lateral contraction of this 
portion is inhibited both by mold friction and by the tensile 
forces transmitted through the contracted corners from 
adjacent faces of the skin. Thus, continued application of the 
solution is believed to give a reasonable estimate of the 
stresses at the center of the faces even after air-gap formation 
at the corners, and up to the time of complete breakaway of 
the faces from the mold. These stresses are probably 
significant for the understanding of the formation of center-
line cracks. The formation of corner cracks, on the other 
hand, is probably intimately associated with the occurrence of 
the air gap itself. 

In the next section, the rheological model of Richmond and 
Tien is reviewed and compared with specific experimental 
results on the mechanical behavior of low-carbon steels at 
very high temperatures. Then the theoretical problem for flat-
sided molds is reviewed and the method of solution briefly 
described. Finally, actual results for the solidification of low-
carbon steel are presented and discussed. 

The Rheological Model Compared With the Behavior of 
Low-Carbon Steel at High Temperatures 

A general viscoelastic model for solids at temperatures that 
are high relative to their melting points was proposed by 
Richmond and Tien [2], and is used here. In Cartesian 
components it is given by, 

-=<'«>(t)W)(tM8«^ <» 
where the strain-rate components iy are related to the velocity 
components y, by 

1 
«y = y &ij + vj,i), (2) 

and the deviator stress components Sy are related to the full 
stress components o^ by 

sU = aij- -J Okk&ij- (3) 

The thermal-expansion coefficient a and Poisson's ratio v are 
assumed to be material constants, whereas Young's modulus 
E is taken to be a function of temperature, and viscosity //, is a 
function of both temperature and stress. The dot operator, 
although generally a Jaumann rate [3], is taken as a simple 
time derivative d/dt because convection terms are assumed to 
be negligible. 

The thermal expansion coefficient a used in the present 
model is assumed to be constant. This is justified by the 
experimental measurements obtained by Tammann and 
Bandel [4] which indicated the linear relationship between 
temperature and specific volume at temperatures up to the 
melting point. 

No direct measurements of Poisson's ratio have been 
reported for low-carbon steels at high temperatures. 
However, Garber and Kovalev [5] did measure both Young's 
modulus and the shear modulus in an 0.04 percent C steel at 
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Fig. 2 Companion with Feltham's * data for 0.05 percent C Steel 

temperatures below 1000°C and inferred from these data that 
Poisson's ratio increases with increasing temperatures from a 
value of 0.28 at room temperature. Because this result was 
obtained indirectly and at temperatures considerably below 
the melting point, and because the maximum possible value of 
v is 0.5, it has been assumed for the purposes of this work 
simply that v has a constant value of 0.3. 

The dependence of Young's modulus on temperature 
appears to be linear from the measurements on iron by Koster 
[6] and by Hub [7] and is represented by 

E=F-GT, (4) 
where F and G are material constants. It should be noted that 
atomistic theories [8] also generally agree with equation (4) at 
high temperatures. 

The temperature and stress dependence of viscosity are 
assumed to be given by 

_ 2ec/T J 
^~ 3A' sinh(BJ) ' ( 5 ) 

where A', B, and C are material constants and where the 
second stress invariant J is given by 

For a simple tension test under a stress, a, it is readily seen 
from equations (3) and (6) that J = a. If the test also is 
conducted at constant stress and constant temperature, 
equations (1) and (5) show that the strain rate e in the tensile 
direction is given by 

e=.4'e-c/:rsinh(.Bo). (7) 

Comparisons of this equation with creep-test measurements 
on an 0.05 percent C steel by Feltham [9] are shown in Fig. 2, 
and the agreement is seen to be quite good. It should be noted 
that this equation can be derived from absolute reaction-rate 
theory [10, 11], in which case A' is proportional to T. This is 
the form that was proposed in [3], and it would provide even 
better agreement with Feltham's data. However, the simpler 
form (7) with A' as a constant is considered to be adequate. 

The Solidification Problem and Method of Solution 

The problem is illustrated at a general stage of 
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Fig. 3 Physical representation of the problem and the coordinate 
system 

solidification in Fig. 3, where x represents the space coor­
dinate normal to an ingot face. Initially the melt is assumed to 
be at a uniform temperature, Tm, just above the melting point 
and at a uniform pressure, P, caused by the liquid head. 
Subsequently, the surface temperature of the ingot is 
decreased uniformly over the entire ingot surface while the 
melt pressure is held constant.1 The problem is to calculate 
the thickness of the solid shell and the temperature, stress, 
and strain distributions within the shell during solidification. 
The thickness and the temperature distribution are obtained 
from the heat conduction equation 

T=kT,„. 

where k is thermal diffusivity, assumed to 
constant. The stresses 
mechanical equilibrium 

must satisfy the 

, = 0 

(8) 

be a material 
equations of 

(9) 

as well as the rheological equations (1), (4), and (5). 
In general, even though the surface temperature and 

pressure are uniform, the shell will become distorted during 
solidification, leading to a difficult three-dimensional 
problem. For a viscoelastic material, however, and a rigid 
mold, the newly formed shell will be pressed against the mold 
in the early stages, preventing distortion and allowing a much 
simpler solution. For this case the only nonzero velocity 
component is vx = v (x,t), and the only nonzero stress 
components are axx = - P and ayy = azz = - P + r (x,t). 
The temperature, too, is a function only of x and t, and 
consequently the entire problem becomes one dimensional. 
The heat-conduction equation (8) then reduces to 

dT _ d2T 
(10) 

or, if a modified heat of fusion is used (12), an approximate 
solution can be obtained from the still simpler equation 

d2T 

a?"0- (11) 

The accuracy of this approximation was discussed in a 
previous paper [12]. The equilibrium equation (9) is iden­
tically satisfied and the rheological equations (1), (4), ,and (5) 
give 

dr 

dt 

and 

dv 

~dx 

-K^'-) (F-GT)-\ dT 

F-GT 
-GJ)-\ dT 

-v \~dT 

A'(F-GT)e 

2(1 -v) 
-C/T, sinh(Br) 

2(1 -2v) dr Y(\-2v)G (IT-IP) 

(F-GT)2 dt (F-GT)'' 
+ 3al 

(12) 

dT 

~dT' 
(13) 

Equations (11)-(13) are the three field equations for the three 
dependent variables, T, T, and v, in the resulting one-
dimensional, nonsteady problem. 

Initially, v = T = 0 and T = Tm. The boundary conditions 
on temperature are given by the circumstances that the outer 
surface of the skin is subject to a specified temperature 
history, while the inner surface remains at the melting tem­
perature, and also that heat is generated at the inner surface in 
an amount required by the modified heat of fusion [12]. More 
precisely, 

T(x = 0)=Tm-Ta(l-e 

T(x=X(t)) = Tm 

• < * < > ' ) 
(14) 

and 

dT pi' dX 
—-(x=X(t) ) = ?- — , 

dx k dt 

where X(t) is the thickness of the solid shell and / ' is the 
modified heat of fusion. These boundary conditions are 
sufficient to determine T(x,t) from equation (11). Once 
T(x,t) is determined, r(x,t) can be determined from equation 
(12) and the condition that it is zero at the solidifying in­
terface. Finally, v (x,i) can be determined from equation (13) 
and the condition that it is initially zero and remains zero at 
the outer surface of the shell. Actually, v (x,t) is not computed 
here because it is of no particular interest, but T(x,t) and 
r(x,t) are computed from the reasonable cooling history given 
by the first part of equation (14). 

The problem is first restated in dimensionless variables by 
using the following substitutions: 

i = Rt, x=x/D, X=X/D, T=T/Tm, T=BT 
- pD2Rl' -

Ta = Ta/Tm, L = ,„ , P=BP, F=BF, G=BTmG 

a = aT„, 
kT„. 

A'=A'/R, C=C/Tm 

(15) 
where D is unit length. The thermal problem then becomes 

d2f 
= 0 dx2 

subject to the boundary conditions 

T(x = 0)=\-Ta(\-e-'2) 

f(x=X(i)) = l 

and 

where 

dT - . dX 
— (X=X(t))=L dt ' 

X(t = 0) = 0. 

(16) 

The more general case of uniform but nonsteady pressure was treated in [2J. And the mechanical problem becomes 
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G a(F-Gf)~l df -K^*-')* F-GT 1 
GT)1 

v J dt 

A'(F-Gf)e-C/T 

- sinhf (17) 
2(1 -v) 

subject to the condition that f is zero at the solidification 
front. 

It is readily verified that the solution to the thermal 
problem is given by 

T= 1 - T, *-y> e->') 

where 

*-W>0 
(18) 

The mechanical problem is solved by using this result in the 
right-hand side of equation (17). Specifically, the dimen-
sionless stress f is computed at various specific positions, xn, 
by using the simple but reliable Runge-Kutta [13] integration 
procedure with the condition 

fUW„) = 0, (19) 

where tn is computed from the second part of equation (18) 
whenx„ = X. 

Numerical Calculations and Figures 

The following data that are appropriate for 0.05 percent C 
steel were used in equations (17) and (18) to calculate the 
stresses developed during solidification: 

A' 
B 
C 
a 
G 
F 
v 

T 
T 
1 m 

P 
I' 
k 

1.55 x10 s (1/sec) 
2 .05x l0 - 5 ( cm 2 /g r ) 
3 .2x l0 4 ( °C) 
1 . 8 x l 0 - 5 ( l / ° C ) 
0.88xl0 6 (gr /cm 2°C) 
0.002 (gr/cm2) 
0.3 
538 (°C) 
1550 (°C) 
8 (gr/cm3) 
65 (cal/gr) 
0.07(cal/sec°Ccm) 

The development of stress at various positions is shown in 
Fig. 4 by using/? = 1.4 x 10~~3 (1/sec), which corresponds to 
the case where surface temperature decreases from melting 
temperature to 1100 °C within 16 min. It is seen that at any 
position the stress starts to build up when solidification begins 
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Fig. 7 Effect of cooling rate on maximum stress 

because of thermal contraction. During the initial stages, the 
temperature is high and the stress is low. Hence the inelastic 
strain rate is low, and the stress accumulates from thermal 
contraction at a rate faster than stress relaxation from the 
inelastic behavior. The overall stress is therefore increasing. 
At a later stage, the temperature is low and the stress is high, 
and the inelastic effect overpowers that of thermal con­
traction. Then the stress is gradually relaxed. The overall 
maximum stress occurs at the cooling surface {x = 0), but at 
any particular instant the stress may be higher elsewhere. This 
is shown in Fig. 5, where the stress distribution within the 
solidifying shell is given at various times. The maximum stress 
is at the surface up to t = 2.0, but then the stress level 
decreases and the location of the maximum stress moves 
inward toward the liquid side. The stress history at the surface 
x = 0 is given in Fig. 6 for various values of R, which implies 
different rates of cooling. It is seen that the maximum stress 
can be three times higher when the time required to drop the 
surface temperature to 1100°C decreases from about 16 min 
to 2.7 min (R = 1.4 x 1(T3 to 8.4 x 10"3 sec"1)- The 
maximum stress and the time t* when it occurs are plotted 
against R in Fig. 7. This plot indicates that the maximum 
stress is very sensitive to R only when R is small than about 
0.005. 

The integration of stress 

i: adx 

is equivalent to the total transverse force in the shell. It is also 
the force required at the ends and by friction buildup to 
prevent overall contraction. This force obtained from 
graphical integration of the curves in Fig. 5, is shown in Fig. 8 
as a function of R. The total force, like the stress at a par­
ticular location, increases, reaches a maximum, and then 
decreases. In a recent publication by Frober and Oeters [14], 
the forces in a solidified shell are directly measured through 
an experimental setup. Some typical results shown in Fig. 9 
are consistent with present predictions. 

Concluding Remarks 

The maximum transverse stress that can occur in the center 
of a flat face of a solidifying steel casting has been estimated 
by examining the case when the ferrostatic pressure and the 
mold-friction forces completely inhibit contraction. For 
normal cooling histories the maximum tensile stress occurs at 
the outer surface of the solidifying shell, next to the mold 
face. This stress first increases because of the effect of the 
thermal contraction coefficient, but later decreases because of 
inelastic (creep) effects. The maximum stress is, as expected, 

Fig. 8 Total force (J j idx) versus time (f) 

i 1—i 1—i 1 — r 

Fig. 9 Experimental measurement of forces in a solid shell 

very sensitive to cooling rate. These results should be useful in 
interpreting the effect of cooling history on center-line 
cracking when accurate yield stresses at elevated temperatures 
becomes available. 

References 

1 Weiner, J. H., and Boley, B. A., "Elasto-Plastic Thermal Stresses in a 
Solidifying Body," Journal of Mechanics and Physics of Solids, Vol. 2, 1963, 
pp.145-154. 

2 Richmond, O., and Tien, R. H., "Theory of Thermal Stresses and Air-
Gap Formation During the Early Stages of Solidification in a Rectangular 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/485 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Mold," Journal of Mechanics and Physics of Solids, Vol. 19, 1971, pp. 
273-284. 

3 Jaumann, G., Grundlagen derBewegungslehra, Leipzig, 1905. 
4 Tammann, V. G., and Bandel, G., "Specific Heat and Specific Volume 

of Iron-CarbonAUoy.'Mrcft. Eisenhiittenwesen, Vol. 7,1934, p. 571. 
5 Garber, R. I., and Kovalev, A. L., "Investigation of the Temperature 

Dependence of the Modulus of Elasticity of Iron,' ' Zavodsic Laboratory, Vol. 
24, 1958, p. 539. 

6 Koster, W., "Elastic Modulus and Damping of Iron and Iron Alloys," 
Arch. Eisenhiittenwesen, Vol. 14, 1940, p. 271. 

7 Hub, D. R., "Measurement of Velocity and Attenuation of Sound in Iron 
Up to the Melting Point," Paper No. 551 in the Proceedings of the 4th In­
ternational Congress on Acoustics, Copenhagen, 1962. 

8 Leibfried, G., and Ludwig, W., "Temperature Dependence of Elastic 
Constants of Alkali Halide Crystals," Solid State Physics, Vol. 12, 1961, p. 
276. 

9 Feltham, P., "The Plastic Flow of Iron and Plain Carbon Steels Above 
theAs Point," Proceedings of Roy. Soc, Vol. 66, 1952, pp. 865-85. 

10 Eyring, H., "Activated Complex and the Absolute Rate of Reaction," 
Journal Chem. Phys., Vol. 4, 1936, p. 283. 

11 Eyring, H., and Ree, T., "Theory of Plasticity Involving the Virial 
Theorem," Proceedings of the National Academy of Science, Vol. 41, 1955, p. 
118. 

12 Tein, R. H., "A Modified Heat of Fusion for Use in the Mathematical 
Formulation of Solidification Process," Trans. ASME, Vol. 242, 1968, pp. 
1289-1292. 

13 Hildebrand, F. B., Introduction to Numerical Analyses, McGraw-Hill, 
New York 1956, p. 237. 

14 Frober, J., and Oeters, F., "On the Mechanical Behavior of Steel During 
Solidification,"/lrcA. Eisenhiittenwesen, Vol. 51, 1980, pp. 43-48. 

CONFERENCE LISTING 
Worldwide Mechanics Meetings 

(Continued on page 583) 

DATE : 
TITLE: 
SPONS: 

DATE : 
TI TL E: 
SPONS: 

DATE s 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE J 
TITLE; 
SPONS: 

DATE : 
TITLE! 
SPONS: 

DATE : 
TITLE! 
SPONS: 

DATE : 
TITLE: 
SPONS.* 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS". 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OCTOBER 2 7 - 2 9 , 1982 LOCATION: ROLLA, MISSOURI 
19TH ANNUAL MEETING 
SOCIETY OF ENGINEERING SCIENC CONTACT: PROF. ROHESH C. BATRA 
DEPT. DF ENG. HECH., UNIV- OF MISSOURI, ROLLA, MO. &54Q1 

NUVEHBER 1 - 5, 1982 LOCATION: FRANKFURT, w. GER. 
IUTAM SYMP, CN RANOOH VIBRATION AND RELIABILITY 
INST. FUER HECH, CONTACT: K. HENNIG/G. SCHMIDT 
AKAU DER WlSSENSCHAFTEN, RUDOHER CHAUSSEE 5, DDR-U99, BERL IN 

NOV 7-11 ,1982 LOCATIONS HARTFORD,CT 
1982 SESA FALL MEETING, ENG. APP. GF OPTICAL MEASUREMENTS 
SOC. OF EXPER. STRESS ANAL. CONTACT: SESA 
1 * FAIRFIELD DR., BROOKFIELD CENTER, CT Q6805 

NOVEMBER 14 -19 , 1982 LOCATION: PHOENIX, ARIZONA 
ASME WINTER ANNUAL MEETING 
ASME CONTACT: ASME 
UNITED ENGR. CENTER, 345 E. 47TH ST. , NEW YORK, NY 10017 

NOVEMBER 14 - 17, 1982 LCCATIUN: CF'ECUTAH, OKLA 
FORUM ON SUBSIDENCE DUE FLUID WITHDRAWAL 
ENERGY TECH CENTER CONTACT: ERLE DONALDSON 
BARTLFSV1LLE, OKLAHOMA 74005 USA 

DECEMBER 13, 1982 LOCATION: SAN FRANCISCO 
SYM ON EFFECTS OF DEFECTS IN COMPOSITE MATERIALS 
ASTM CONTACT: DICK J . WlLKINS 
MAIL ZONE 2884, GENERAL DYNAMICS, FORT WORTH, TX 76101 

DEC. 15 -17 , 1982 LOCATION: SAN FRANCISCO, CA. 
SYM. ON BIAXIAL/MULTIAXIAL FATIGUE 
ASTH CONTACT: K. J , MILLER 
UNIV. QF SHEFFIELD, M.fc. DEPT., SHEFFIELD SI 3JD, ENGLAND 

JANUARY 10 - 14, 1983 LEGATION: TUSCON,AZ 
INT. CONF. ON CONSTITUTIVE LAWS FOR ENG. HAT: THEORYSAPP. 

CONTACT: C. S. DESA1 
CIVIL ENG. C ENG. MECH., UNIV. CF ARIZ . , TUSCON.AZ 85721 

JANUARY 24 - 2 7 , 1983 LOCATION: NEW ORLEANS,LA 
6TH CONFERENCE ON FIBROUS COMPOSITES IN STRUCTURAL DESIGN 
DOD, FAA, NASA CONTACT.' MRS. J . AYQUB 
AMMRC, ATTN: DRXMR-SN, WATEfiTOWN, MA 02 172 

FEBRUARY 23 - 25 , 1983 LOCATION: ISRAEL 
25TH ISRAEL ANNUAL CONF. ON AVIATION AND ASTRONAUTICS 

CONTACT: H. NIHROO 
DEPT. AERO. ENGNG., TECHNION-ISRAEL INST. TECH., HAIFA, 32000 

MARCH 14 - 18, IV83 LOCATION." PARIS, FRANCE 
3RD INT. SYMP, ON NUM. METHODS IN ENGINEERING 

CONTACT: R. P. SHAH 
CIVIL ENGINEERING, SUNY-BUFFALO, BUFFALO, NY 14214 

DATE : MAR. 21-25,1983/APR. 6 -7 ,1983 LOCATION: CUEENSLAND,ASIL/AUCKLANO 
TITLE: 6TH INT. CONFERENCE ON WIND ENGINEERING 
SPONS: INT.ASSOC.WIND ENG. CONTACT: DR. J . E. CERMAK 

COLORADO STATE UNIVERSITY, FORT COLLINS. COLORADO 80523 

1983 LCCATIUN: PARIS, FRANCE 
ON VECTOR AND PARALLEL CUrtP. IN SCIENTIFIC APP. 

CONTACT: ft. P. SHAw 
CIVIL ENGINEERING, SUNY-BUFFALO, BUFFALO, Mr 14214 

MARCH 17 - 18, 
1ST INT. CULL. 

MARCH 23 - 24,1983 LOCATION: SOUTHAMPTON,ENG 
4-TH SEMINAR ON FINITE ELEMENT SYSTEMS 
COMPUTATIONAL MECH. CENTER CONTACT: C. BREBBIA 
125 HIGH ST.,SOUTHAMPTON,SUlOAA,ENGLAND 

HARCH 2i - 25 , 1983 LOCATION: PHILADELPHIA 
COMPOSITE STRUCTURES SPECIALIST'S MEETING 
AM HELICOPTER SOCIETY CONTACT: DUN HOFFSTEDT 
BOEING VERTOL, P 0 8GX L6858, MAIL STOP P30-22 , PHILA, PA 19142 

DATE : APRIL 12 - 14,1983 
TITLE: 8-TH AEROACOUSTICS CONFERENCE 
5P0NS: AIAA 

LOCATION: ATLANTA,GA 

CONTACT: AIAA 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

APRIL 18 - 20, 1983 LOCATION: ALBANY, NY 
INT CONF ON ADVANCES IN LIFE PREDICTION HEIHOOS 
ASME CONTACT: O.A. WOQDFCRD 
GENERAL ELECTRIC, 8LDG K-l, RH 231HB,SCHENECTADY, NY 12301 

MAY 2-4, 1983 LOCATION: LAKE TAHOE, NV 
24TH SDM CONFERENCE 
AIA4/A5ME/ASCE/AHS CONTACT: ASHF. 
UNITED ENGR. CENTER, 345 E. 47TH ST., NEW YORK, NY 10017 

HAY 9-14, 1983 LOCATION: TORINO, ITALY 
2ND EUROPEAN SYHP. FLYWHEEL ENERGY STORAGE 
POLITECNICO DI TORINO CONTACT: G. GENTA 
I 10100 TORINO, ITALY 

LOCATION! CLEVELAND* OHIO DATE : MAY 15-20, I9B3 
TITLE: SESA 1983 SPRING MEETING 
SPONS: SESA CONTACT: SESA 

14 FAIRFIELD DRIVE, BROOKFIELD CENTER, CT 06805 

DATE : MAY 23-25 ,1983 LOCATION: W- LAFAYETTE,IN 
TITLE: ASCE ENGINEERING MECHANICS SPECIALTY CONFERENCE 
SPONS: SCHOOL OF CIVIL ENGINEERING CONTACT: Y .F - CHEN 

PURDUE UNIV . , W. LAFAYETTE, IN 47907 

DATE : HAY 30-JUNE 3 , 19B3 LOCATION: SASKATOON, SASKATCHEWAN 
TITLE: CANCAM 83 
SPONS: UNIV. OF SASKATCHEWAN CONTACT: O R . M.U. HCSAIN 

CIVIL ENGR-,U.SASKATCHEWAN,SASKATOON,SASKATCHEWAN,CANADA S7N0W0 

DATE : JUNE 6 - 8 , 1983 LOCATION: HAMPTON, VA USA 
TITLE: 2ND JAPAN - US CONFERENCE ON COMPOSITE MATERIALS 
SPONS: ASTM CONTACT: J.R VINSON 

UNIV. OF DELAWARE, MECH AND AEROSPACE ENGNG, NEWARK, DE 19711 

DATE : JUNE 1983 LOCATION: UDINE,ITALY 
TITLE: INT. SYHP. ON CURRENT TRENDS AND RESULTS IN PLASTICITY 
SPONS: CISM-PLASTICITY TODAY CONTACT: G. BIANCHI 

PIAZZA GARIBALDI, I B , 33100 UDINE, ITALY 

DATE : JUNE 2 0 - 2 4 , 1983 LOCATION: FREIBURG, H. GERMANY 
TITLE: APPL. OF FRACT. MECH. TO HATERIAL5 E STRUCTURES 
SPONS: FRAUNHOFER-INST.WERKSTOFFMECH CONTACT: OR. £ . SUMMER 

ROSASTRASSE 9 , D-7800 FREIBURG, WEST GERMANY 

DATE : JUNE 2 0 - 2 2 , 1983 LOCATION: HOUSTON, TEXAS 
TITLE: JOINT MEETING, FLUIDS ENGRG., APP. MECH., BIOENGRG. DIVS. 
SPONS: ASME CONTACT: ROBERT NEREM 

UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 

OATE : JULY 12 -13 , 1983 LOCATION: LONDUN, ENGLAND 
TITLE: ENVIRONMENTAL EFFECTS ON FIBRE REINFGRCfcD PLASTICS 
SPONS: IMPERIAL COLLEGE OF SCI.CTECH CONTACT: F. L. MATTHEWS 

AERONAUTICS DEPT., IMPERIAL COLLEGE, LONDON SW7 2BY, ENGLAND 

DATE J JULY 13 - 15,1983 LOCATION: OANVERS. 
TITLE: 16-TH FLUID AND PLASMA DYNAMICS CONFERENCE 
SPONS: AIAA CONTACT: AIAA 

MA 

486 / Vol. 49, SEPTEMBER 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



N. S. Ottosen 
Research Engineer, 

Engineering Department, 
Rise! National Laboratory, 

DK-4000 Roskilde, 
Denmark 

Relaxation of Thick-Walled 
Cylinders and Spheres 
Using the nonlinear creep law proposed by Soderberg, closed-form solutions are 
derived for the relaxation of incompressible thick-walled spheres and cylinders in 
plane strain. These solutions involve series expressions which, however, converge 
very quickly. By simply ignoring these series expressions, extremely simple ap­
proximate solutions are obtained. Despite their simplicity these approximations 
possess an accuracy that is superior to approximations currently in use. Finally, 
several physical aspects related to the relaxation of cylinders and spheres are 
discussed. 

Introduction 
Creep problems are encountered in many situations, in 

particular when high temperatures are present. When the 
creep strains depend nonlinearly on stresses, the solution 
becomes complex and numerical solutions are most often 
necessary. This also applies to relaxation problems, where 
displacements are known in advance. Often, however, 
relaxation problems are somewhat simpler than the 
corresponding creep problems, as the constitutive conditions 
become differential equations in which all terms are known 
explicitly. This situation arises for incompressible cylinders 
and spheres. 

However, only a few closed-form solutions are known for 
such thick-walled structures. For an arbitrary Poisson ratio, 
solutions have been obtained by Davis [1] for the linear 
viscoelastic cylinder, and by Wierzbicki [2] for the linear 
viscoplastic sphere, but apart from these solutions all other 
contributions seem to resort to numerical solutions. This 
applies, for instance, to the investigation of Davis [3] dealing 
with incompressible cylinders and to the work of Spence and 
Hult [4] treating incompressible spheres. To avoid the tedious 
numerical calculations, the latter two investigations also 
discuss several simple approximations to the considered 
problems. 

The present paper deals with relaxation of thick-walled 
cylinders in plane strain and with thick-walled spheres. The 
material is considered incompressible and the creep strains are 
assumed to follow Soderberg's [5] creep law, which involves 
nonlinear stress dependency. From this basis, closed-form 
solutions are derived. Even though these solutions are quite 
easy to work with, extremely simple but very accurate ap­
proximate expressions are suggested and compared with the 
exact solutions. Moreover, the exact closed-form solutions are 
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applied to discuss physical aspects related to relaxation 
problems. 

Constitutive Equations 

Assuming small strains and deformations, the total strains 
are composed of the elastic and the creep strains, i.e., 

e = ee + ec (1) 
where a dot indicates the time rate. The elastic strains follow 
from Hooke's law. The creep strain rates are assumed to be of 
the usual associated von Mises type, i.e., 

3ee 
— - S a 
2ae " 

(2) 

where ie = (2e?- <=?• /3)Vl and ae = (3sySy/2)Vl are the effective 
creep strain rate and effective stress, respectively, whereas s,j 
= ffy — &jjOkk/3 is the deviatoric stress tensor. Usual tensor 
notation is applied. 

Due to its simplicity we will adopt time hardening here and 
express the time dependence in terms of a power function. The 
stress dependence is frequently assumed to be of the Norton 
power law type. Here, however, we shall make use of the 
exponential form proposed by Soderberg [5], i.e., 

ie=mA(eBl,e-l)tm-} (3) 
where A, B, and m are parameters and t is the time. Ac­
cording to both Soderberg [5] and Popov [6], this expression 
provides close fits to experimental data. Moreover, for 
practical purposes, it gives almost identical results as the 
hyperbolic sine relation suggested, for instance, by Nadai [7]. 
Nadai and McVetty [8] and McVetty [9] found that the 
hyperbolic sine relation provides a better fit to experimental 
data than the power law, whereas Pickel et al. [10] found 
almost the same accuracy. Here, we could also make use of 
the hyperbolic sine relation, but the results are somewhat 
more complicated and will therefore not be given. 

Thick-Walled Cylinder 

Consider a thick-walled cylinder in plane strain with inner 
radius rx and outer radius r2. The condition of plane strain 
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provides ez - 0. Therefore, as the inner surface is given a 
specific fixed displacement, it follows from the assumption of 
material incompressibility that 

e„=0 (4) 

in familiar notation. Incompressibility implies that Poisson's 
ratio equals Vi. Therefore, from ez = 0 follows erz = 
(ar + ae) / 2 which results in 

Or) (5) 

where T = 1 or T = - 1 holds, if the inner surface is ex­
panded or contracted, respectively. 

By the preceding observations we are left with only one 
constitutive equation of interest which, using equations 
(l)-(5), reads 

be+mAE(eB°e-\)tm-l=Q (6) 

where E is Young's modulus. This equation together with the 
equilibrium equation 

oor 
r-~r+or-°6 = 0 (7) 

constitute the governing equations of the problem. 
The cylinder is loaded by a constant external pressure and 

the inner surface is given a fixed displacement, i.e., the 
boundary conditions are 

r = r{; M = H, =constant 

r=r2; ar~ —p2 = constant 

(8) 

(9) 

Using the transformation y = e e, the solution of (6) 
follows straightforward. This solution involves an arbitrary 
function f(r), which is determined so that for t = 0 the 
isothermal elastic solution follows. The result is 

ae= - -Inia + be r2 J (10) 

where the two time-dependent functions a and b are defined 
by 

a(t)=\-b(t); 0<ff<l 

b(t)=e-N,m\ 0<b<l 

and where the positive parameters Mand Ware defined by 

M=T-r~EBulrl; N=ABE 

Inserting (10) into (7) and integrating from r to r2 gives 
M 

In(a + be *2 ) 

0> = 
IT Cr2 

BV5ir dx-p2 (11) 

where the boundary condition (9) has been used. Integration 
of this expression is performed after the numerator of the 
integrand has been expanded into a Taylor series. However, 
this expansion depends on the magnitude of the positive term 

M 
2 /a, and it becomes convenient to define the time-

M 

o / a = l , i.e., 

1/2 

be 

dependent radius r0 so that be 

r„= — 

This expression can be used only for b/a>\, otherwise r0 is 
defined to be infinitely large. Depending on the value of r0 we 
are now in a position to determine the radial stress using (11). 

If r2<r0 then 

ln(a + be - 2 ) = / « « - E J ( 

M 
2 

Mn Equation (11) now becomes 

a'~ m llna l"v - S \ (~ \)" T e 7" dxi ~P2 

Using the transformation z —Mn/x2 this expression yields 

T £(>^£i(-;)>(£) 
-E,(^«)]]-Pa (12) 

where Mn/r2 is a positive quantity and the exponential in­
tegral is defined by _„ 

E , ( z ) = ( — dv 

and is extensively tabulated, for instance, by Abramovitz and 
Stegun[ll] . 

Similarly, if r0 < r then 

In ( u M \ , u M V H " 

{a + be-xj)=
lnb-x2-hn[-~TT be ** 

Use of this expression in equation (11) and proceeding as in 
the foregoing yields 

T 
—~\2lnbln—+M(^r-^) 
5V3t r \r\ r2 / 

-iji(-i)'K?")-<•)]}-- <"> 
where the exponential integral is defined by 

("* e" 
E/'(z) = — dv 

J -oo V 

and is tabulated, for instance, by Abramowitz and Stegun 
[11]. The initial elastic solution follows from (13) with a = 0, 
b = 1 and therefore r0 = 0. 

Finally, if r<,r0<r2 then by completely analogous 
calculations we obtain 
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The closed-form solution for aT given by either (12), (13), or 
(14) is very easy to work with noting that only a, b, and r0 
depend on time. Moreover, the series present in the solution 
converge very quickly. In addition to that, these terms are 
small compared to the other terms. This means that in 
preliminary calculations the radial stress can be determined 
with close accuracy by completely ignoring the series ex­
pressions and considering just the first term in the series will 
raise the accuracy to a very high level. These important 
aspects are demonstrated in the section on applications. 

Thick-Walled Sphere 
Consider now a thick-walled sphere of incompressible 

material and with inner radius rx and outer radius r2. The 
boundary conditions are again given by (8) and (9). The 
calculations are completely similar to those of the cylinder 
problem and we shall therefore merely state the final results. 

Define the positive quantity Q by 

Q=T2EBu1r\ 
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where T= 1 or T= - 1 if the inner surface is expanded or 
contracted, respectively. The effective stress is then given by 

Q 

(15) 
1 

ae = T(ae-ar) = --ln(a + be <* ) 

Define the time-dependent radius rt so that be r* /a = 1, i.e., 

Q \ 1/3 

b 
( Q Y 

In-
a 

This expression applied only so long as b/a > 1; otherwise rt is 
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defined to be infinitely large. Depending on the value of rt the 
following expressions hold for the radial stress. 

If r2 £ r then 

« = i 

-E, (16) 

If rt </-then 
IT 27Y r2 / 1 1 \ 
3Bl r \rl r3/ 

-i \(-=)>(£.)-#)]}- a, 
The initial elastic solution follows from this equation with 
a = 0, b = 1, and therefore rt = 0. 

If/•</•„ <r2 then 

(£-)] + 3/«6 ln— + ( a(T>-T>) 

- i i(-D"K!»)-(!•)]]- <») 
Applications and Approximations 

Consider an austenitic stainless steel at a temperature of 
around 600 deg C. In the secondary creep range, where m = 1 
applies, typical parameters in the creep law, equation (3), 
might be A = 7-10"9 [1/h] and 5 = 5.4.10"2[l/MPa]. For a 
stress range between 50-150 MPa, this fi-value corresponds to 
an exponent of around five in Norton's creep law. Young's 
modulus is assumed to be E = 1.5 • 105 MPa. 

The first applications concern a thick-walled cylinder and 
sphere both with r{ =0.01 m and r2=0.04 m, and with ex­
ternal pressure p2=0. The initial internal pressure in both 
cases is 100 MPa. Assuming a rigid mandrel this pressure 
corresponds to the shrink-fit pressure. 

Figures 1, 2, and 3 show the development with time of the 
effective, radial, and tangential stresses, respectively, for the 
cylinder. Figures 4, 5, and 6 provide the corresponding results 
for the sphere. 

It appears that the stresses decrease considerably with time 
especially immediately after the initial loading and adjacent to 
the inner surface in particular. As the driving force in the 
creep process is the effective stress, the decrease of the stresses 
as well as the zone affected by relaxation is smaller at a given 
time for the sphere than it is for the cylinder due to the more 
favorable structural behavior of the sphere. 

In addition to the decrease of stresses, a considerable stress 
redistribution takes place. This is especially pronounced for 
the tangential stress, cf., Figs. 3 and 6. The stress 
redistribution is a result of creep being a nonlinear function of 
effective stress. To illustrate this effect, consider a cylinder of 
incompressible viscoelastic material, where creep depends 
linearly on stress. This case arises from equation (3), when B 
is very small resulting in ee— mABoet'"~[. Within the same 

approximation e — 1 -Mir applies, which, by means of 
(10), yields oe--ln(l-bM/r2)/B. As 0<£<1 holds, this 
expression can be approximated by ae~aefi\^.b(t) where 
b(t) is equal to e~NI as before. For secondary creep, where 
m equals unity, the equation for ae corresponds to uniaxial 
relaxation of a Maxwell material. Now, using this expression 
in the equilibrium condition given by (7), we derive 
°> ~ ffr.dast. *(') a nd similarly for the tangential stress. 
Therefore, when creep depends linearly on stress, the stress 
distribution itself is similar to that of an elastic material, 
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whereas the stresses decay as if uniaxial relaxation were in­
volved. These conclusions were originally derived by Davis 
[1]. 

Let us now consider the item of most practical interest, 
namely the development with time of the shrink-fit pressure/) 
at the inner surface. For thin-walled vessels very simple ex­
pressions can be derived directly from the equilibrium con­
ditions resulting in ar = — p= ~2T/^3aeh/r-p2 for the 
cylinder and o>= —p= -2Toeh/r—p2 for the sphere. 
However, when the wall thickness increases, the problem 
becomes much more complex. 

Figure 7 gives the development with time of the shrink-fit 
pressure for three different cylinders with r2/rx =1.2, 2, and 
4. The material properties are identical to those previously 
used and the initial shrink-fit pressure is again 100 MPa. 
Figure 8 provides similar results for the sphere. 

It appears that the wall thickness has a considerable in­
fluence on the results and in accordance with the previous 
discussion, this influence is a result of creep being a nonlinear 
function of stress. Physically, as the inner region is most 
subject to creep and as the outer region tends to restrain these 
creep deformations, it is obvious that the thicker the vessel the 
slower the loss of shrink-fit pressure. Similarly, the shrink-fit 
pressure decreases more slowly for the sphere than for the 
cylinder. 
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Different attempts to approximate the development with 
time of the shrink-fit pressure have been proposed in the past. 
When creep depends linearly on stress, the previous discussion 
shows that this development is identical to that of uniaxial 
relaxation. In [3] Davis proposed to also apply this concept to 
nonlinear creep. The approximation leads to the conclusion 
that for a given initial shrink-fit pressure, the development 
with time should be identical for all wall thicknesses. Com­
parisons with Figs. 7 and 8 discourage such an approach. 

More recently, Spence and Hull [4] investigated the ap­
proximations currently in use, namely the Kachanov ap­
proximation and the reference stress concept and compared 
them with the exact, numerical solution for relaxation of 
incompressible spheres consisting of materials in which creep 
follows Norton's law. Here, we make use of the extremely 
simple formulas, which follow if we ignore all series terms 
present in equations (12), (13), and (14) for the cylinder 
problem and present in equations (16), (17), and (18) for the 
sphere problem. The resulting approximations are shown in 
Figs. 7 and 8. It appears that the predictions of the ap­
proximations become better the more thin-walled the vessel is. 
Compared with the approximations currently in use, cf., 
Spence and Hult [4], the approximations suggested here 
provide a much closer and even simpler estimate to the exact 
solution. 

Apart from these advantages, the approximations shown 
here also demonstrate that the exact solutions are very easy to 
work with as the series converge very quickly. Indeed, if only 
the first term in the series is considered, the accuracy obtained 
is close to the drawing accuracy. The exact solution in all the 
figures shown is that obtained using the first four terms in the 
series. 

Conclusions 

Considering incompressible material behavior and 
assuming that creep is determined by the exponential ex­
pression proposed by Soderberg [5], closed-form solutions for 
the relaxation of thick-walled cylinders and spheres have been 
derived. These solutions contain terms in the form of series 

expressions. Approximative formulas that simply ignore these 
series have been proposed and have been demonstrated to be 
in close agreement with the exact solutions. 

Apart from providing extremely simple and even more 
accurate predictions than approximations currently in use, the 
effectiveness of the proposed approximations also demon­
strate that only a few terms in the series present in the closed-
form solution have to be considered to obtain a solution close 
to the exact one. In addition, several physical aspects related 
to the relaxation of cylinders and spheres have been discussed. 
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Transient Response of a Fluid-
Saturated Poroelastic Layer 
Subjected to a Sudden Fluid 
Pressure Rise 
The transient response of a fluid-saturated poroelastic layer resting on a very 
porous rigid foundation and subjected to a sudden fluid pressure rise on its upper 
surface is analyzed on the basis of Biot's theory of poroelasticity. Compaction of 
the layer and fluid outflux from its bottom surface are calculated for five typical 
poroelastic materials: alundum and Ohio sandstone saturated with water, compact 
bone, and Albany felt and polyurethane foam filled with silicone fluid. For each of 
these materials, the numerical results are compared with those estimated by the 
"incompressible model" as well as the "rigid skeleton model" in order to examine 
the validity of these models. 

1 Introduction 
There are many mathematical formulations describing the 

mechanical behaviors of a fluid-saturated poroelastic body, 
taking into account various aspects of its behavior. Among 
these formulations, Biot's linear one [1-3] is one of the 
simplest theories and it suffices to describe various 
phenomena in various real situations. 

Regarding experimental data on several material constants 
appearing in the Biot theory, Fatt [4] reported in 1959 his 
experimental results for Boise sandstone saturated with 
kerosene. After a long absence of reports on the material 
constants, some reports [5-7] were published for poroelastic 
materials such as bone, sandstone and sinter containing 
water, and foam rubber and felt filled with silicone fluid. 

On the other hand, there are also a number of papers 
dealing with mathematical analysis of the mechanical 
response of a fluid-saturated poroelastic body. Many of these 
papers, however, do not base their numerical calculations on 
the experimental data of material constants but on assumed 
values. Furthermore, many of them base their analysis on a 
simplified model in which both the matrix material of the 
poroelastic body and the contained pore fluid are assumed to 
be incompressible so that the volume change of the body is 
equal to the amount of the pore fluid squeezed out. (We refer 
to this simplified model as the "incompressible model.") This 
incompressible model is supposed to be suitable for describing 
the consolidation of soil. 

In the present paper, we consider the transient response of a 
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fluid-saturated poroelastic layer resting on a very porous rigid 
foundation and subjected to a sudden fluid pressure rise on its 
upper surface. Because of the reasons mentioned in the first 
paragraph, we adopt the Biot theory. This theory contains the 
"incompressible model" as well as the "rigid skeleton 
model" as special cases. (The latter model has been used to 
examine the flow through porous media in various fields [8].) 
Our numerical calculations are based on the experimental 
data for five selected typical kinds of poroelastic materials. 

Our main objectives are as follows: (1) to make clear 
qualitative distinctions, if any, in the transient response of the 
layer between the five typical poroelastic materials; (2) to 
determine which of the five allows us to estimate the com­
paction (consolidation) of the layer and the outflux of the 
pore fluid by the incompressible model; and (3) to make clear 
whether or not it is appropriate for each of the five to estimate 
the fluid outflux by the rigid skelton model. 

It should be added that another objective at the outset of 
this research was to explain by the Biot theory of 
poroelasticity the decrease in the fluid flux with the progress 
of compaction (consolidation) of a reverse osmosis membrane 
when sea water is desalted by the reverse osmosis method [9]. 
However, this attempt was not successful. We conjecture that 
we should take into account the finite deformation (com­
paction) of the membrane and/or its viscoelastic nature. 

2 Basic Equations 

Let us begin by summarizing Biot's linear theory of 
poroelasticity which takes into account the compressibility of 
both the matrix material and the contained fluid. We shall 
refer to this theory as "Biot's full model." 

Equilibrium equations and modified Darcy's law are, in 
Cartesian tensor notation, 
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(o,, + o6u),j=0, (1) 

a„ = b(U,-u,), (2) 

where atj and abtj are the solid and fluid partial stress tensors, 
respectively, and u, and t/, the solid and fluid displacement 
vectors. Flow resistance coefficient b in equation (2) is related 
to permeability k and fluid kinematic viscosity /* by 

b = li0
1/k, (3) 

with /3 denoting the porosity. The following shows relation 
between a and pore pressure/): 

ff=-fip. (4) 

Solid strain tensor e,y, solid dilatation e, and fluid dilatation 
e are expressed in terms of u, and £/, as follows: 

1 
ev = 2 ("w+"•/.'•)> e = uu> e = =tf4/- (5) 

Constitutive equations are given by 

au=2Neu+(Ae + Qe)8u, a=Qe + Re, (6) 

where N,A,Q, and R are the elastic constants. The first one is 
the shear modulus and the other three are expressed in terms 
of measurable parameters as follows [10]: 

^ = ( 7 / K + / 3 2 + ( 1 - 2 I 8 ) ( 1 - 5 / K ) ) / ( 7 + 5 - 5 2 / K ) - ( 2 / 3 ) 7 V , 

Q = 0(l-(3-8/K)/(y+8-82/K), R = (32/(y+5-82/>c), (7) 

where K and 8 are the so-called "jacketed" and "unjacketed" 
compressibility coefficients, respectively. Parameter 7 is a 
coefficient of fluid content and is given by 

7 = 0 ( c - « ) (8) 

with c being the fluid compressibility. 

3 Problem Formulation and Results of Analysis 

A fluid-saturated poroelastic layer of an infinite extent and 
having thickness ft is laid on a porous rigid foundation which 
has very large permeability compared with that of the layer. 
Fluid pressure is suddenly applied on the upper surface of the 
layer and thereafter varies according to time-dependent 
function w(t). 

If we take the x-coordinate downward and its origin on the 
upper layer surface, it is clear that 

Ui=u(x,t), Ui=U(x,t), 

and that all other displacement components vanish. 

(9) 

Table 1 Initial and final values of layer compaction and 
fluid outflux 

u(0,0) 

u(0,-> 

VII,0) 

V(l ,») 

B i o t ' s Fu l l Model 

a- for V-*"" 

0 for f i n i t e v 

a3+tJ2(a2-B/2) 

<° for v-*" 

0 for f i n i t e v 

0 

Rigid ske l ton Model 

0 

0 

0 

8 

Incompressible Model 

0 

B /2 

» for V-M. 

0 for f i n i t e v 

B 

Since the fluid-saturated poroelastic layer is completely at 
rest before the fluid pressure is applied, the initial conditions 
are 

u=U=0 at t = 0. (10) 

From the condition of a sudden fluid pressure rise on the 
upper layer surface follow 

ax + a=-T(t), p=ir(t) at x=0. (11) 

Assuming for simplicity's sake that the layer rests on the bed 
that has very large permeability and very large rigidity 
compared with those of the layer, we can write the boundary 
conditions on the bottom layer surface as follows: 

u = 0, p = Q at x=h. (12) 

In order to solve the preceding one-dimensional con­
solidation problem, we have introduced the following non-
dimensional quantities and material parameters: 

(ax, o,p, T) = (ax ,a,p, ir) /p0, 

(u,U) = (u,U)/(p0h/K), (13) 

x=x/h, f=t/(bh2/K), 

a, = (P+Q)/JJ, a2 = (Q+R)/H, a,=K/H, (14) 

where P=A+2N, H=P+2Q+R, and K=(PR-Q2)/H. In 
the first and second equations of (13), p0 stands for the 
reference pressure. For simplicity's sake, the bars on the 
nondimensional quantities are omitted in the following. 

In the course of the analysis •, the applied fluid pressure has 
been specified to have the form 

x ( 0 = l - e x p ( - i r f ) , (15) 

with v being the parameter of the pressure rise rate. The 
analysis is very easy. We shall present only the results for the 
compaction, w(0,0, of the layer and the fluid outflux, 
V{l,t) = U(l,t): 

«(0 ,0= (a3 -a2(2a2 -/3)(cosv7- l)/(Vwinv7) )(1 -e~") 
Co 

+ 2a2(2a2 - 0 ) £ v/[ (mr)2 { v- (n*)2 )] X 

x [ l - ( - l ) " } { l - e - ( ' " r » 2 ' } , (16) 

K( l ,0 = (3 - (Vv/sinv7)f a2cosi>- (p2-P)]e-" 
00 

+ 2 D ( - 1 ) " " / ( " - ( " T ) 2 ) { « 2 ( - 1 ) " 

-<«2-0))e- -<nx)'f (17) 

4 Rigid Skeleton and Incompressible Models 

For the layer whose porous skeleton has very large rigidity, 
we may estimate the fluid flow through the layer by the rigid 
skeleton model. This model is a limiting case of Biot's full 
model. For the rigid skeleton, it follows from their definitions 
that 

N-oo, K~0, 5 -0 , 7-j3c. (18) 

Table 2 

Alundum/Water 

Ohio S a n d s t o n e / W a t e r 

Compact Bone 

Albany F e l t / S i l i c o n - F l u i d 

P o l y u r e t h a n e F o a m / S i l i c o n - F l u i d 

Material constants 
N (Pa) 

2 .5E10 

6 .8E09 

6.2E09 

5 .3E05 

3.1E03 

A (Pa) 

1.5E10 

6.7E09 

2 .2E10 

2.4E06 

3.2E03 

Q (Pa) 

5 .7E08 

9 .5E08 

4 .4E09 

6 .3E06 

9 .4E04 

R (Pa) 

6 .3E08 

3 .3E08 

1.7E09 

2 .1E07 

8.7E06 

6 

0 . 3 2 

0 .19 

0 . 1 4 

0 . 7 0 

0 . 9 3 

b ( N . s / m 4 

3.7E07 

6.6E09 

2 .7E13 

6.5E10 

4 .4E07 

W a t e r : c = 5 . 1 E - 1 0 ( P a - 1 ) S i l i c o n e F l u i d : c - 1 .0E-09 ( P a - 1 ) 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/493 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



In these limits, we find 
«!—1, a2—0, a3—0. (19) 

On the other hand, both the matrix material of porous body 
and the contained pore fluid are often assumed to be in­
compressible so that the volume change of the body is equal to 
the amount of the pore fluid squeezed out. This is the case for 
soil. This incompressible model is also obtained as another 
limiting case of Biot's full model. For the incompressible 
matrix material and the incompressible pore fluid, it follows 
from their definitions that 

5-0, 7 - 0 . (20) 
Jacketed compressibility K remains finite. Thus, we obtain 

a , - 1 - 0 , a-2-ft a-3-0, (21) 
for the incompressible model. 

The layer compaction and the fluid outflux can be 
evaluated by equations (16) and (17). Especially, those at 
t = 0+ and at t—°° can be expressed in closed forms by 
recourse to the mathematical formulas in [11, p. 36]. Those 
are shown in Table 1 for Biot's full model as well as for the 
rigid skeleton and incompressible models. The latter two may 
serve the purpose of comparison. 

For v— oo, that is, for the step pressure load, «(0,0) = a3. 
This means that the layer has "instantaneous elasticity" and 

presents a striking contrast to the incompressible model for 
which H(0,0) = 0 even for v— oo. That is, not to mention the 
rigid skeleton model, the incompressible model is not ap­
propriate to estimate the compaction of the layer immediately 
after the application of the step pressure, unless the layer 
material has a negligible value of a3. 

The layer compaction in the steady state is given by 
M(0,OO) = Q;3 +a2(a2 — /S/2), which reduces to H(0,OO) = J32/2 

for the incompressible case. 
For y—oo, K(1,0) —oo for both Biot's full model and the 

incompressible model, while F(1,0) = 0 for the rigid skeleton 
model. This means that the deformation of the skeleton due to 
instantaneous elasticity causes a very large fluid outflux. This 
phenomenon will be discussed again in terms of the pore fluid 
pressure gradient in the next section. 

The fluid outflux in the steady state is the same for all the 
models, that is, V(l,<x>) = fS. 

5 Numerical Examples and Discussion 

To cast further light on the transient response of the layer, 
we carried out some numerical computations for the five 
typical kinds of fluid-saturated poroelastic materials; 
alundum and Ohio sandstone saturated with water, compact 
bone, and polyurethane foam and Albany felt filled with 
silicone fluid. For these five materials, we summarized the 
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Fig. 1 Compaction history for Ohio sandstone and alundum layers 
containing water 
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Fig. 2 Compaction history for polyurethane foam layer containing 
silicone fluid 
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Fig. 3 Outflux history for water from alundum layer 
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Fig. 4 Outflux history for water from Ohio sandstone layer 

values of material constants, N, A, Q, R, fi, b in Table 2. 
Some of these values were computed from those of other 
material constants. Units were reduced to SI units, when 
necessary. 

The values of b in the last column of Table 2 are not 
necessary in computing the layer compaction and fluid 
outflux in the nondimensional form, but they are tabulated 
for the convenience of calculating real time from non-
dimensionalized time through the last equation of (13). 

In Figs. 1-6, the solid curves correspond to Biot's full 
model, the chain curves to the incompressible model, and the 
dashed ones to the rigid skeleton model. 

5.1 Compaction of the Layers. Figure 1 shows the 
compaction histories of the alundum/water and Ohio sand­
stone/water layers subjected to fluid pressure. For the larger 
v, the compaction increases up to its peak and then goes down 
asymptotically to its steady state value a3 +a2(a2 -|3/2) 
(Refer to Table 1). Especially for the step pressure rise 
(»<— oo), compaction happens instantaneously. That is, both 
the layers present a distinct "instantaneous elasticity." This 
instantaneous compaction is significantly larger than that in 
the steady state. 

No curves of the estimates by the incompressible model are 
depicted in Fig. 1, because there is too much difference from 
those of Biot's full one. 

Although not depicted for the sake of space saving, the 
compact bone layer also presents distinct instantaneous 
elasticity, but its instantaneous compaction is a little smaller 
than that in the steady state. The whole aspect of the com­
paction variation is similar to that of applied pressure for all 
v. The estimates of the layer compaction by the in­
compressible model are far from being a good approximation. 

The instantaneous compactions of the Albany felt and 
polyurethane foam layers containing silicone fluid are 
calculated at H(0,0+ ) = 0.024 and 0.00092 (v-oo), respec­
tively. Therefore, their instantaneous elasticity is negligible. 
For the larger v (including the case of v-~ oo), the response of 
both layers is delayed compared with the applied pressure rise. 

This is shown in Fig. 2 for the polyurethane foam layer. This 
figure also shows that the incompressible model gives a rough 
estimate of the compaction, although there is considerable 
discrepancy in the steady state compaction. This is the case 
also for the Albany felt layer. 

5.2 Outflux From the Layers. Regarding the fluid outflux 
from the layers, its estimates by Biot's full model are com­
pared with those by the incompressible model as well as by the 
rigid skeleton one in Figs. 3-5. It follows from the bottom 
row of Table 1 that the steady outfluxes estimated by the 
latter two models are the same as that calculated by the 
former one. 

The chain curves in Fig. 3 are far from the solid curves for 
v= 1 as well as for v= 100, so that the incompressible model is 
useless to estimate the outflux from the alundum layer. 
However, the rigid skeleton model gives fairly good ap­
proximations except for v = 100 and for (<0.1. 

For the Ohio sandstone layer, neither of the simplified 
models yields good approximations, especially for the rapid 
pressure rise, as seen in Fig. 4. 

Figure 5 shows that, in contrast with the rigid skeleton 
model being useless, the incompressible model gives very good 
approximation for the fluid outflux obtained by Biot's full 
model for the compact bone. This holds true also for the 
Albany felt and polyurethane foam. This approximation is 
good for all v and from the outset of fluid pressure loading to 
the steady state. 

5.3 Pore Pressure Distribution. In Figs. 4 and 5, the 
dashed curves are far from the solid curves except in the 
steady state. Especially for the compact bone and for p=100 
(Fig. 5), the rigid skeleton model indicates almost zero outflux 
in the early stages, but Biot's full model predicts such a large 
outflux that the curve extends out of the diagram in Fig. 5. 
Figure 6 is devoted to an explanation of this essential 
discrepancy between these two models. 

Figure 6 designates the spatial distribution of pore pressure 
p(x,t) for the various times for the compact bone. The left 
half is by Biot's full model and the right one by the rigid 
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Fig. 5 Outflux history for pore fluid from compact bone layer 

Fig. 6 Pore fluid pressure distribution for compact bone layer for 
various times using Biot's full model (left) and the rigid skeleton model 
(right) 

skeleton model. Since the former model allows the skeleton to 
deform elastically and the elastic deformation propagates at 
infinite velocity in the case of quasi-static analysis, the pore 
pressure instantly penetrates into the layer near its bottom 
surface, as seen in the left half. In contrast to this, the latter 
model suppresses any skeleton deformation and the pore 
pressure gradually penetrates into the layer from the top 
surface that is suddenly subjected to the fluid pressure, as 
shown on the right. Therefore, near the bottom surface, the 
pore pressure gradients for Biot's full model are very steep in 
the early stages. These steep gradients result in a large fluid 
outflux. the circumstances for the rigid skelton model are 
completely contrary to this. 
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Introduction 

Gravity-Induced Density 
Discontinuity Waves in Sand 
Columns1 

Formulas are obtained for the speeds of propagation of gravity-induced rarefaction 
and condensation density discontinuities in vertical sand columns. A rarefaction 
wave is induced in a column of sand at rest by removing the support at the bottom 
of the column, A condensation shock is induced by reintroducing the support, 
which stops the sand from falling. The theoretical prediction of the speed of 
propagation of the leading edges of the rarefaction wave corresponds well with the 
speed measurements obtained in a preliminary experiment. 

We are concerned here with the dynamics of sand columns. 
A sand column is a volume of sand contained within a rigid 
right cylinder of arbitrary cross section. The long axis of the 
cylinder is coincident with the direction of gravity, and the 
internal surface of the cylinder is rough. We use sand in a 
generic sense and we thereby include all dry, cohesionless 
granular materials in which pneumatic effects are not 
significant. Examples of sand columns satisfying this 
definition include hopper sections of bulk material handling 
equipment, silos for the storage of bulk agricultural products, 
and standpipes that supply granular materials to certain 
chemical production processes. 

In the next section we briefly present the well-known 
formula of Janssen for the equilibrium intergranular stress in 
a sand column. In the following three sections, formulas are 
obtained for the speeds of propagation of rarefaction waves 
and condensation shocks in vertical sand columns. The 
formula for the speed of propagation of the leading edge of a 
rarefaction wave is of greatest interest. Although speed of 
propagation varies with the depth of the rarefaction wave in 
the sand column, the predicted speed of propagation of the 
leading edge of a rarefaction wave agrees well with the speed 
measured in a preliminary experiment. 

The Sand Column in Equilibrium 
We consider the column of sand illustrated in Fig. 1. The 

sand is in equilibrium in a cylinder of arbitrary cross section. 
It is subjected to a surface surcharge stress of magnitude P. 
The sand is supported from below by a piston. The cross-
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r 
Surface load, P 

- Free surface 
of sand 

Fig. 1 The sand column and piston 

sectional area of the cylinder is denoted by A and the 
perimeter of the cross-sectional area by L. A coordinate axis z 
with positive direction upward from the free surface is used, 
as shown in Fig. 1. This selection of coordinate direction 
means that the sand column is located along the negative z 
axis; thus all material stations are located by negative z 
coordinates. The bulk density p of the sand is written as a 
product of the density of the sand grains y and the solid 
volume fraction v of the grains, 

p = yp. (1) 
The average value of a quantity f(x,y,z) over the cross section 
z = constant is denoted by/(z) and is defined by: 

*«-in. f(x,y,z) dxdy. (2) 
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The average value of f(x, y,z) over the perimeter L of the 
cross section is defined by: 

r(z) = ^\cf(x,y,z)ds. (3) 

A formula for the stress in the sand was obtained by Cowin 
[1], improving the well-known formula of Janssen [2]. This 
formula involves the Janssen coefficient K defined by 

K= (4) 

where T„„ is the stress acting normal to the column boundary 
at the perimeter and Vnn is the average perimeter stress. tzz is 
the cross-sectional average of the vertical stress Ta. We are 
denoting tensile stresses as positive in this work. The coef­
ficient K is constant for many granular materials. A summary 
of K values is given by Sundaram and Cowin [3]; see also 
Cowin and Sundaram [4]. 

The improved formula of Janssen (see Cowin [1]) gives the 
following bound on the average vertical stress Tzz: 

- Ta >ypgk +(P- yvglo)e*'i°, (5) 

where 

/n = 
/xLK' 

(6) 

g is the acceleration of gravity, and n is the static coefficient 
of friction between the cylinder and the sand. This bound on 
- Tzz becomes an equality when the friction between the sand 
and the cylinder wall is fully mobilized. It should be kept in 
mind that the last term in equation (5) represents an ex­
ponential decay because the admissible values of z are all 
negative. 

Conservation of Mass and Momentum Across the 
Discontinuity 

Statements of the conservation of mass and momentum 
across a one-dimensional discontinuity obtained in this 
section are well known. Our derivation, which is based on 
Lamb's [5] presentation of the original results of Rankine [6], 
emphasizes the applicability of these classical results to void 
volume changes in sand as well as to density changes in gases. 
The notation we introduce is generally that of Truesdell and 
Toupin [7]. 

Consider a discontinuity, for example a rarefaction wave 
moving up the sand column as illustrated in Fig. 2. The 
leading surface of the discontinuity is denoted by s + and the 
trailing surface by s~. Let the normal stress, solid volume 
fraction, and particle velocity at the leading surface be 
denoted by T£, v+, and z+, respectively. At the trailing 
surface the same quantities are denoted by T~, v ~, and z ~, 
respectively. The spatial velocity of the wave is denoted by u. 
The material speeds of propagation of the two surfaces s+ 

a n d * - , denoted by U+ and U~ , respectively, are related to u, 
z +, a n d z - by 

U-mu-Z- (7) 

To obtain the desired statement of mass balance, the wave 
velocity u is superposed on the two surfaces s+ and .s - to 
reduce the problem to one of steady motion. Since the same 
amount of mass crosses the surfaces s + ands~ in unit time: 

yv+ {u-z+ ) = yv~ (u-z~) 

which, using (7) can be rewritten as 

•U-mM yv+ U+ =yv~ 

(8) 

(9) 

where M is the mass per unit area entering or leaving the wave 
front per unit time. Rankine [6] called M the "mass velocity" 
of the wave. Equation (9) is the desired statement of mass 
conservation across the discontinuity. It can also be written in 
the form 

1LLU 

I ! I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

Rarefaction wave 

Flow-free 
fall domain 

Fig. 2 A rarefaction wave in the sand column. The wave is bounded by 
the surfaces s + a n d s - . 

[vU]=0 (10) 

where the square brackets denote the jump in the indicated 
quantity across a shock; i.e., 

[vU] = v+U+-v-U-. (11) 

To obtain a statement of momentum conservation across 
the discontinuity, the change in normal stress, given by 
[Tzz] = T£ — Tzz, is equated to the rate at which the mass is 
gaining momentum: 

[Tzz] = M(u-z+)-M(u-z-) = -M[i\. (12) 

Thus, from (12) and (7), momentum balance requires that 

[Ta]=M[U\. (13) 

An expression for (J7+ )2 is obtained from (13) using (11) and 
(9), 

( ! / + ) * = _ . 
yv"' 

(14) 

Thus, using (9) and (14), the speeds U+ and U~ of the shock 
surfaces are determined by the normal stress jump [Ta] and 
values of the solid volume fractions v+ and v~ at the shock 
surfaces, and are independent of other factors. 

The Rarefaction Wave 

We consider now what happens when the piston in Fig. 1 is 
suddenly dropped at an acceleration greater than that of 
gravity. Such an action leaves the bottom level of the sand 
unsupported. The sand will become less densely packed and 
begin to fall freely, creating a rarefaction wave. The surface 
s+ is the lowest surface that is still in static equilibrium. 
Below the surface s+, the shear stress sustained by friction 
between the sand and the wall diminishes in a short distance to 
zero. The surface s~ is defined to be the sand plane where the 
sand has become sufficiently disperse that it can no longer 
sustain intergranular stresses. 

At the surface s+, the stress is given by the equality in 
equation (5), which assumes that the full friction force is 
mobilized; thus, 

-Ta=yPrglo+(P-Wog)*"°, (15) 

where vr is the reference value of the volume fraction 
established by_ the initial packing. At the surface s~, the 
normal stress 7£ is zero and the reference volume fraction v~ 
is j>o. the value of v at which intergranular stress disappears. 

When appropriate values for [T^], [v], v+, and v~ are 
substituted into (14), the square of the material speed of 

498 / Vol. 49, SEPTEMBER 1982 Transactions of the AS ME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



propagation of the leading surface of the shock is given by 

(U+)2 = vl + (v2
l-vl)ez"o 

where y0 and vi are velocities defined by 

v0=J-_ - , v^J^— — . (17) 
^ Vr-V0 ^ Vr(vr-V0) y 

Equation (16) shows that far away from the free surface, the 
material speed of propagation of the leading edge of the 
rarefaction wave is v0, where 

lim U+ =-v0. (18) 

The result also shows that very near the free surface of the 
material, the material speed of propagation of the leading 
edge is f] , where 

lim U+=Vi. (19) 
z-o 

In particular, if the free surface has no surcharge (i.e., P = 
0), the material speed of propagation of the leading edge of 
the shock (i.e., the velocity of the wave relative to the 
material) will go to zero as the free surface is approached. 

The time for a shock wave to travel from a location - z0 to 
the free surface can be calculated using the formula (16). 
From (16) we write that 

£/• = - * 

Thus, t--•f 
J - Z f l 

dt 
••\vl+(v\ 

[vl+{v\-

v2
0)e

z"o]U2. 

vl)ez/l°]U2 dz. 

Integration yields 

In 
2vl e^o/'o + " i - " o \ 

Vi+V0/' 

(20) 

(21) 

(22) 
V0 \(V0+Vi 

and, in the special case when the free surface is unstressed (P 
= 0, hence vl = 0), 

—/«(2eV'o- i ) . 
v0 

(23) 

Equation (22) is a general expression for the time t that it 
takes a rarefaction wave to travel from a depth z0 to the free 
surface. Equation (23) is an expression for the same time t in 
the special case of an unstressed free surface. 

The Condensation Shock 

Suppose now that the piston is suddenly stopped. The 
piston surface will be covered by sand rather quickly, and 
sand that has come to rest will be separated from the still-
falling sand by an interface. This interface, which moves up 
the sand column, is here considered as a condensation shock. 
This situation is illustrated in Fig. 3. The leading edge of the 
condensation shock, s+, is defined as the horizontal plane 
where the intergranular stress Tzz changes from zero to some 
nonzero value; hence, by definition the solid volume fraction 
is P0. Sand grains crossing the surface s + have a velocity - v. 
The surface s~ is the surface where all motion of the sand 
grains vanish; the value of v~ is denoted by vs. To determine 
the speed of propagation U~, the mass fluxes at the surfaces 
s+ and .s~ are set equal: 

Thus 

vsyAU dt= —yv0Avdt. 

"o 
£ / - = • v. 

(24) 

(25) 

An expression for the stress at the surface s can be obtained 
from (14) using (25), T+ = 0, v+ = p0, and v~ = vs; thus 

7 W = - ( I - - J 5 - ) T M 2 . (26) 

Equation 26 shows that the jump in intergranular stress across 

J I 

\ I I I ! 
I I I I I 
i nn 
I i i i i 

Rarefaction wave 

Flow-free 
fall domain 

Condensation shock 

Fig. 3 The sand column containing both a rarefaction wave and a 
condensation shock 

the condensation shock is proportional to the square of the 
velocity of sand grains entering the shock. 

Comparison of Theory With Observations 
Several years prior to the development of the theory 

reported here, a small-scale experimental investigation studied 
the movement of voids of a sand column. We will here report 
the results of this early experiment and compare them with the 
theory. In the experiment, a vertical, rough-walled cylinder of 
rectangular cross section was filled with sand. The cylinder 
was fitted with a piston that could be displaced downward a 
specified distance with an acceleration greater than that of 
gravity. Moving the piston downward by a specified amount 
created a void whose magnitude and dimensions were known. 
Static radiographs of the cylinder were taken before and after 
each downward displacement of the piston. Microswitches 
and an electronic timer were used to measure the time lapse 
between the beginning of downward movement of the piston 
and the initiation of downward movement of the free surface 
of the sand. 

The test cylinder had a rectangular cross section 152.4 mm 
by 76. 2 mm and a height of 990 mm. The walls were made of 
perspex (plexiglass), and were covered internally with burlap 
to produce high friction surfaces. Both 76.2 mm perspex walls 
were perforated with many holes to eliminate pneumatic 
effects from the air entrained in the voids. The piston was 
released with a solenoid, was driven downward with a spring, 
and was stopped hydraulically. The mechanism was designed 
so that the piston could be moved up to a maximum of 76.2 
mm. 

The first step in the experimental procedure was to load the 
test device with dry sand. The sand was discharged from a 
loading hopper through a plastic tube into the cylindrical 
chamber. The flexible plastic tube was moved about to keep 
the free surface of the sand horizontal. A slow loading rate 
ensured that the sand would be densely packed in the cylinder. 
This method of loading the sand is described in detail by Lee, 
Cowin, and Templeton [8]. The total length of the completed 
sand column was 908 mm. 

Next, the cylindrical chamber was placed in position and 
leveled. Three overlapping static x-rays were taken of the 
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cylindrical chamber on Kodak type M film (5M3M10), which 
was attached to one of the wider external faces of the 
chamber. A 2.44 m source-to-film distance was used. The 
bottom x-ray included the piston, the second one the middle 
region of the cylinder, and the top one the upper region and 
free surface of the sand. A tube voltage of 150 KV with a tube 
current of 4 mA and exposure time of 5 minutes was used. 
The system was then ready for use in studying the effect of 
piston motion. 

In the first experiment, the piston was dropped 19.1 mm, 
after which three more static x-rays of the cylinder were 
taken. During this experiment the timer, which was designed 
to be activated by a microswitch associated with the piston 
and stopped by a microswitch measuring the beginning of 
motion of the free surface, did not stop because the free 
surface did not move. We feel that the free surface failed to 
move because the rarefaction wave was diffused to an am­
plitude below that which is required for propagation before 
reaching the free surface. 

The static x-rays taken before the first experiment showed a 
smooth layering structure in the sand, characteristic of the 
manner in which the sand was deposited. Static x-rays taken 
after the first movement of the piston looked essentially like 
those taken before, even though the volume fraction of solids 
had changed from the initial packing fraction of v* to 0.98 v*. 
The initial packing fraction c* is unknown; the packing 
fraction after the movement of the piston, 0.98 v*, is 
calculated from the change in the total volume of the sand. 
Because the x-ray tube had to be moved to take the upper two 
x-rays after the first experiment, it was repositioned at the 
lowest position and another static x-ray was taken. This was 
done to obtain a before and after x-ray of the second ex­
periment with the x-ray tube in the same position. This same 
process preceded the second and third experiments. 

In the second experiment, the initial positions of the sand 
column and piston were their final positions at the end of the 
first experiment. The second experiment consisted of drop­
ping the piston an additional 38.2 mm. The timers (a second 
one was employed as a backup) measured 0.182 s in both 
cases. The free surface was estimated to have dropped only 19 
mm during the experiment. The static x-rays taken after this 
experiment showed changes to be more pronounced than for 
the first experiment. Recall that in the second experiment the 
piston dropped twice as far, 38.2 mm. In the second ex­
periment, sand in the first 500 mm directly above the piston 
and the top 150 mm directly below the free surface of the sand 
appear on the static radiographs to be undisturbed by the 
piston motion. However, in a region about 300 mm long 
between these two undisturbed regions there is an interesting 
change. The region contained many rupture zones, that is, 
zones of increased porosity or reduced solids volume fraction 
from 1 to 8 mm wide and from 50 to 100 mm long. These 
rupture zones made angles of 25-30 deg with the horizontal 
and tended to cross at the middle of the cylinder. Patterns in 
the radiograph were very similar to those of Luders bands 
observed in metals. The average solid volume fraction in the 
second experiment was 0.98c*, as compared to 0.95c*, in the 
first experiment. The volume of 0.95 c* was calculated from 
the change in total volume occupied by the sand. 

We now compare the results of the second experiment with 
the theory presented. By using equation (23) and numerical 
values associated with the experiment, we determined a 
theoretical transit time /. To make these calculations, values 
of /j. = 0.5 and A" = 0.6 were chosen as being representative of 
the sand used. A survey of K values for various materials is 
given in [3]. Values directly related to the physical dimensions 
of the experimental equipment were: 

.4=0.0116 m2 L = 0.0457 m z0= 0.927 m. 
Using these values and equation (15), the value of /0 = 0.0846 

was calculated. With g = 9.81 m/s2 and the values of vr = 
0.98 c* and c0 = 0.96 c \ equation (17) yielded v0 = 6.31 
m/s. Substitution of z0> k< a nd v0 into equation (23) gave a 
transit time of 0.156 s. The agreement between this theoretical 
value of the transit time and the experimentally measured time 
of 0.182 s is quite acceptable when experimental precision is 
considw.d. In the experiment, the values of c0 and vr were 
determined from the changes in total sand volume as a result 
of the wave passage and the values of ix and K were estimated 
from other data [3]. 

In the third experiment the initial positions of the sand 
column and piston were their final positions at the end of the 
second experiment. The third experiment consisted of 
dropping the piston an additional 19.1 mm. The timers 
measured 0.0885 s in both cases during the third experiment. 
Again, the free surface was estimated to have dropped 19 mm 
during the experiment. Static x-rays taken after the third 
experiment showed only slight changes from those taken after 
the second experiment. The principal change was that the 
rupture zones generated in the second experiment, which are 
still present, had become slightly diffuse and less distinct. A 
few new rupture zones were generated below the previously 
formed ruptured zones during the third experiment. The 
average solid volume fraction did not change noticeably from 
that after the second experiment. 

The fact that measurements were not sufficiently precise to 
determine a change in the solid volume fraction in the third 
experiment prohibit the calculation of a theoretical transit 
time to compare with the experimental transit time. 

Conclusion 
The theoretical formula developed for the leading edge of a 

rarefaction wave up a sand column appears to be consistent 
with a preliminary experiment. The factors influencing the 
speed of propagation near the free surface of the sand column 
are different from the factors influencing the speed deep in 
the column. Deep in the column, the speed is determined by 
the cross sectional area, the perimeter of the cross section, the 
coefficient of friction between the wall and the sand, Jassen's 
coefficient K, the acceleration of gravity, and the volume 
fractions in front and behind the wave. Near the free surface 
the speed is determined by the surcharge stress on the free 
surface, the weight density of sand grains, and the volume 
fraction in front and behind the wave. 

Both theoretical and experimental results suggest that the 
speed of propagation of the leading edge of a rarefaction 
shock is faster in looser sands. 
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A Numerical Analysis of the 
Hydraulic Bulging of Circular 
Disks Into Axisymmetric Dies 
The hydraulic bulging of peripherally clamped, thin, circular disks into axisym­
metric dies is studied by means of an incremental finite element method, based on 
membrane shell theory and formulated to account for finite strains and rotations. 
The material is treated as an isotropic, elastic-plastic solid obeying the von Mises 
yield criterion and plastic-potential flow law. The analysis was first performed for a 
flat-bottomed die, assuming Coulomb friction between the material and the die 
base. Experimental data were gathered from aluminium disks deformed into a die 
having aflat, thick glass base. The glass permitted a continuous assessment of the 
deformation profile and the contact boundary between the aluminium and the glass, 
using Moire'topography. The agreement between the experimental observations and 
theoretical predictions is good. 

Introduction 

The literature dealing with the nonlinear numerical analysis 
of thin plates and shells undergoing finite plastic deformation 
is extensive, and will not be reviewed here. The most favored 
test case to assess the numerical technique has been the 
axisymmetric bulging or stretching of a peripherally clamped 
thin, circular plate [1-7]. 

The present paper also deals with the axisymmetric bulging 
of a clamped circular disk, but here the material is being 
forced into an axisymmetric die. Calculations are provided 
herein for a cylindrical, flat-bottomed die, where the material 
is assumed to be an elastic-plastic solid obeying the von Mises 
yield criterion and associated flow rule. An incremental finite 
element method is employed, based on the membrane ap­
proximation for thin shells, and formulated to account for 
geometric nonlinearities [8]. The frictional conditions bet­
ween the material and the die were assumed to be of the 
Coulomb type. 

The predictions were checked against experimental ob­
servations when bulging a 0.31-mm-thick disk of pure 
aluminum into a flat-bottomed die. The die base was made of 
thick glass and this permitted the use of Moire topography 
[9], to determine the profile of the deforming blank. The 
specimens were also gridded, and the principal surface strains 
could be determined by removing the specimens from the 
bulging apparatus and measuring the distorted grids. The 
agreement between experimental observations and theoretical 
predictions was very favorable. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
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10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OP APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, August 1981; final revision, January, 
1982. 

Finite Element Formulation 

The present analysis considers the finite deformation of 
thin circular disks, where over the major portion of the 
material a stretching mode is predominant and hence the disk 
may be assumed to behave approximately as a membrane. 
Since the loading and deformation is axisymmetrical, a ring-
plate element is employed. 

Figure 1 shows a ring-plate element in a known state C after 
finite deformation from the undeformed configuration C0; 
there follows an incremental deformation and C is mapped 
into C. An embedded (convected) coordinate system 6' is 
adopted [7, 8, 10], where 01 and 02 are attached to the middle 
surface of the element and d3 is perpendicular to the dl - d2 

Fig. 1 Displacement of a ring-plate element, showing the coordinate 
systems 
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plane. The incremental kinematic relationships are described 
with reference to the base vectors a , ( / '=l , 2, 3), of the 
coordinate system 8', at the center of gravity of the element in 
state C. 

In the incremental deformation from C to C, a generic 
point P in the plate is displaced by Au where 

Au = Awaaa + Aw3 Xa3, (1) 
and \ = h/h0, the ratio of the thickness of the plate in C and 
C0. The incremental displacement field in the finite element is 
considered to be given from the nodal values Au'N by the 
Lagrangian interpolation function \j/N (da) as follows: 

A K ^ E W J A U J V , (^=1,2) (2) 

where ^N{6a) = 4>N + $, and <j>N and /3f are constants. The 
authors follow the convention that Greek indices range over 
the values 1, 2 and Latin indices over 1, 2, and 3. 

The covariant differentiation of the incremental 
displacements is represented by 

Auj \s w*jU«? 

Au>\3 = MHLAi/jL 

(3) 

The nonvanishing coefficients are 

N^3l = ft\>l» N ^ 2 2 = ^ 1 1 2 2 . ^ 3 3 =^4 3 3 ^ 2 2 . 

Nfo\ _ ON /V(f,2 _ „ 2 2 N y N&2 _ ON 
*11 - P i ' * 1 2 - f l ^221> *31—Pl> 

9>33 -A 33 2,223/ A > 

N&h = V $ 3 (a .^ i^r+^fr^ .yx 2 , w*?2=«22A,£223-
The quantities A Jf are the coefficient tensors in the con­
stitutive equation of the material given later in the text by 
equation (21). The coefficients ^£22*. N^n are expressed as 

r " n* - rN o* NLh2 - -=- " 1 > (4) 

where rN and rN are the radius of a circle through the nodal 
point N. The terms &k and Q£ are transformation coefficients 
which relate the base vectors a, to the reference Cartesian 
coordinates e,- as follows: 

a„ — traSj, 

aa = QJ"e,-, 

a3 = 0$e//X = a3 = XOje/) 

(5) 

where I a31 = I a31 = 1 and a" is the contravariant base vector. 
The Green strain increments at the center of gravity of the 

ring-plate element are expressed by 

A7 l , = Au, I, = j3M A«f = Ptki 1 &"N, 

A722 = Au2\2 = NZ22kAuk
N=^N n i 2 A < , 

A733 = XAX=/tJ3
1A7,) + Ajl Ay22 

(6) 

AYy = 0 when / ?£j. 

It is convenient to introduce a traction per unit length of 
plate defined in terms of the true stress, T"3, and its in­
crement, AT0"*3 as follows, 

(7) 

n<* = rafih 

An"" = A T " " / ! 

„33 = A«3 3=0. 

Under hydraulic pressure the force is directed normal to the 
surface of the element. The increment of surface force, AT', 
is related to the increment of pressure, Ap, in the following 
way 

-p/UftKa11 tub), 

0 

AT1 

AT2 

AT3 Ap/\+p/\{ WN+ a22N\Z22x )Aux
N 

(8) 

+ a ^ 2 2 3 " " N) 

We now introduce the virtual velocity 

v = u a a a + U3a3/X, (9) 

and in the absence of inertia and body forces the principle of 
virtual work in incremental form can be derived as 

- \AM^n^v0la +na<s (Au» I „ + A\/\)ve\a 

+ nal)Aum\livm\a\dA+\A VaATkvkdA=0. (10) 

When the material makes contact with the die the frictional 
resistance has been incorporated into the virtual work 
equation. The frictional forces in the direction of the 
meridion, a(, in C and C are derived from Coulomb's law as 
follows 

and 
MP 

MP 

Voir 
ai 

dA i n C 

dA in C, 
«n 

(11) 

where /i is the coefficient of friction and au is the metric 
tensor. The incremental frictional force can now be obtained 
with the aid of (11) in the following manner 

AidA = (Araaa+AT3Xa3)c?/l 

= ji(/? + A/7)(a ,+A« 3 l iXa3)( l+A« a l a ) 

dA / Va^i —\>P*\dA /VoTT 

= ix{Apax +p(AuaIaHi + Au31 ,Xa3))cM/Va^. (12) 

If (12) is incorporated into the virtual work expression, 
equation (10) is modified to the extent of an additional term 

-\AyfaATkvkdA, 

appearing on the left-hand side of the equation. 
The virtual work equation leads to the equation of motion 

of the finite element in the following incremental form1, 

(KiM
N+{a)KiM

N+MKiM
N+(S)RiM

N)Auk
M = APJN. (13) 

In equation (13) the coefficients in the brackets on the left-
hand side are the incremental stiffness matrix, the initial 
rotation matrix, the initial stress matrix, and the initial load 
matrix, respectively [7, 8]. The term on the right-hand side of 
the equation represents the incremental generalized nodal 
forces. The quantities are evaluated according to 

2 2 

Kit, = (GJ-^JW 

H = 1 0=1 
2 

aawMHeNVaaM0Ae 

aaMfatj <hj A 

(13) refers to the local coordinate system and must ultimately be trans­
formed to the reference coordinates ey. 
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{S)RiM
N = -P/MMnA-MHa^\2)AN, 

APi, = (Ap/X)8{AN, 

a = det(aafi),Ae=VaU0dAandAN = V^\Ao^NdA. 

In the foregoing A0 is the area of the finite element in C0. 
Note that in the presence of friction two more coefficients 
have to be embodied into (13). The contribution to the right-
hand side of the equation is the additional nodal force 

{T) AF>iN = -yfa\Aoii£ipb{\j/NdA/yfa^, 

while to the brackets on the left-hand side the stiffness matrix 
is supplemented by 

U)KiM
N = MA0W(MH^+MWjMNdA/^. 

Once the contact occurs with the die base, the displacement 
component normal to the surface is zero, and for the case of 
full friction the displacement component tangential to the 
surface is also zero. It is convenient to transform the com­
ponents of the incremental, displacement Aw' and nodal force 
AP', with respect to the reference coordinates e,, to directions 
normal and tangential to the contact surface. It follows that 

Aw1 cos£-sin£ Aul 

Aw3 sin£ cos£ A«3 

with a similar expression linking the nodal forces. In the 
preceding expression £ is the angle between the tangent to the 
meridional direction and the reference direction e (. The 
equations are capable of solution for either frictionless, 
Coulomb friction or full sticking conditions. 

Constitutive Equation 

As already mentioned, an isotropic, elastic-plastic material 
is assumed, which deforms in an axisymmetric mode under 
plane stress conditions. It is further assumed that an in­
crement of strain can be obtained as the sum of the elastic and 
plastic increments 

A7,y = A7?. + A7g. (14) 

The elastic strain increment A7?- is related to the Jaumann 
stress increment ;A7* by Hooke's law, and the plastic strain 
increment Ayfj is derived from the von Mises plastic potential. 
The elastic relationships are 

X-T Recorder Collimoting Held 
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Amplifier 

Bourdon > E 
gaugs 

It 

00 I 
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Fig. 2 Schematic view of apparatus 

y A r " 

yAT22 
= B 

A7?i 

A7I2 

The elastic matrix B is given by 

2M 
B = 

\-v 

vana21 

a22a22 

(15) 

(16) 

where y, is the shear modulus and v is Poisson's ratio. The 
plastic strain increment is derived from the von Mises plastic 
potential in the usual manner 

Ay,/=dridf/dTij, 

where 

/ = i /2 ;«T i ; = d 2 /3 , 

T'U =T
ij-aiJakiT

J"/3 

r'ij =Tlk'aikajl. 

After some manipulation [8] the incremental stress-strain 
relationship for the elastic-plastic material can be expressed as 

/ A T " 

/ A T 2 2 
= D 

A711 

A722 

where 

D = B - -
F 

pnpu 

pupu 

p\\p22 

p22p22 

(17) 

(18) 

In equation (18) 
(Fnp22)T=B{T,nT,22)T> 

F, Fa® ,and F' denote the characteristics of the material; F' 
is the derivative of the function of the plastic work, W, 
where 

f=F(W»), 

and can be determined from a uniaxial tensile test. 
The Jaumann stress increment can be expressed in terms of 

AT0* as 

A T " 

AT 2 2 

y A T " 

/ A T 2 2 
- H 

A711 

A722 

(19) 

where 

H = 
n„ i i 2 T " « 

0 

0 

2 T 2 V 2 

Equation (19) can be expressed in the alternative form 

A T " 

AT22 
= E 

A711 

A22 

(20) 

where 

E = D - H . 

Under plane stress conditions the thickness strain increment 
A733 is given by 

A733=/tr3
3 A 7 B 0 , (21) 

where 

A$=- v/Ea^D^X1 + T'i3F
al3/F. 

Analysis of the Bulge Forming of Circular Plates 
a Experimental Method. Pure aluminum disks, 0.31 mm 

thick were clamped around their periphery and deformed 
under hydraulic pressure. The diameter of the disk exposed to 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/503 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



/
I

~' I, ,:
/'

: ' ..~:

P • 0.20 "Po

Z • 15

P • 0.59 IIPo P • 1.37 MPo

P • 0.20 Po P • 0.78 MPo

Fig. 3 Moire fringe pattems

P • 1.18 MPo

0.8

0.6
.....N
.c

0.4

0.2

i
Z·10mm
Theory
- .... 0.3
---- Full Friction

o Experiment I

i
Boundary of Contact I
-t- ... =0.3 } Theory
-t-Full Friction I

• Experiment

I! I

rIa
Fig.4(a) Z,.10mm

0.2 0.4 0.6 0.8 1.0

1.0
i

Z'15mm

0.8 Theory
- ... ·0.3
---- Full Friction

0.6 0 Experiment
.....N
.c Boundary of Contact0.4

-+- ... =0.3 }
I ., Theory

-,- Full FrictIOn

0.2 • Experiment _._. _. Particle Path
I I ! 1... ·0.31

00 0.2 0.4 0.6 0.8 1.0
rIa

Flg.4(b) Z=15mm

Fig. 4 Calculated and measured blank shapes when forming into a
f1at·bottomed die

the oil was 100 mm. At a distance, Z, above the flat blank was
located a glass plate, 10 mm thick, which restricted the depth
of the deforming blank. Hence the blank is being deformed
into a flat-bottomed cylindrical die. The deflection of the

504' Vol. 49, SEPTEMBER 1982

central portion of the glass was minimal, being less than 0.04
mm with the highest pressure employed.

An array of lines was scribed on the surface of the glass
plate to form a square grid of side, S= 1.0 mm. Moire
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Table 1 Material properties 

Young's modulus 

Yield stress 

Poisson's ratio 

True stress-strain 
relationship 

E = 68650 MPa 

oy = 22.05 MPa 

y = 0.314 

a = 156.4(0.0011542 + ep)°'29MPa 

0.16 r 

* 0.14 

2 0.12 
< 

\h o.io 
$ 
2 0.08 

o 
X 0 0 6 

< 0.04 

< 0.02 h 
z 

Z = 10mm 

p = 1.18MPa 

Full Friction 
o A Boundary of Contact 

_L _L 
0 0.2 0.4 0.6 0.8 1.0 

r/a 
Fig. 5 Calculated thickness strain distributions for the die geometry 
of Fig. 4(a) 

topography, [9] was utilized to determine the contour of the 
deforming disk. A pattern of interference fringes is revealed 
when viewed through the glass plate; the fringes represent 
contour lines of equal height difference, Ah, as shown in Fig. 
2. In the present experiments Ah was 0.75 mm and is given by 
the following expression [9] 

M = Stane1tane2/(tan(?1 +tan02), (22) 

where 0i and 02 are the incident and viewing angles, 
respectively (see Fig. 2). Two distinct sets of experiments were 
performed with the lower surface of the glass plate set at 
either Z= 10 mm or 15 mm, above the upper surface of the 
flat blank. The oil pressure was applied by a hand pump, and 
at pressure intervals of 0.05 MPa a photograph of the in­
terference pattern was taken after holding the line pressure 
constant for about 90 s. Typical Moire patterns are shown in 
Fig. 3. As the pressure increases the fringes grow in number, 
and come closer together as the slope of the contour of the 
deforming specimen increases. The fringe pattern disappears 
when the material touches the glass, and the area of contact is 
apparent from the photographs of Fig. 3. It is to be noted that 
since 62 ^90 deg, the fringes are elliptic rather than circular in 
shape. However, the difference is small as was found to be 
about 2 percent in region of the steepest slope of the bulge, 
and a correction was made for this. The maximum line 
pressure employed in these experiments was 1.40 MPa. This 
pressure was not sufficient to burst the specimen when the 
glass plate was set 10 mm above the blank, but with Z= 15 
mm, rupture did take place. 

Across the diameter of each circular blank, lines were 
scribed at 5.0 mm intervals. At different stages in the 
deformation process the blank was removed from the bulging 
apparatus and the principal surface strains were derived from 
measurements of the fiducial markings. The thickness strain 
was computed on the assumption of material in-
compressibility. 

p»1.38MPa Z*10mm 
Theory 

u«0.3 
Full Friction 

Experiment 

< -8 

g -12 

-16 

Boundary of Contact 
—(— Theory 

~ ~ ^ ® A <t> Experiment / 

Fig. 6(a) Z = 10mm 

1 ® r p-1.32MPa T\ 

Fig. 6(d) Z = 15mm 

Fig. 6 Comparison of the calculated and measured strain distribution 
at one specific pressure 

b Comparison Between Theory and Experi­
ment. Uniaxial tensile tests performed on the aluminum 
revealed the property data given in Table 1. This was used as 
the material constitutive equation in the finite element 
analysis. The coefficient of friction between the aluminum 
and the glass was assessed experimentally. A series of weights 
were loaded onto aluminum strips which were attached to a 
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spring scale and pulled across the glass plate. A value of 
ix = 0.3 was determined under dry conditions, and this value 
was used in the subsequent analysis. An alternative procedure 
was also employed in the calculations, by assuming that once 
the material contacted the glass plate no relative motion of the 
interface occurred. This condition is referred to as fixed or 
full friction in the following text. 

The disk was divided into 50 ring-plate elements of equal 
width. To compensate for the radiused corner of the hold-
down ring (see Fig. 2), the deforming blank was assumed to be 
of 51 mm radius. Figures 4(a) and (b) show the calculated and 
measured profiles of the bulge for Z=10 mm and 15 mm, 
respectively. Calculations were performed for both friction 
conditions and there was little to choose between either 
method. In general the theoretical results agreed quite well 
with the experimental observations. Figure 5 shows the 
calculated thickness strain distribution for each friction 
condition, as a function of hydraulic pressure with Z=10 
mm. Under full friction conditions, the maximum thickness 
strain is calculated as occurring at the contact boundary of the 
workpiece and the glass base, while for /* = 0.3 the maximum 
strain is deemed to occur just away from the contact boun­
dary in the free surface of the bulge. Upon repeating the 
calculations for pressures in excess of those shown in Fig. 4, it 
was revealed that beyond a certain pressure, a dramatic in­
crease in the thickness strain occurred. In analytical terms the 
enormous increase in the incremental displacements is caused 
by the determinant of the stiffness matrix in equation (13) 
going to zero. In physical terms this signifies plastic instability 
in the material in the form of a localized neck, and the onset 
of fracture. It was not straightforward to adjust the pressure 
increment so that the determinant of the stiffness matrix went 
exactly to zero. Some calculations were performed for the full 
friction condition and it was established that rapid increases 
in thickness strain were occurring at a pressure of p= 1.57 
MPa and 1.42 MPa at Z = 10 mm and 15 mm, respectively. 
These values were regarded as being close to the instability 
pressure. Note that the full friction condition predicts the 
lowest instability pressure in this type of test. 

A comparison of the calculated and measured strain 
distribution at one specific pressure is shown in Fig. 6(a) and 
(6) for Z=10 mm and 15 mm, respectively. In general the 
agreement is satisfactory. The experimental results tend to lie 
between the predicted values using ^ = 0.3 and the full friction 
condition. 

Some calculations were also performed when bulging into a 
cylindrical die with a sinusoidal base. The two friction 
conditions discussed in the foregoing were employed, and two 
distinct sinusoidal contours were utilized. The objective was 
to assess the applicability of the numerical procedure to the 
study of the forming of more complex parts. The predictions 
for the deformation modes, and the influence of friction and 
die geometry on the die filling capabilities were eminently 
sensible. 

Conclusions 
The incremental finite element method formulated to 

account for geometric nonlinearities and based on the 
membrane approximation, appears to be a suitable analytical 
tool for studying certain axisymmetric stretch forming 
processes of thin, elastic-plastic, circular plates. Experimental 
data have been gathered from the hydraulic bulging of a 
clamped, circular plate, into a cylindrical flat-bottomed die. 
The theoretical predictions agree well with the measured 
values of strain distribution and deformed blank profile. The 
calculations based on two assumed friction conditions 
straddle the actual results. At a certain stage in the defor­
mation process the analysis reveals a very rapid increase in the 
strain components at some point in the diaphragm, for minor 
changes in the pressure. This was considered as being close to 
the point of instability in the process, and in the present case 
the full friction condition predicted the lowest instability 
pressure. The physical manifestation of the bifurcation 
phenomenon is the occurrence of a localized neck, which 
signifies the onset of fracture. 

The theoretical exercise of analyzing the bulging of a 
clamped, circular disk into an axisymmetric die with a 
sinusoidal base confirmed the applicability of the numerical 
technique to the study of the forming of more complex parts. 
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The Large Elastic-Plastic Deflection 
With Springback of a Circular 
Plate Subjected to Circumferential 
Moments 
The large deflection elastic-plastic bending of a circular plate subjected to radially 
outward acting bending moments uniformly distributed around its circumference is 
analyzed, and computer programs are given to facilitate the determination of the 
distributions of bending moments, in-plane forces, and displacements during the 
bending and after unloading or springback. Computed examples are given, and the 
errors developed by small deflection theory are discussed. 

1 Introduction 

In reference [1], the biaxial elastic-plastic pure bending and 
springback of rectangular and circular plates after subjecting 
them to loading and unloading by edge moments was 
examined. However, the elementary theory of the bending of 
thin plates which forms the basis of that paper [1] was 
restricted to the maximum plate deflection being less than 
about the plate thickness. With this limitation in mind, 
reference [2] was provided to delineate the range of ap­
plicability of the results provided by [1]. 

In cases in which the deflections are no longer small by 
comparison with the thickness of the plate, but are still small 
as compared with other dimensions of the plate, analysis must 
be extended to include strains in the middle plane of the plate. 

References [3] and [4] parallel [1] and [2] but treat work-
hardening materials. Paper [5], in part, addresses itself to the 
problems that confront the manufacturer of large water tower 
containers, e.g., of Vi million gallon capacity. The many 
plates (typically 10 ft X 8 ft and thickness 3/s-l in.) which 
make up a tower must be so pressed as to have predetermined 
biaxial curvatures. These curvatures are those to which the 
plate elastically springs back after plastic pressing. Thus the 
ultimate purpose behind this and papers [1-5] is to be able to 
contribute to assessing the radii to which relatively thick plate 
must be elastically-plastically pressed so that after removal 
from between the pressing tools and undergoing springback, 
the plate possesses any specific double curvature required. 

1 On leave from the Research Institute of Construction Machinery, Tianjin, 
China. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, November, 1981; final revision, February, 
1982. 

Fig. 1 A circular plate subjected to bending moments uniformly 
distributed along its circumference 

2 Assumptions and Basic Relationships 

Consider a circular plate of radius a, subjected to bending 
moments Ma uniformly distributed along its circumference 
(see Fig. 1). If the plate is elastic, then the large deflection 
problem may be treated as it was by Timoshenko in reference 
[6]. In the following, a similar approach is made to deal with 
the large deflection of an elastic perfectly plastic circular 
plate. 

Assume that: 

(0 the material of the plate is elastic perfectly plastic; 
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Fig. 2 The distributions of t, and e„ along a normal-to-the-mlddle 
plane of the plate 

(//) points of the plate lying initially on a normal-to-the-
middle plane of the plate remain on the normal-to-the-middle 
surface of the plate after bending; 

(Hi) the normal stresses in the direction transverse to the 
plate can be disregarded; 

(iv) in plastic zones, the material obeys Tresca's yield 
criterion. 
Since the deflection surface in our problem is symmetrical 
with respect to the center of the plate, the displacement of a 
point in the middle plane of the plate can be resolved into two 
components: a component u in the radial direction and a 
component w perpendicular to the initial plane of the plate. 

Referring to [6], we take the strain in the radial direction to 
be2 

„ du 1 / dw \ 2 

and the strain in the tangential direction as 

(2) 

where the superscript * denotes a value at the middle plane of 
the plate. 

Similarly, the principal curvatures of the deflected middle 
plane can be expressed as3 

d2w 
(3) 

and 

dr2 

1 dw 
Kg-

dr 
(4) 

It is convenient to introduce nondimensional parameters as 
follows: 

* h ' f h p=~h' 

K-6 
</>r = a n d <j>0 = 

Ke Ke 

where h is the thickness of the plate and 

27(1 -v2) 
Ke = 

HE 

(5) 

(6) 

(7) 

Ke denotes the curvature in the initial yield state; E denotes 
Young's modulus, v Poisson's ratio, and Y the yield stress of 
the material. Thus, expressions (l)-(4) can be rewritten as 

«;=«' + i r2, a)' 

P 
(2)' 

In the case of very large deflection we have [7] 
du/dr+ Vi[(dw/dr)2 + (du/dr)2]. For our computed examples when wmax 
h, (du/dr)/(dw/dr) - 0.01 - 0.03, i.e., (duldr)2 /(dw/dr)2 - " """• - nn 

so that the term in (duldr) is negligible at this level of deflection. 

In the case of very large deflections we have K*= —d w/dr [1-
3/2(dw/dr) ]. However, for our computed examples, when wn 

0.0001 - 0.001, (dw/dr)m!iX = 0.08, i.e. 
negligible at this level of deflection. 

l/2(dw/dr)2 < 0.01, so that the term (dw/dr)2 
= A. 

Nomenclature 

a = 
b = 
c = 
d = 
E = 
/ = 
h = 
i = 

M = 
Ma = 
Me = 

m = 

N = 
Ne = 

n = 

R = 
r = 
s = 

w = 

Y = 
z = 

radius of the circular plate 
distance in Fig. 2 
distance in Fig. 3 
distance in Fig. 3 
Young's modulus 
material constant, E/2Y(1 - v2) 
thickness of plate 
number of computing steps 
bending moment 
edge moment 
initial yield bending moment, 
Yh2/6 
nondimensional bending 
moment, M/Me 
in-plane force 
initial yield tensile force, Yh 
nondimensional in-plane K -
force, N/Ne Ke = 
radius of curvature 
radial coordinate v = 
nondimensional quantity £ = 
defined by (18) 
component of displacement in p = 
the /•-direction 

6 = 

e = 

component of displacement in &p ~ 
thez-direction 
yield stress a = 
direction perpendicular to the ^ = 
middle plane of the plate 
nondimensional radius of ^ = 
plate, alh 
nondimensional distance, 
b/(h/2) 
nondimensional distance, 
c/(h/2) 
nondimensional distance, 
d/(h/2) 
strain 
nondimensional displacement 
in the z-direction, w/h 
curvature 
curvature at the initial yield Subscripts 
state a = 
Poisson's ratio / = 
nondimensional displacement 
in the /--direction, u/h 0 = 
nondimensional radial r = 
coordinate, r/h 6 = 

nondimensional increment in 
radial coordinate 
stress 
nondimensional curvature, 
K/KS 

\j/ = nondimensional quantity 
defined by (30) 

Superscripts 
e = elastic 
p = elastic-plastic 
s = springback 

SDT = small deflection theory 
* = value at the middle plane of 

the plate 
' = differentiation, d/dp 

value at the edge of the plate 
value at the circle of radius p, 
= (i - l)4o 
value at the center of the plate 
radial 
circumferential 
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4>r=-/r 
and 

P 
where ' = d/dp, so that 

/= 
1 

(3)' 

(4)' 

(8) 
2 Y ( l - e 2 ) ' 

which is a constant dependent only on the material properties. 
As in the theory of elastic plates, from the basic assumption 

(H) it can be assumed that the distribution of the principal 
strains is as shown in Fig. 2. Thus, for any point in the plate, 
the strains are 

z + br 

Rr + br 

('-xrW 
Rr 

z + br 

= '~RT 

- ( % ) ' 

= (z + br)nr 

and 

to'-
z + be z + b„ 

• (z + be)Ke, 

(9) 

(10) 
Ro+be R6 

where Rr and Rg are the radii of curvature in the middle 
plane, and it is reasonable to suppose that Rr > > br and Re 

>> be;br and be are quantities defined in Fig. 2. 
By taking z = 0 in (9) and (10), the strains at the middle 

plane are found to be 

e*r = brKr = Br4>r/2f 

e*e=beK9=8(l(t>e/2f, 
and (11) 

where 

br 

(h/2) 
and Bgs 

(h/2)' 
(12) 

so that 

Br=2fe*/<j>r and Bg = 2/e9V09. (13) 

In each-principal direction (i.e., the r and 6 directions), for 
different combinations of bending moment and in-plane force 
(i.e., (Mr, Nr) or (Me, Ng)), the distribution of the 
corresponding principal stresses (ar or og)ls of three different 
types, as shown in Fig. 3 (see [8] and [9]), that is 

(/) a wholly elastic stress distribution, Fig. 3(a), such that 
no fiber yields in a specified principal direction; 

(ii) a primary plastic stress distribution, Fig. 3(b), such 
that there is partial yield on one side with fibers yielding in a 
specified direction: 

(iii) a secondary plastic stress distribution, Fig. 3(c), such 
that yielding occurs on both sides in the given direction. 

It should be noted that when the distribution of one 
principal stress (say, ar) embraces just one of these three 
types, the other principal stress (say, Oe) may be another of 
these types. For example, when ar is of type (iii), oe may be 
any one among types (0, (it), and (iii). 

However, in any case, there is always an elastic zone in the 
plate so that from Hooke's law we have 

r- 1-^;(tr + vee) = j^-j[(z + br)Kr + i>(z + be)Ke] 

and 
E 

\~v2 Oe = j^(ee + ver) = j—-j[(z + be)K(l + i>(z + br)Kr]. 

(14) 

(h/2)+d-c 

Fig. 3 The distribution of a principal stress (a, or ae) along a normal-
to-the-middle plane of the plate. Three different types are: (a) a wholly 
elastic stress distribution; (b) a primary plastic stress distribution; and 
(c) a secondary plastic stress distribution. 

Since ar = 0 at z = —dr and ae = 0 at z = -de, it is found 
that 

and 
(-dr + br)Kr + v(-dr+bg)Kg=0 

(-dg + be)Ke + u(-de + br)Kr = 0. 

Since, from (9) and (10), 

brKr = e* and beKe=ee, 

(15) 

then 

or 

dr = 
brKr + ubeKe e*+vel 

Kr + VKg Kr + VKe 

dr e'+vet 

and similarly, 

<5„ = -

(h/2) 

de 
(h/2) 

= 2/ 

<t>r + V(j>g 

4>e + "4>r 

(16) 

(16)' 

By comparing (16), (16)', and (13), it is clear that in the 
general case 8r ^ Br and 5g ^ Be, i.e., the fiber at which the 
stress vanishes may have a different location from that at 
which each strain vanishes; in other words, in the two-
dimensional stress state discussed, there will not be a common 
neutral surface for both stress and strain. 

Since ar = Y at z = cr — dr, it is found from (14) that 

(cr~dr +br)Kr + v(cr-dr + bg)Kg = Y(\ -v 2 ) /E= Ke.h/2, 

or by using (15), 

cr(nr + vKe) = Ke. h/2. 

Hence, by noting (3)' and (4)' , 

1 1 
(17) " (h/2)~ 4>r + V<S>g 

id similarly, 

c, 1 
la (h/2) <pe + v4>r 

Then, by writing 

/(r+^) 

1 

<$+«•) 

(17)' 
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and 

sr = e*+ve*e = k' + Vi^'2 + v 

sg = e*e + ve?=~ + ^ ' + — f ' 2 , 
P 2 

(18) 

it is found from (16) and (17) that 

, 2 . „ * 

and 

,<5, = 2/s ,7,= 

de = 2fsey0--

2 £ ' + £ ' 2 + 2 J ; - L 

P 

r+« j 

2 — +2v$'+v£'2 

P 

r +*r 

(19) 

Expressions (17) and (19) show that the distributions of ar 

and as are determined by the components of the displacement 
of points in the middle plane of the plate and their derivatives. 

For the different types of stress distribution, expressions 
(17), (18), and (19) remain the same, but the corresponding 
relationships between (7, 8) and (m, ri) will be different from 
each other; m denotes the nondimensional bending moment 
and n is the nondimensional in-plane force. In paper [9], it is 
proved that the three types of stress distribution correspond 
with three different regimes in the (m, ri) plane, respectively, 
as shown in Fig. 4, where 

(/') ER is the elastic re'gime corresponding to Fig. 3(a); 
(/'/') PI is the primary plastic regime corresponding to Fig. 

3(6); 
(iii) PII is the secondary plastic regime corresponding to 

Fig. 3(c). 
Now write down the relationships between (7, 5) and (m, ri) 

according to the results in [9] and use the following symbols, 

- 1 0 -0-5 0 0-5 " 

Fig. 4 Three different regimes in the (m, ri) plane 

then (me, ne) must be in re'gime E^, and 

1 

10 

m„ 

and 
7o 

7e 

(«) If 

but 
7 r - l « , l < l 

7 ,+ l 5 , l > l , ^ 

then (mr, nr) must be in re'gime PI, and 

... ^ 
(3-* , ) 

_ Mr 

and 

where 

Nr N„ 
ne-Ne ' " 9 ~ Ne ' 

Me=^- Yh2 

6 

(20) 

(21) 

(22) 

and 

where 

' *7r 

5r f, ir2 

•(-£]• 

Similarly, if 

but 

I5rl C 4 7 , 

1^ = 1 - 1 6 , 1 + 7 , 

7 « - l 5 9 l < l 

7«+16,12=1,. 

is the initial yield bending moment per unit width. Also, 

Ne = Yh, (23) 

is the initial yield force per unit width in tension or com­
pression. 

(0 If 

7 r - l « , l ^ l , (24) 
then (mr,nr) must be in re'gime E^, and 

then (mg, ng) must be in re'gime PI, with 

m„ = 

and 

where 
I 4-v» r 

and 

nr--

1 

8r 

Similarly, if 

7 e - l 5 J > l , 

(25) 

(26) 

(24)' 

\l/e = l - \ 8 „ \ + y e . 
(Hi) If 

. yr+\8r\<l, 

then (mr, nr) must be in re'gime PII, and 

mr=~(\-b2)-^y2 

and 

(25)' 

(26)' 

(27) 

(28) 

(29) 

(30) 

(27)' 

(28)' 

(29)' 

(30)' 

(31) 

(32) 
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nr = 8r. 

Similarly, if 

7 » + l 5 » l < l , 

then {me, ne) must be in regime PII, and 

(33) 

(31)' 

(32)' 

(33)' 

For any one of the three types of stress distribution, the 
equilibrium equations for this problem are [6] 

and 

3 1 
mo= -J ( l - 5 e 2 ) - y 7s2 

n„=80 

and 

dr r 

or in nondimensional form, 

dNr | Nr-Ne _ Q 

dMr+M,-Mt+Nr_dw_=Qt 

dr 

and 

1 
« ; = — («,-«« 

p 

m'r- (mr-mg)-6nr£', 

(34) 

(35) 

(36) 

(37) 

so that when nr,ne,mr,ml), and f' are known, nr' and mr' can 
be calculated. In the next step, they can be used for finding £ " 
and f'", but again there is a need to discuss three different 
cases. 

(/) When (mr, nr) is in regime E^, from (25), (26), (17), 
and (19) we find that 

<=-/(r+"-)' = -/(r + r r 
and 

so that 

r , r 
and 

f p p 

2/ P P2 

(38) 

(39) 

(//) When (mr, nr) is in regime PI, since in this problem br 

> 0 (this can be verified by reference to all of the numerical 
results given later), expressions (28) and (29) become 

ir2 

nr = \ -
47, 

and 

I M r = ( l - # l , ) ( 3 - t f r ) . 

Thus, from (28)", 

w ; = - « r ' ( 3 - ^ r ) - ( l - « r ) i / - / 

or 

Vv=i-«;(3-vv)-o/(i-«r), 
and from (29)", 

(29)" 

(28)" 

(40) 

/ 

/ 

/ 

4 = 
C-

sr 

( START ) 

INPUT E / V V 

* 
INPUT 6p 

4 
INPUT € 0 , <f>0 

1 
AT P " 0 

0 , £ ' = C o 

0 , ('--o. t' 

i 

/ 

/ 

/ 

f 

AT p = 0 

• >a = ' / ' * " > *> 
= Se = M.UICo 
. 6e = 2f€o/«o 

C by 1381 

t " by 1391 

I* by 1431 

£" by 1441 

f b y 1431 

£' by 1441 

r 
AT P|,l>Pj.Ap.iflp 

*i+1.£i.1 , £ i+1, £,'.1. £j.1 

by 1471,1481,1491,(501,1511 , x , 
| r r ,vs r .s t .< r .fr by ii7i,M8)7m| 
YES 

/ OUTPUT RESULTS J 

Fig. 5 The flow chart for the computing program from e0 and <t>0 to a, 
ma, and so on 

°r 7/ = [«,'7r + y "/v</vj /(I - «r) • 

From (30), we have 

W = - V(sryr + s;yr) + 7/, 

so that 

Lastly, from (17) and (18) we obtain 

(41) 

r , r - — p 1-)/ 

hr1 P P2 

(42) 

(43) 

and 

f '= i ; - r r - ' -+4 ' 
p p2 

(H'O When (mr, nr) is in re'gimeP/7, from (32) and (33), 

m'r=-3nrn'T-yTy'r 

(44) 

2 7 r
 + 4 7 , 2 7 ' .;.i[.M+0.^} 

and 

so that 

« ; = 2 / ( s r 7 ; + 5 ; 7 r ) , 

y;=(-3nrn;-m;)/yr (45) 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/511 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



and 

* , = t ( l j 7 - v y ; ) / 7 r - (46) 

Then, from (17) and (18) expressions for £"" and £", which 
are similar to (43) and (44), are obtained. 

At this point, all the basic equations required for a full 
solution to our problem have been obtained. 

3 Computing Procedure 

The problem discussed in this paper is one of geometrical 
and material nonlinearity, but the basic equations can be 
solved numerically by starting from the center of the plate and 
advancing by small increments in the radial direction. 

By assuming a certain radial strain at the center, say, 

and a certain uniform curvature at the center 

0 r lp = O=<M/, = O = $O> 

where e0 and 4>0 are chosen constants, then 

£ = 0, * ' = e 0 

and 

r=r=o, r = -«o// 
at p = 0 . 

Then7 r , yB,sr, se, 8r, 5e, m„ me, nr, ne, n'r, m'r, £", and 
f'" can be calculated in order, by means of the expressions 
obtained in Section 2. 

As long as the values of £, £ ' , £", f, f, f , and f" are 
known around the circle p, = (/ - l)Ap (/ = 1,2,3, . . . ), a 
radial step of length Ap can be made-and the values of £, £' , f, 
f, and f" at p,+ 1 = /Ap = p,- + Ap can be calculated ap­
proximately by means of Taylor's expansion, thus, 

£(+1=£,- + $ /Ap+y£/ ' (Ap) 2 , 

£/+i=£/+£,"Ap> 

fi+i = & + tfAp + yfAAp) 2
+{r 

1 

(Ap)3 

^ i = r / + ^ A p + y r , ' " ( A p ) 2 , 

(47) 

(48) 

(49) 

(50) 

and 

ft^rr+r'Ap. (5i> 
According to the chosen length of step, Ap, the preceding 

procedure is repeated, until at a certain value of p = a = a/h, 
the radial force vanishes, i.e., 

If 
• U„=o. 

mr\P=a = ma = 
MP 

(52) 

(53) 

then the solution for the circular plate of radius a = ah bent 
by moments Ma = maMe and distributed uniformly around 
the plate periphery has been obtained. 

Figure 5 shows the flow diagram for the computing 
procedure from e0 and c/>0 to a, ma and so on. 

In most practical cases, the radius of a plate and the 
bending moment along its circumference are given, i.e., a and 
ma, but it remains to find the corresponding values of e0 and 
c&o in order to calculate the distributions of bending moments, 
in-plane forces, and displacements in the whole plate. To meet 
this requirement another program is produced, as shown in 
Fig. 6. 

A parallel program to handle the unbending problem has 

/ INPUT E/Y.V. Ap / 

T 
/ INPUT E/Y, a, mn/ 

RESET * S BY 
INTERPOLATION 

RESULTS (Ej , «'„,(;• etc.) 
FOR A WHOLLY ELASTIC 
UNBENDING FROM A 
PARALLEL PROGRAMME 

OUTPUT RESULTSC«J,<»J,C'.<*-) 
FOR ELASTIC-PLASTIC BENDING 

SUBTRACT E.s = t,p - V etc. 

OUTPUT RESULTS (C. etc.] 
FOR SPRINGBACK 

I (""END") 

Fig. 6 The flow chart for the computing program from a, mg to all 
results for elastic-plastic bending and springback 

been developed. As pointed out in [9], it can be proved that 
only if (m + n) > 2, can some fibers reyield during 
unloading; but this does not occur: Hence, the unbending 
process is entirely elastic and the parallel computing program 
can be easily set up. By assuming that the unbending results 
can be simply subtracted from the bending results, the 
distributions of mr, me, nr, ne, £, and f after unloading can 
be obtained so that the springback is determined in detail. 

Our program can print all the results required and leads to a 
plotting of the various diagrams described in the next section. 

4 Numerical Examples 

By taking E/Y = 500, v = 0.3, and Ap = 0.1 or 
0.2—which imply a computing step length of 1/10 or 1/5 of 
the thickness of the plate, respectively—many interesting 
examples can be given. The computed results show that the 
differences between the results for Ap = 0.2 and for Ap = 0.1 
are only between about 1 and 2 percent, so that there is good 
reason to believe that the computed results for these lengths of 
step are already relatively accurate. 

Figure 7 shows results for a plate for which a = a/h = 20 
and for edge moment ma = Ma/Me = 1.165. In Fig. 7(a), the 
distributions of the bending moments (mr and me), the in-
plane forces (nr and nB), and the displacement components (£ 
and 0 are shown as functions of p = r/h. The divisions 
between the elastic and plastic zones in the plate are shown in 
Figs. 1(b) and (c), where dimensions in the z-direction are 
enlarged relative to the dimensions in the /•-direction. Ob­
viously, the "neutral surfaces," i.e., the surface for ar = 0 
and the surface for aB = 0 are displaced from the middle 
plane toward the upper surface of the plate, but for the r-
direction and the 0-direction there are different "neutral 
surfaces" and different plastic zones. In Fig. 1(d) of the figure 
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Fig. 7(b) The divisions between the elastic and plastic zones in the r-
direction. E = elastic; P = plastic. 

0.5 

-0.5 

^ s s t~\ \ 

i — ' ' ' ' — ] — 
10 r / h 

Fig. 7(c) The divisions between the elastic and plastic zones in the 0-
direction. E = elastic; P = plastic. 

-0-4 - 1 

Fig. 7(a) The distributions of the bending moments, in-plane forces, 
and displacements; — large deflection theory; small deflection 
theory 

Fig. 7 The computed results for a 
1.1623 

-0.8 o n o.s 

Fig. 7(d) The loci of (m r, nr) and (m6, ne) in the (m, n) plane 

a//i = 20 and m. = M.IM. = 

Table 1 Principal results for various a/h and M/Me ratios 

Radius of plate a=a/h 
Edge moment ma =M/Me 

0g 
('nr)max 
( "^min . at center 
('"/•)min/'n0 

(m9)max 
("/•)max. at center 
(«r)min.atedge 
(«e)min.atedge 
'("eJminl/Wfl 

Smax 
f ^ J (Small Deflection Theory) 

5 max ' smax 
smax 
fmin.atedge 
' smin ' ' i max 
regimes for (m r, nr) 
regimes for (mg, n$) 

20 (Fig. 7) 
1.1623 

0.00013775 
0.80 

1.1647 
1.0268 
0.8834 
1.1008 

0.0938 
0 
-0.2105 
0.1811 

0.6135 
0.6822 

1.1120 
0.0005 
-0.0099 
0.0161 

PI~PII 
PI-PII--PI 

20 
1.4001 

0.0002000 
1.00 

1.4029 
1.1860 
0.8471 
1.3080 

0.1099 
0 
-0.2708 
0.1934 

0.8453 
1.2578 

1.4880 
0.0007 
-0.0204 
0.0241 

PII 
PII 

30 
1.1652 

0.0002050 
0.60 

1.1694 
0.7800 
0.6694 
0.9904 

0.1464 
0 
-0.3487 
0.2993 

1.1408 
1.5398 

1.3498 
0.0013 
-0.0241 
0.0211 

Efl -PI-PU 
ER PI 

30 
1.400 

0.00022943 
0.6857 

1.4050 
0.8889 
0.6349 
1.1864 

0.1630 
0 
-0.4122 
0.2944 

1.4236 
2.8189 

1.9801 
0.0013 
-0.0413 
0.0290 

PI-PII 
PI-PII--PI 

the corresponding loci in the (m, ri) plane are shown. At the 
center of the plate always mr = mg and nT = n0, but with 
increasing values of p = r/h, the loci of (mr, nr) and (mB, ne) 
pass through different regimes in the (m, ri) plane. 

Some principal results obtained are assembled in Table 1. 

5 Comparison With Small Deflection Theory 

In the elementary or small deflection theory for an elastic 
perfectly plastic circular plate bent by an uniform edge 
moment, (see [1]), the bending moments mr and me are 
distributed uniformly throughout the whole plate, there is no 
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Fig. 8 The relationship between the maximum deflection of a plate 
and the edge moment for a = a/h = 20. e = elastic; p = plastic 
bending; s = springback; SDT = small deflection theory. 

in-plane force in the plate, and the deformed plate has an 
uniform curvature in any direction. 

Comparison of results based on the small deflection theory 
and those based on large deflection theory as obtained in this 
paper has the following obvious features: 

(a) The bending moments are no longer distributed 
uniformly in the plate, and the larger the plate ratio a/h, the 
smaller the bending moments at the center. 

(b) Significant in-plane forces appear, especially around 
the center where it is tensile in both directions; the in-plane 
forces may play a vital role in the buckling of the plate. See 
[10] for experimental examples. 

(c) Deflections of the plate according to large deflection 
theory are smaller than that for small deflection theory. Also, 
the larger the radius-thickness ratio of the plate and the edge 
moments, the larger the difference between these deflections. 

According to small deflection theory [1], the radius of 
curvature of the deformed circular plate subjected to edge 
moments is 

Fig. 9 The distribution of bending moments, in-plane forces, and 
deflection before and after unloading 

the superscript SDT refers to the "small deflection theory". 
Figure 8 compares j$g[ and fmax, for a/h = 20, as based on 

the large deflection theory. It has been found that for a = a/h 
= 10, fj5£T gives a good approximation to fmax; for a = a/h 
= 20 (Fig. 8) when ma < 1.2, the relative error of i$?J is less 
than 13 percent; and for a = a/h = 30, f^J is much larger 
than fmax. Thus small deflection theory may only be applied 
for plates of small a/h ratio, say, a/h < 20; this coincides 
with the conclusion in [2]. 

Rs Eh 

2Y(l-v) 
and the maximum deflection is 

,V3-2m~ 

WSDT ~ 
rv max 

a a1 Y(l - v) 
2RSDT 

or in nondimensional form, 
Eh ' •4f-2ma' 

ySDT _ 
imax — 

w^i Jm-v) i 

V3-2/7j„ 

(54) 

(55) 

(56) 

6 On Springback 

Following the flow chart in Fig. 6, some of the numerical 
calculations have been carried out to arrive at distributions of 
bending moments, in-plane forces, and displacements. A 
portion of the results is shown in Table 2. Results for a = a/h 
= 30 and ma = 1.400 are as plotted in Fig. 9, where ms

r,m
s
e, 

ns
r, n

s
e, and £s show the distributions after unbending. If 

needed, the residual stresses in the plate can easily be 
calculated from these values. 

In small deflection theory, ms
r = ms

6= ns
r = ns

e = 0 in the 
plate after unbending. Then, the final deflection of the plate is 
determined by (see [1]), 

rmax E iv3^rm aJ- (57) 

Taking E/Y = 500, v = 0.3, and a = a/h = 20, some 
calculated results are as shown in Fig. 8 and Tables 1 and 2. It 
can be seen that the small deflection theory cannot well ap-

514/Vol. 49, SEPTEMBER 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 2 Principal results for springback for different a/h and M/Me ratios 

Radius of plate a 20 20 30 30 
Edge moment ma 1.1623 1.4001 1.1652 1.4001 

eg 0.00013775 0.00020000 0.00020500 0.00022943 
0g 0.8000 1.0000 0.6000 0.6857 

eg 0.00013960 0.00018830 0.00020650 0.00025640 
0g 0.7848 0.9040 0.5894 0.6432 

eg -0.00000185 0.00001170 -0.00000150 -0.00002697 
<£o 0.0152 0.0960 0.0106 0.0425 

ms
r 0.0066 0.0108 0.0138 0.0527 

final values m% 0.0066 0.0108 0.0138 0.0527 
after unloading rfr - 0 . 0 0 5 9 - 0 . 0 2 4 6 - 0 . 0 0 1 1 - 0 . 0 2 0 1 
at the center n% - 0 . 0 0 5 9 - 0 . 0 2 4 6 - 0 . 0 0 1 1 - 0 . 0 2 0 1 

f 0 0 0 0 

ms
r 0 0 0 0 

final values m% - 0 . 0 5 0 5 - 0 . 0 7 9 7 - 0 . 0 9 5 0 - 0 . 1 4 7 2 
after unloading rfr 0 0 0 0 
at the edge n\ 0.0203 0.0478 0.0309 0.0838 

f 0.0171 0.1479 0.0256 0.1626 

&m 0.6135 0.8453 1.1408 1.4236 

fmax/Jmax 0.0279 0.1750 0.0224 0.1142 

proximate the final deflection f max, even when a/h is as small 
as about 20. 

7 Conclusions 
(0 By using the formulation in this paper and the 

corresponding computing procedure, the large deflection of 
an elastic-perfectly plastic circular plate subjected to edge 
moments can be arrived at. Our method and programs can be 
applied to any plate with various dimensions and various edge 
moments and also can be applied to determine its springback. 

(//) In the large deflection theory, the in-plane forces play 
an important role, and the distributions of bending moments 
and in-plane forces are no longer uniform as they are with the 
small deflection theory. 

(Hi) Computed examples show that small deflection 
theory can only be applied for the plates with small a/h ratios, 
say a/h < 20, and this coincides with the conclusion in [2]; 
when springback is concerned, its range of application is 
smaller, say a/h < 15. Beyond these ranges, in general, the 
large deflection theory developed in this paper must be ap­
plied for metal plates. 
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Uniqueness for Elastic Crack and 
Punch Problems 
Uniqueness of solution is shown for equilibrium states for elastic bodies in smooth 
contact. The cases considered include a body with a crack that may open only 
partially under load with parts of the faces in frictionless contact. Indentation of a 
body by a smooth rigid punch and contact with an elastic foundation are also 
treated. 

Introduction 

The proofs of the uniqueness theorems of linear 
elastostatics are straightforward for mixed boundary-value 
problems in which the portions of the bounding surface where 
the various types of boundary conditions apply are known in 
advance. They rest on the positive-definiteness of the strain 
energy function and Clapeyron's work identity (equation (2)) 
(see [1], for example). For some problems, the portions of the 
surface where one boundary condition holds rather than 
another must be determined in solving the problem. Thus in 
the indentation of an elastic half space by a smooth rigid 
spherical punch, the radius of the contact area is chosen so 
that the solution involves only pressure on the contact area 
and so that outside the contact area there is no movement of 
material into the region occupied by the punch. This leads to a 
unique solution on the reasonable assumption that contact 
occurs over the entire portion of a circular area. Other 
problems with contact between elastic bodies or with bodies 
resting on elastic foundations can be more complex (for 
references see [2]), and uniqueness of a solution may not be so 
apparent. For a body with a nonplanar crack, only parts of 
the crack may open under load. For a crack on the interface 
between two elastic solids, Comninou [3] has derived a 
solution for tension applied normal to the interface under the 
assumption that the crack only opens partially with the faces 
in frictionless contact near the crack tips. Again it is of in­
terest to know if such a solution is unique. 

In the following we show through the work identity that 
positive-definiteness of the strain energy is sufficient to ensure 
uniqueness for problems involving smooth contact between 
surfaces of elastic bodies. We first consider a body containing 
a crack and then treat smooth contact between elastic bodies. 
Indentation by a smooth rigid punch is a limiting case but is 
treated separately. Uniqueness for an elastic body which can 
come into contact with a rigid body of known shape has been 
shown previously by Knops and Payne [4], and their proof 
covers identation by a rigid punch when the movement of the 
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punch is known. Here we also treat the case when the loading 
applied to the die is specified instead of the displacement and 
rotation of the punch. Finally we consider an elastic body 
with support from an elastic foundation. Villaggio [5] has 
proved uniqueness for an elastic body with a plane face in 
contact with a plane elastic foundation. His proof is similar to 
that given here and does not depend on the formulation of the 
problem given in [5]. 

To apply the work identity (2), we require that any im­
proper integrals that arise in the left-hand side of (2) from the 
solutions that we consider, be convergent (with a similar 
restriction on body force integrals), and so have uniqueness 
for states with finite total-strain energy. Knowles and Pucik 
[6] have shown that for plane crack problems, boundedness of 
displacement is sufficient to guarantee uniqueness. 

Elastic Body With a Crack 

We consider an elastic body, which may be inhomogeneous, 
with strain-energy density IT given by 

2W=cijki e,y ekl (cm=cklij = cjikt), (1) 

where e,y are the infinitesimal, strains. The components of 
displacement are «,• (x) referred to rectangular Cartesian axes 
*,-(/= 1, 2, 3), and the usual summation convention is 
assumed for a repeated index. For equilibrium states with no 
body force we have 

j s T-u ds= j v cm eij ek, dV, (2) 

where T is the surface traction on the boundary S of the region 
V occupied by the body. If the body is a composite, 
equilibrium will require the surface tractions to be continuous 
across interfaces and with continuous displacements the 
identity (2) will still hold. 

In the reference state the body is unstressed and it contains 
a crack defined by a surface C interior to V, but possibly 
extending to the boundary of V, across which the material has 
no cohesion. A particular case would be a crack on an in­
terface in a composite. We use n to denote the unit normal to 
one side of the surface C. The displacements and stresses may 
be discontinuous across C in an equilibrium state of the body 
and we use ± signs to indicate values on the two sides of C, 
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with the + sign referring to the side of C with exterior normal 
n. Thus if we were to suppose that C were part of the 
boundary of the body, the normal n would point out of the 
body for the material surface on the positive side of C and the 
exterior normal for the other crack surface would be - n. 

Under loading of the body, we assume that separation can 
occur over the crack or that portions of the two sides can 
remain in smooth contact with no tangential traction. Thus on 
the surface C equilibrium states satisfy either (0 separation 
with no traction transmitted across C or (if) continuous 
normal displacement with pressure transmitted across C. We 
therefore require either 

(f) T + = - T - = 0 when(u+ -u~)-n<6) 
or (3) 

(if) T+ = - T =-pn whenu+ »n = u~ -n J 
at each point of C, where p(x) is the pressure transmitted 
across C. We extend the definition of p(x) so that it is zero at 
points of C where (f) holds. 

The loading of the body is supposed to be caused by a body 
force field F and prescribed surface loading in which at each 
point of S, each component of the surface traction or the 
corresponding component of the displacement is specified. If 
Ui and u2 are two possible displacement fields for the loading, 
the difference field 

U = ll! - U 2 

will be an equilibrium field for zero body force with each 
component of traction or the corresponding component of 
displacement zero on S. Because the solutions Ui, u2 each 
satisfy (3) on C, we will have T+ = - T - everywhere on C 
for the field u. 

If we use the identity (2) for the state u we must include the 
contribution from the crack surfaces to the left-hand side. 
There is zero contribution from S, so the left-hand side of (2) 
is 

[ (T + . u + +T-«u-)dS= f T+ . (u+ -u~)dS. 

The integrand of the latter integral can be written as 

(pV-pm){(u? -uf ) .n- (u 2
+ -u 2-) .n) , 

where p(1), p(2) are the crack surface pressures for the two 
solutions (zero where (/') holds). On portions of C where Uj 
and u2 either both satisfy (f) of (3) or both satisfy (/'/') of (3), 
the integrand is zero. On a part of C where U! satisfies (f) and 
u2 satisfies (if) the integrand is 

p(2)(u,+ -uf)»n, 

which is less than or equal to zero in view of (3). Similarly the 
integrand is nonpositive where U] satisfies (if) and u2 satisfies 
(/•). Thus the left-hand side of (2) is less than or equal to zero 
but the right-hand side will be non-negative for a positive-
definite strain energy W so that both sides must vanish in this 
case. It then follows that the fields Uj, u2 generate the same 
strain field and the solution for the given loading is unique, 
except possibly for a rigid displacement, depending on the 
conditions on S. 

The result also holds if the body has more than one crack. 
With the approach of the next section, the analysis can also be 
extended to include loading by contact with other elastic 
bodies. 

Smooth Contact Between Elastic Bodies 

For simplicity we consider contact between two elastic 
bodies over a nearly plane area, as in the Hertz theory. 
However the approach can be generalized to smooth contact 
between curved surfaces of bodies, such as occurs between a 

body with a cylindrical hole and a closely fitting lubricated 
pin, and contact between several bodies can be treated. 

In the unstressed reference configuration, the bodies touch 
at the origin of coordinates with a common tangent plane x3 
= 0. The bodies occupy regions F, and V2 and the x3 - axis 
points into region V2. Under loading contact may occur over 
surfaces Cx and C2 of the two bodies, defined as the nearly 
plane surfaces 

C\\ x3=f(xi,x2), C2: x3=g(xi,x2), 
where Xi, x2 lie in a region C of the xx -x2 plane enclosing the 
origin and the shape functions /and g satisfy 

f(xl,x2)<g(xl,x2). 

The tangential tractions are zero on Cj and C2 and we denote 
the common value of 7f and - 7̂  by p(xlt x2), where 
superscripts refer to the fields for the two bodies. The bodies 
do not penetrate each other so that 

ul-u\>f-g on C, 

and we require 
p = 0v/hmuj-u\>f-g, ") 

(4) 
u\ -u\ =f—g-whenp>0 \ 

at each point of C. 
On the remaining portions Sj and S2 of the surfaces of the 

bodies, we suppose that each component of the traction or the 
corresponding component of the displacement is prescribed. 
If we have two possible displacement fields U[ and u2 for the 
given loading over Sj and S2 and for a given body force field, 
the difference field 

u = u, - u 2 

will be an equilibrium field for no body force and such that 
each component of the traction or the corresponding com­
ponent of the displacement vanishes on S{ and S2. 

If we use the identity (2) for the state u, the contribution to 
the left-hand side comes only from the region of possible 
contact and it is 

[ T.urfS=[ t\(u\-u\)dxxdx2. 
J C j + C 2 J C 

The integrand can be written 
(pd) _p(2)) (M2(i) _ „i(i) _ („2(2) _ „i(2))} t 

where the superscripts in parentheses indicate values for the 
two solutions while the other superscripts refer to the two 
bodies as before. The integrand is zero on the parts of C 
where both solutions have no contact between the bodies (zero 
pm and/?(2)) or both have contact (the expression in the curly 
bracket vanishes). Where one solution, say U!, has contact 
and the other does not, the integrand is 

P ( 1 )(/-g-("P-"! ( 2 )) l 
and is therefore less than or equal to zero because u2 satisfies 
(4) and p is non-negative. Thus the left-hand side of (2) is less 
than or equal to zero so that both sides of (2) must be zero 
when the strain energy is positive-definite. Uniqueness of 
solution to within a rigid body displacement then follows. 

Indentation by a Smooth Rigid Punch 

The indentation of an elastic body by a smooth rigid punch 
can be treated as a limiting case of two elastic bodies in 
contact. Alternatively we can use a direct approach as in­
dicated here for the case when the possible area of contact is a 
region C of the xx -x2 plane enclosing the origin. The exterior 
normal to the body at the origin is along the x3-axis, and the 
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remainder of the surface of the body is denoted by S. When 
the movement of the punch is known, the location of the 
punch surface after indentation has occurred will be known. 
We will then have 

«3 </(*!, x2) on C, (5) 

where/is a known function, and we require 

p = 0 when w3 </, 

"3 = /whenp>0 

at each point of C, where p is the contact pressure. On the 
remaining surface S each component of the traction or the 
corresponding component of the displacement is known. 

If we have two possible displacement fields U! and u2 for 
the given surface loading and a given body force field and 
examine (2) for the difference field u = U!-u2 , the con­
tribution to the left-hand side comes only from C and it is 

f (pQ) -p<»)(u<P - uf>)dXi dx2, (6) 

where the superscripts indicate values for the two solutions. 
Where both solutions have no contact or both have contact 
the integrand is zero. At points of C where u, has contact and 
u2 does not, the integrand is 

and this is less than or equal to zero because/? is non-negative 
and u2 satisfies (5). Thus for a positive-definite strain energy 
we are again led to uniqueness of the strain field. The proof 
has been given previously by Knops and Payne [4] for the case 
when contact with a smooth rigid body whose location is 
known may occur over a curved portion C of the surface of 
the body. 

Instead of prescribing the movement of the punch, the 
downward force L on the punch and the moments M{ and M2 
of the force about the xx and x2 axes may be given. In this 
case for a known punch shape f(xlt x2) the solution will 
satisfy 

u} <f(xl,x2)-8 + ax2 -fai onC, 

where the constants a, @, 5 are to be determined. The contact 
pressure must satisfy 

L=\icpdxldx2, Mx = -\ px2dxxdx2, 

M2 = ]cpx1dx,dx2. (7) 

(If the punch is constrained to indent without tilting, the 
constants a, p are zero and the values of Mx and M2 are not 
prescribed.) 

If we apply (2) to the difference of two possible solutions, 
the left-hand side will be equal to (6). We now define t/(1) and 
y(2) for points on C through 

i,w =aj») +«w - « W x 2 +(J'"'x1(n= 1,2) (8) 
for the two solutions. Because the contact pressures both 
satisfy (7), if we substitute (8) into (6) the terms involving the 
constants will go out and the integral becomes 

f (pW-pm)(vW-vV>)dXl dx2, 

where now t>(1) and i>(2) are less than or equal to / on C. The 
integral can now be seen to be less than or equal to zero and 
uniqueness follows as before. 

Uniqueness for problems involving contact with several 
rigid dies or punches is similar and essentially amounts to 
extending the definition of the contact region C. 

Smooth Contact With an Elastic Foundation 

We now consider the case when a portion of the elastic body 
can receive support from an elastic foundation. For simplicity 
we assume that the foundation is plane but curved supports 
can also be treated. The portion C of the surface of the body 
that can come into contact with the body is the nearly plane 
surface 

*3 = / ( * l . X2) 

touching the plane x3 = 0 but entirely above it and (xx, x2) 
lying in a region C of the Xj —x2 plane. The elastic foundation 
occupies part of the half space x3 < 0, and the x3-axis points 
into the elastic body. The foundation reacts only in com­
pression with a reactive pressure proportional to the normal 
displacement of the surface, so that on C we require 

p = 0 when w3 > —/, J 
(9) 

p= -K(u3 +/) when u3 < - / , J 

where p(xu x2) is the contact pressure and the positive 
constant K is the stiffness of the foundation. Boundary 
conditions on the remaining surface S of the body and a body 
force field are specified as before. 

For the difference field of two possible solutions, the left-
hand side of (2) again reduces to an integral over C. If we 
write the integrand as 

(p(1>-//2>)[(w3
1> + / ) - ( « ? » + / ) ) 

we see that in view of (9) the integrand is less than or equal to 
zero where one or both solutions have contact with the 
foundation and is zero otherwise. Uniqueness of the strain 
field then follows as before for a positive-definite strain 
energy. 
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One Solution of Three-Dimensional 
Boundary Value Problems in the 
Couple-Stress Theory of Elasticity 
This paper describes a numerical approach for elastic boundary value problems in 
the linear, couple-stress theory on the basis of the "indirect fictitious-boundary 
integral method." In this approach we introduce appropriate potentials 
corresponding to those for a concentrated force and a couple in an infinite medium, 
and reduce the problem to solving the simultaneous Fredholm type integral 
equations of the first kind. 

As an example, the stress concentration problem is analyzed for a circular 
cylinder with a semicircular annular groove under uniaxial tension. The results are 
obtained for various values of parameters such as Poisson's ratio v, characteristic 
length I, and the ratio i\r of bending, twisting moduli. 

Introduction 
Continuum mechanics introducing couple-stresses has been 

proposed by Mindlin and Tiersten [1], Truesdell and Toupin 
[2], and Koiter [3] to explain some discrepancies between 
theoretrical predictions and experimental results. Many 
researchers have applied this theory to fundamental elastic 
boundary value problems [4-6], but almost all of these works 
have been restricted to those for two or three-dimensional 
infinite media. As a matter of fact, to determine the new 
material constants adopted in the couple-stress theory, it is 
necessary to compare theoretical results with experiments. For 
this reason, we should examine three-dimensional, finite, 
elastic boundary value problems which can be easily con­
firmed by experiments. 

By the way, many investigators have developed the 
boundary integral methods as an attractive method to analyze 
boundary value problems in classical elasticity. These may be 
classified into two types. One is the indirect boundary integral 
method [7, 8], which takes the density functions as the 
unknowns, and the other is the direct boundary integral 
method [9, 10], which takes boundary displacements and 
tractions as the unknowns. In addition, some researchers have 
introduced the concept of a fictitious boundary to obtain 
more accurate solutions by the simplest numerical quadrature 
[11, 12]. Also, one of authors and his collaborators have been 
analyzing many two and three-dimensional boundary value 
problems by direct and indirect boundary integral methods 
together with and without a fictitious boundary [12-16], 
Through these analyses we know: 

i The direct boundary integral method has the advantage of 
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being able to obtain boundary displacements and tractions 
directly; on the other hand the use of a fictitious boundary 
doubles the number of unknown functions. 

ii The indirect boundary integral method with fictitious 
boundary has the advantages that the.potential field becomes 
smooth and continuous in the region under consideration, 
that stresses and their gradients on a real boundary and in its 
neighborhood can be obtained accurately by analytical dif­
ferentiation, and that the convergence of a solution with the 
increase of subdivisions is rapid. 

In this paper, we propose one method to attack three-
dimensional boundary value problems in the couple-stress 
theory of elasticity. This method is based on the "indirect 
fictitious-boundary integral method," in which we get no 
jumps and no singularities in the potential and can obtain the 
solution with high accuracy. This analysis may also be un­
derstood as a method where concentrated forces and couples 
are distributed over a fictitious boundary in an infinite 
medium so as to satisfy the conditions on a real boundary. 

As a numerical example, the stress concentration problem is 
analyzed for a circular cylinder with a semicircular annular 
groove under uniaxial tension. From the results obtained, it is 
verified that the present method is very effective for solving 
three-dimenisonal boundary value problems in the linear, 
couple-stress theory of elasticity. 

Basic Equations 
The fundamental equations governing the linear, couple-

stress theory of homogeneous and istropic elastic solids were 
presented by Mindlin and Tiersten [1]. The stress equation of 
equilibrium is given by 

2 
= 0 (1) 

where T5 is the symmetric part of a force-stress dyadic T, pP is 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/519 

Copyright © 1982 by ASME
Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the deviatric part of a couple-stress dyadic /t, and V is the 
spatial gradient. Let u be the displacement vector, r5 and pP 
then are given by 

T
s = \ v "ill + /*( Vu + u V) 

(2) 
( i i ) = 2 / ( V V X t t + ) ) r VXuV) 

where X and /x are Lame's constants, / and rjA are the material 
constants adopted in the couple-stress theory, and I is the unit 
spatial dyadic. Also, / has a dimension of length and r\r is 
dimensionless. Substituting equations (2) into equation (1), 
one can obtain the displacement equation of equilibrium 

(X+j i )VV' i i + / iV2u + / v 2 V X V X u = 0 (3) 

Any solution u of equation (3) is representable as [1] 

u = B - / 2 V V « B - V l r - C l - ^ V ^ B + Bo] (4) 
2(X+2/i) 

where r is the spatial position vector, and B and B0 are the 
vector and scalar functions, respectively, characterized by 

( 1 - / 2 V 2 ) V 2 B = 0 and V 2 5 0 = 0 (5) 

Let r4 be the antisymmetric part of T and (jt:I) the scalar of 
li. Neither of them appears in the equation of equilibrium (1), 
and they are only related by 

T/t = ^ I X [ 2 / x / 2 V 2 V x u + - V ( A I : I ) ] (6) 

Namely, r4 and (j»:I) cannot be determined independently. 
This is the reason why the couple-stress theory is said to be 
indeterminate. 

Analysis 
Consider a homogeneous and isotropic medium that oc­

cupies a "real-domain" R bounded by a closed smooth "real-

boundary surface" S and is subjected to a force traction T and 
a couple traction M on S. We now suppose a closed Liapunov 
"fictitious-boundary surface" S* outside S not intersecting 
each other, and extend a domain form R to a "fictitious-
domain" R* bounded by S*. Hereafter we asterisk the 
quantities defined on S*. A displacement vector u in R then 
satisfies equation (3) and is given by equation (4). When / = 
0, equations (3) and (4) agree with a well-known equation of 
equilibrium and its Boussinesq-Papkovich solutions in the 
classical theory. 

Now we can get the solution of a concentrated force F 
acting at the origin in an infinite medium [1] by 

B = F [ ( l - e - r / ' ) / r ] , B0=0 

where r is a magnitude of a spatial position vector, and also 
that of a concentrated couple C [1] by 

B = - C x •V[(l-e~r,l)/r], B0=0 

In the linear, couple-stress theory, we can superpose these 
solutions. Therefore, according to the "indirect fictitious-
boundary integral method," a continuous distribution of 
surface densities £*(q*) and f*(q*), corresponding to con­
centrated force and couple, over a surface S* generates the 
potential B for the present solution as follows: 

B(P)= j s < [ f ( q ' ) ( l -e-ro")/r0}dS*(q*) 

I r (q*)XV*[( l -e - , | »") / roWS*(q*) (7) 

2?0(P) = 0 

where £*(q*) and f*(q*) a r e Holder continuous vector den­
sities at q*, P and q* are the vector variables specifying points 
in R and on S*, respectively, r0 is the distance between P and 

N o m e n c l a t u r e 
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Fig. 1 Geometry of example problem 

q*, and V * is the spatial gradient with respect to q*. As noted 
before, r4 and Qi:I) remain indeterminate, but we can take 
0*:I) to be identically zero without loss in generality [3], since 
they are not governed by the equation of equilibrium (1). Thus 
substituting equations (7) into equation (4), then into 
equations (2) and (6), we can obtain a force-stress T = TS + 
T4 and couple-stress ji = pP in the forms of integral equations 
for£*(q*)andr(q*). 

In this way, the present problem is reduced to solving the 
simultaneous integral equations for £* and f* on S* under the 
boundary conditions 

n-r = T and n-/t = M onS (8) 
where n is the outward unit normal vector on S. Since P and 
q* never coincide with each other, the relevant integral 
equations have no singularity. To solve these equations 
analytically is, generally speaking, very difficult, so it is rather 
convenient to solve them numerically. 

Numerical Analysis 
As a numerical example, we consider the stress con­

centration problem for a circular cylinder with a semicircular 
annular groove subjected to uniaxial tension parallel to X3 
axis as shown in Fig. 1. The problem being axisymmetric, we 
take a cylindrical coordinate system related to the Cartesian 
one as shown in Fig. 2, and formulate the problem in the 
plane of 6 = 0. 

We define T and T*, respectively, to be the contours of S 
and 5* in the plane of 8 = 0 (Figs. 1 and 3). For the sake of 
convenience, we divide T into m segments with equal length h 
and set the distance between T and T* by /,, and then define 
the coefficient of fictitious-boundary distance [12] by-a, = 
tj/h. The coefficient a, is the most important parameter that 
affects the accuracy of solution, so that it should be deter­
mined with extreme care. Similarly we divide T* into m 
segments, the /th segment being the length of h* and centered 
about a nodal point q, * midway between the interval points 
Q/ii/2. and also S* into m rings corresponding to m segments 
on T* as in Fig. 3. On each ring, we suppose that the com­
ponents of £* andf* in cylindrical coordinates (£,*, £0*, £/) 

Fig. 2 Coordinate systems and sign convention 

Fig. 3 Subdivision of fictitious-boundary surface S* 

and (£.*, f/, £.*), are constant. We determine the position p, 
such as a point of intersection of normal line at the nodal 
point q, * and T. 

The foregoing simultaneous integral equations are reduced 
to simultaneous algebraic equations as follows: 

'" f 
E L Kt*(Q/,)£,iw + rt*(q/*)^/]rfS*(q/*)-7}(p) = 0 

(9) 

E L - K**(«/*)Gitf + r**(qi*)«lu]rfS*(q/*)-^(p) = 0 

where p is a vector variable specifying points on S, %£ and &* 
are the components of J* and f* in Cartesian coordinates, 7} 
and Mj are those of tractions T and M, AS,* represents the 
area element of the /th ring, and EkJ, FkJ, GkJ, and HkJ are 
given in the Appendix. In these equations we assume the 
summation convention over repeated indices. The surface 
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integral around the fth ring can be calculated numerically by 
Simpson's rule, the simplest quadrature, 

, /*(q*) dS*(q') = hrift-1/2 + W +ft<-wiV* (10) 

where f* and ff±\/2 are contour integral values along the 
circles C* and C*± m, respectively (Fig. 3). 

The components of ij* and f* in cylindrical coordinates are 
independent on 0* and related to those in Cartesian coor­
dinates by 

(11) 

fir 
a 

LtfJ 
• = {Ni­

cer 
if 

U/J 
- and • 

rrr 
&• 

Us* J 
• = IN\-

ftr 
rt 

If/J 
where 

COS0* 

sine* 

0 

-sine* 

COS0* 

0 

0 

0 

1 

[N] = 

Since we now deal with the axisymmetric tensile problem, we 
can take if, $>*, and £,*, density functions related to the 
torsion problem, to be zero. The coordinates xt (i ~ 1, 2, 3) 
at p on T and x*(i = 1, 2, 3) at q* on S* are represented as 
follows: 

X[ = X\, X2 = u , X3 = X3 

(12) 
x* = /a* cos 0*, x2* = p* sin 0* and x* =x* 

Then, from equations (9), (11), and (12) it is found that the 
contour integrals in equation (10) generally take the forms 

[cos"i0Vrg2]pV0* 

and 

[cosni6*/rp)e~ro/lp*dd* (13) 

where n, = 0,1,2,3,4, n2 = 3,5,7, and n3 = 1,2,3,4,5,6,7. 
Lettingx,2 '+ p*2 + (x3 - x*)2 = A and 2x{p* = B, we can 
write r0 = (A - B cos 0*)1/2, so that 

cos"i0* = [(^-ro
2)/ JS]"i 

= B-"\ 2](-l) '(fiM"i- ' /•oz 

The functions r0 and e~ro" being even with respect to 0* 
expressions (13) beomce 

"i 

2B~"i ^ (~iy (p)A"i-'(A+B)i'"2/2p* 

[l-k2cos2(d*/2)]i-"2/2d8* 

2B-"i ]j (-1)' '(fi)A"i~ i(A+B) i-"3 /2p* 

/„ = T [ l -/c2cos2(</>/2)]-"/2rf0 

by replacing (2i — n2) with ( - « ) . By successive use of the 
recurrence formula 

/„ = [(«-2)(A:2 - I)]"1 [(«-3)(Ar2 -2 ) /„_ 2 + («-4) /„_ 4 ] (15) 

the integral /„ can be reduced to the sum of complete elliptic 
integrals of the first and second kinds 

i 7r/2 

(l-A:2sin20r1/2rf(/> 

fir/2 
£ ( A r ) = / _ , / 2 = l (l-A:2sin20)1/2G?</> (16) 

Here we note that n is an odd number. Similarly the integral in 
the second of expressions (14) can be denoted as 

H"' = P[l-A:2cos2(( /) /2)]-" ' / 2e-V'd ( / ) 

and reduced to the sum of five integrals H_2, i /_ 1, H0, Hx, 
and H2by 

/ / „ ' = [ ( / ! ' -2X* 2 - 1)]-1 { " * ' ( * * - D # , , ' - l 

+ ( f c 2 - 2 ) [ ( « ' - 3 ) / / „ ^ 2 + A : ' / / „ ^ 3 ] + ( n ' - 4 ) 

(17) 

where &' = (/I + B) 1 / 2 / / . These five integrals, H^2 ~ H2, 
are obtained numerically. 

Thus the numerical computation of the present problem is 
reduced to solving simultaneous algebraic equations of 2m 
unknown vector densities {*(/, and f*(;) on 5* so as to satisfy 
the boundary conditions at m points p, on Y. Here £*(,) and 
f*(/) are the vector densities on the ith ring. In the boundary 
integral method with a fictitious boundary, the lack of strong 
diagonal dominance may give rise to a little difficulty in 
solving the simultaneous algebraic equations; therefore, we 
use double precision, which gives satisfactory results. 

Numerical Results 
The estimates of accuracy for the numerical computation 

are 

I T / - r / l / f ^ 0 . 5 x l O - 2 a n d 

\Mj" -Mje\/[f(D/2)] £ 0.5 x 10"2 

midway between each neighboring collocation point on T. 
Here f is the mean normal stress on the minimum cross 
section of the cylinder, 7}" and M" are the components of 

Table 1 Stress concentration factors for various values of 
parameters 

[1 - k2cos2(d*/2)]i-"3/2e-ro"dd* (14) 

where the relations r0 = {(A + 5) [1 - A:2cos2(0*/2)])1/2 and 
k2= 2B/(A + B) are used. 

The integral in the first of expressions (14) is the elliptic 
integral and denoted as 
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Fig. 5 Stress concentration factor, a i , versus v for various values of 
(D/2)/ / with ij, = 0.0 

force and couple tractions obtained numerically, and Tf and 
Mje are those given on T, respectively. 

The geometries of the cylinder analyzed here are L/D = 
3.0, a/D = 0.25, and a'/D = 0.05. The coefficient of the 
fictitious-boundary distance a, and number of subdivisions m 
are determined so as to satisfy the foregoing estimates of 
accuracy. In practice, the storage capacity of a computer 
limits the number of subdivisions m. We determine the 
suitable values of a, first for a simple problem, e.g., bar and 
sphere, and then for the present problem by a few trials. Here, 
a, = 3.0 and m/2 = 63. From the necessary and sufficient 
conditions for positive definiteness of a strain energy [1], we 
can obtain the parameter ranges as 

H>0, 3X+2M>0, / ^ 0 and - 1 ^ i\r S 1 (18) 

0.5 

-0.5 
Fig. 7 Stress distributions along X1 axis for various values of (D/2)/ / 
with v = 0.3 and i\, = 0.0 

Noting that X = [2c/(1 - 2v)]^i, where v is Poisson's ratio, 
we can find - 1 < v < 1/2 from the second of equations (18). 

Stress concentration factors are shown in Table 1, where ax 
and a2 are those with respect to the first and second principal 
stresses, T33 and T22, respectively. Figure 4 shows the stress 
concentration factors against (D/2)/'I for various values of rjr 
with v = 0.3. All results approach asymptotically to the 
values obtained by the classical theory, shown by thin lines, 
when (D/2)/l -~ oo. When v is small, the magnitudes of a2 at 
the center in the minimum cross section tend to be larger than 
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those at the surface. The difference between them is, however, 
very small, so that it is not mentioned here. Figure 5 shows the 
values of ax against Poisson's ratio, and Fig. 6 shows the 
reduction ratios of a, to that in the classical theory, [(aiclass -
a,)/a ldass ] X 100(%), against (D/2)/l, with -qr = 0.0. The 
stress distributions along X\ axis are shown in Fig. 7 for 
various values of {D/2)/l with v = 0.3 and rjr = 0.0, where 
the dimensionless force-stress r /r and couple stress 
li/[f(D/2)] are used. 

Conclusions 
In the present paper, we have given one method to solve 

three-dimensional elastic boundary value problems in the 
linear, couple-stress theory, which are difficult to analyze. 
This method is based on the "indirect fictitious-boundary 
integral method" which the authors have been using. Its 
advantages are: 

1. Accurate solutions can be obtained by numerical 
quadrature with the simplest approximation. 

2. The stresses and their gradients on a real boundary and 
in its neighborhood can be calculated by analytical dif­
ferentiation of vector potentials on a fictitious boundary. 

As a numerical example, we have treated a cylinder with a 
semicircular annular groove under uniaxial tension and shown 
the influence of the parameters, v, /, and i)r on the stress 
concentration. The results are summarized as follows: 

/ The reduction ratio about ĉ  increases with decreasing c. 
That is, as Poisson's ratio v becomes small, the couple stresses 
affect the stress concentrations significantly. 

ii In the classical theory, the magnitude of ĉ  decreases 
with increasing v. But in the couple-stress theory, the 
relationship is reversed, i.e., the magnitude of ĉ  increases 
with v, under a certain value of (D/2)/l. 

Hi So far, there are many papers that show the influence of 
v and / by solving two-dimensional problems, but none that 
show that of t\r since that can be obtained only by analyzing 
three-dimensional problems. In this paper, it is shown that the 
effect of r}r on stress concentrations is substantially smaller 
than that of v. 

This method cannot be applied, however, to the problems 
with complicated shapes, such as sharp notches and cracks. In 
these cases, we must use the analysis based on indirect and 
direct boundary integral methods without a fictitious 
boundary, which is now under consideration. 
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A P P E N D I X 

^=M«/,(o^[-l+2a-6/3-2+2(3/3-2+3/3-'+l)e-'J]//-o3 

+ (&khx/ + b-kjx{)[- 1 + 2a' -6/3~2 

+ (6,3-2 + 6,3-' + 3 +/3)<?-^/V 

+ 2x^x/xk' [15/T2 -(15,3-2 + 15/3"> + 6 + fi)e~^]/r0
5 

+ 2a'xk{dhJ-3x^x//r0
2)/r0

3 + (5hkx/ -bjkx,;){\ +/3)e-<3/r0
3) 

Fkj = nnhekm„ |(bhmxj + hjmx{t)x,\[3(1 - 2 a ' ) 

- (3 + 3|3 + |32)e-<3]//-o5 

+ 6ot'xm[-(5h„x/ +5„jXh +5/,,*,,') +5XhX/x^/r0
2]/r0

5) 

+ ^nhijhm {5km (1 + P + ^)e-»/r^ - X k ' x ; n (3 + 30 + /32)e~e 

/r0
s) 

Gkj=2n„lehkj(r,-ri')[-l+(l+P)e-<3]/r0
3 

+ (-ntkjmXh +n'ekhmXj')xi;,[3-O + 3P + P2)e-!i]/r0
5} 

HkJ=-2nh (nSkjX^+n'd^x/Kl+^^e-f/ro5 

+ 2nh(7, + v'){( 8kjxh + 8j„xk + bhkxj ) [3 - (3 + 3(3 + (32) 

e^ / 3]/(/-o5+^'^'^'[-15 + (15 + 15/3 + 6/32+/33)e-'5]//-0
7) 

where 5„ is the Kronecker delta, eijk the permutation symbol, 
a = M/(A + 2/x), a' = (X + M)/[2(X + 2/*)], /3 = r0/l, r, = 
JX12,T)' = nl2rir, x{ = Xi-x*{i= 1,2,3), Xj and x,-' are the 
components of the vector variables p and q*, respectively, and 
rti the components of the outward unit normal vector n at p. 
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1 Introduction 

The Contact of a Cuspidal Crack 
A simplified airfoil mapping is used to define a cuspidal crack. The objective is to 
investigate the effects of compressive loads on an infinite solid containing crack-like 
flaws. Such an objective cannot be achieved by using the conventional line crack to 
characterize the flaws. The associated contact problem is solved exactly by 
assuming that the contact region is small in comparison to the crack length. It is 
shown that the well-known Barenblatt model is just the present contact problem in 
reverse. Moreover, a specific functional form is determined to describe the so-called 
cohesive force which was assumed to be a material function by Barenblatt. 

The determination of the effects of compressive load on 
solids containing crack-like flaws is an important and in­
tricate problem. It is important because it is still an open 
problem in that the several theoretical models [1, 2] do not 
lead to the experimentally determined high compressive 
strength. It is intricate because the convenient line-crack flaw 
is practically useless for this purpose. Moreover, internal 
contact is an inherent phenomenon to this problem. Com­
pressive loads may be classified info two categories, crack-
parallel loads and crack-perpendicular loads. For the former 
category the effects can again be divided into two distinct 
classes depending on whether the flaw is a line crack or a 
cuspidal hole. The line-crack case leads to the nonlinear 
buckling phenomenon discussed in [3, 4] and a cuspidal hole 
can be easily handled by the standard complex variable 
method [5, 6]. 

For the class of crack-perpendicular compressive loads, the 
effects can only be studied by introducing smooth holes or 
cuspidal cracks. Griffith used an elliptic hole and showed that 
the compressive strength is exactly eight times the tensile 
strength [1], but the experimentally obtained ratios are much 
higher. The inclusion of a coefficient of a friction does not 
change the picture much either [2]. It would seem to be more 
effective and reasonable to introduce a hole with initial in­
ternal contact, such as a figure-eight shaped hole. This 
problem is now under our investigation. The purpose of this 
paper is to investigate the effects of compression when the 
flaw is modeled by a cuspidal crack. With the expectation of a 
contact problem to solve in mind, the cuspidal crack must be 
chosen or constructed in such a way that it does not lead to 
additional complication. This is, of course, motivated by our 
desire to obtain a closed-form solution so that the result may 
be used for many meaningful parametric studies. A crack is 
said to be simple if the associated elasticity problem has a 
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closed-form solution. Several methods are described in [5, 6] 
for the purpose of generating simple cracks. 

The cracks generated by the well-known symmetric airfoil 
mapping are simple. This mapping, however, has two poles 
and the needed algebraic manipulation is still too involved. 
An offspring of the airfoil mapping is then derived. This new 
mapping has only a single pole of higher order. The class of 
cuspidal cracks considered in this paper is defined by this 
latter mapping. 

The formulation of the problem expressed in terms of the 
complex variable method is outlined in Section 2. Many 
equations are taken directly from what we believe to be the 
most concise book on the subject by England [7]. The solution 
for the noncontact problem solved in [6] is summarized in 
Section 3. The contact problem is solved in Section 4. A 
formal asymptotic approach, using the contact length as the 
small parameter, is adopted as a matter of preference. We 
find it more convenient this way to trace the orders of 
magnitude of various terms. Finally, Barenblatt's theory is 
examined in Section 5. It amounts to a simple switch of the 
signs involved. 

2 Statement of the Problem and Governing Equations 

We consider the plane elasticity problem in the (xit x2)-
plane and shall use a complex formulation in terms of the 
complex variable z = xx + ix2 • The displacements ua (xx, x2) 
and stresses Ta$(xu x2) may be written in terms of two 
complex functions W(z) and w(z), viz., 

(2.1) 2fi(ui+iu2) = KfV(z)-zW'(z)-w(z) 

Tn+T22=2[W(z) + W'(z)] (2.2) 

T22 -lV12 = W (z) + W (Z) +W' (Z) (2.3) 
In the preceding equations and throughout this paper prime 
denotes complex differentiation; W and w' are holomorphic 
functions; fi is the shear modulus; and 

J3 — 4f plane stress 

(2.4) 
(3 - v)/(\ + e) plane strain 

where v is Poisson's ratio. We will be dealing with an infinite 
body Rz loaded at infinity by the uniform stresses 

Tap — oa0 (constant) as \z I — °° (2.5) 
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5e 

Fig. 1 Crack configuration in z-plane, together with curvilinear 
coordinates i and >j, and two auxiliary complex planes J-and a 

so that 

, ., W/
1 = '/4(<T„+<722), (2.6) 

wl = iA(a22-an) + ioi2, (2.7) w(z) =w1z + w_iz ' + . . 

as Izl—°°. 
The infinite body Rz is assumed to be the image of I f I > 1 

under the mapping 

*=«<»= ![(l+*)f+^-p+ -4-2-«]lfl>l (2.8) 

where f = fi + j£2 is an auxiliary complex plane, a is a length 
scale, and 6 a parameter satisfying 

0 < 5 < 1 . (2.9) 

The mapping (2.8) is a derivative of the thin airfoil mapping 
discussed in [5]. It is simpler than the airfoil mapping because 
it contains only a single pole of order 2 at f = 0. The complete 
class of configurations defined by (2.8) may be found in [5]. 
The image of the unit circle I f I = 1 in the z-plane defines a 
crack C7 and 

where 

Cz:x(rj) + iy(rj) = m(ei'i) 

x(rj)- ~o[l -cosij + 5sin2r)], 

(2.10) 

(2.11) 

y(r)) = a8sim)(l -COSJJ). (2.12) 

It is noted that the crack Cz has a cusp of zero cusp angle at z 
= Oand 

/27T\ 3VJ 
x(0)-x(7f) = 2a, ymm=y(j)=~ 6a. (2.13) 

The crack configuration for 5 = 0.1 is shown in Fig. 1. Near 
the cusp tip, i.e., r; < < 1, 

1+25 
x(v)=- ~arjz, y(r))=Viabrf (2.14) 

or 

/ 2 \ 3 / 2 / x, \ 3 / 2 

*> = ¥>™-»"(ul*) ("T) • a i 5 ) 

We note in passing that Y,'(0) = Oand Y,"(0) = oo. 
Before proceeding, it is convenient to introduce curvilinear 

coordinates (£, rf) in the z-plane by the coordinate curves 
(Fig. 1) 

z = ff2(fe''"). 

Then, 

2M«i+ '«2) = « Q ( r ) - ^ = - Q ' ( r ) - « ( f ) 
^ (f) 

Q'(f ) , G ' ( 0 
T « + ' T * ' / w ' ( r ) + m ' ( f ) ( . m ' ( r ) d r L m ' ( f ) . 

r ifi(f) rf r Q ' W i 
l m ' ( f ) dfLm'(f)J 

+ -
« ' ( « • ) Jwi'(f) • ' ( f ) - ) for 
m'(f)J iw»'(f) 

where 

o(r) = wo(o), «(f)=*f(m(f)). 
The conditions (2.6) and (2.7) now become 

0 ( f ) = 0 I f + Q _ , r ' + - « i = ~ * M . 

w(f)=wif+co_1r1 + - •., "i = 
(l + 6)a 

- W i . 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

It is assumed that the crack periphery is subjected to no ex­
ternally applied load and, as a result, there are the following 
two possible boundary conditions: 

(a) Traction-Free Crack 

m(f) 
0 ( f ) + • Q ' ( f ) + « ( O = 0 , l f l = l . (2.23)1 

m ' ( r ) 
(6) Contact Problem 

T{{ + (>{, = 0 for f = e'' ( lij I > sin " ' eX) 

«2 = ~ '/zaSi?3 

for { W ( l i j l<s in- 1 e \ ) 

(2.24) 

(2.25) 

(2.26)2 

It is implicitly assumed that the contact region is small so 
that (2.14) applies. The contact region in the physical z-plane 
is defined by (c.f. (2.14)) 

This is the integrated form of TJj + ir^ =0. 
2»2 is taken from (2.14) and e < < 1. 
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- c < x < 0 and c=—-—at^V (2.27) 

within which the condition 

rH <0 (2.28) 

must be satisfied. 
To facilitate the solution, it is convenient to introduce the 

stress continuation through the introduction of a single 
function QH (f) defined by [7] 

nH(D-
0( f ) f e s + [ l f l > i ] 

JILl^o'd/n-cd/f) f6s-[in<i] 

In terms of QH (f) and another new function 

O m ( f ) = 0 / f ( r ) / i w ' ( f ) 

(2.17)-(2.19)become 

2/t( l l1+IM2)=KO / /( f )+0«( l / iJ 

• [ m ( n - m ( l / 0 ] Q m ( r ) , 

T t t +T„=2[Q f l I ( f )+Q ) B ( f ) ] , 

r / w ' ( l / f l l 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

+ [m(l / f t -m(i - ) ] ro;(o (2.33) 
ta'(o 

Moreover, along the crack boundary f = e"1 

Ip— («, + iu2) = [KQ£ + ( e ' ^ + fli/- (e'")](V" (2.34) 
or; 

where, and throughout the paper, F+ and F~ are the values 
of F approached from S+ and S~ . 

Since the contact region characterized by eX (c.f. (2.26)) is 
assumed to be small, the behavior of the solution near the 
cusp tip z = 0 (f = 1) is best described by introducing a 
boundary-layer complex variable defined by 

f - 1 
a=(Ji+ia2=i . f — 1 = — /ecr. (2.35) 

e 

The positive a\ and a2 directions are, respectively, the 
negative *2(fo) and positive *i(fi) directions (Fig. 1). The 
mapping function (2.8) now becomes 

m{\ - iea) = 
«(l+25) 

V + 
a( l+35) 

2 2 
Moreover, for Ifl = II + Zeal = 1, 

; ' e V + . . 

2 

a=a0(ai,e) =a , -/-<rf + • • • 

In terms of a, we may define h(o, e) by 

0/ / ( l - eiff) = - /? (e) A (a, e) + const. 

where ^(e) is a scaling factor to be determined. Then 

dQH q(e) dh d(e) 

al t do e 

Substituting (2.35), (2.36), (2.38), and (2.39) into 
(2.31)-(2.33) and keeping only the leading terms, we obtain 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

2M 

9(e) 
{ui+iu2) = 

r o- - <r i 
= -i\Kh(a,0) + h(a,0)+—- h'(a,0) , (2, 40) 

e2a(l+25) 

9 

e2 0(1+25), , . x fh' (<7,0) A'(ff,0) 

1+25) , r^ ' (^ .O) * ' ((7,0)1 
_ ( T K + T n ) = 2 , [ — > - - L _ ' ] , (2.41) 

( r { ? + ( T j , ) = / ^ - — 
9 ( 0 

1 1 -(H)^^^-^]}.-
3 Traction-Free Crack 

If we make the artificial assumption that the crack 
boundary is always free of traction, regardless of the load 
applied at infinity, then QH defined by (2.29) must be 
determined in such a way that (2.23) is satisfied. It follows 
that QH is holomorphic in the whole plane. This is just the 
problem solved in [5] and the result is 

The stress-intensity factors are 

{KuK2) = {<!22,c,n)(™yA 1 + 5 

(3.1) 

(3.2) 
(l+25)' / l ' 

The displacements at a point z = m(eiri) along the crack 
boundary are just 

K+l 
«! + IU2 = • 

2fx 
•Qf f ( f ) , (3.3) 

and 

(«+l)g 

8^ 
f 8 

1 - j (CTn +CT22)+[(1 + 26)o-n -<J22]COSTJ 

U + l ) ( l + 5) 
+ 5(a n +<722)sin2?/j+ -j- -aansmr\, (3.4) 

u2 = 
(/c+l)(2 + 5)a 

8^ 

+ 

K f f22"2T5 f f11) 
5 -) 

j—r (^n +o22)cos?/Jsim/ 

, ( « + l ) d +o) 
i aa12cos?/. 

Near the cusp tip, we have 

U + l ) ( 2 + 35) 
"2 = g cta22v 

(3.5) 

(3.6) 

An estimate for the contact length may now be computed 
from (2.14) and (3.6). It is 

Estimated Contact Length 

( K + 1 ) ( 1 + 2 5 ) ( 2 + 3 5 ) 

(-f)- (3.7) 

4 The Contact Problem 

We now turn our attention to the problem defined by 
(2.24), (2.25), and (2.26). Since the contact region is assumed 
to be small, it is most convenient to express the solution in 
terms of an outer expansion and an inner expansion so that 
the relative orders of magnitude may be easily checked. We 
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shall use the variables f and a for the outer and inner ex­
pansions, respectively. The leading terms of the two ex­
pansions will be explicitly determined. They are to be con­
sidered as an asymptotic solution of the linear governing 
equations of the theory of linear elasticity. At the same time, 
however, they are to be treated as the exact solution of the 
theory of linear elasticity in that it would be meaningless to 
include the higher order terms without also raising the ac­
curacy of the governing equations. 

4.1 Outer Expansion (l?l > > 0 or I f - I I > > 0). In 
terms of the variable f, the contact region defined by (2.26) is 
an e-segment centered at f = l . It follows from (2.29) and 
(2.24), which is essentially the same as (2.23), that Qhlt) is 
holomorphic for I f - 11 > 0. The solution is just 

«(l+5) h+( 1-5 
w, + - — - Wi 1+5 ) F 

1 , 26 Wx 

TT&JT + 

E E 
F ( m ) e « H 

• + 
Ke2Px(e) 1 

(4.1) 
„ t l m n ( f - 1 ) " 2n(l + K) f 

A few comments regarding this solution are in order. For e = 
0, there is no contact region and //(f, 0) becomes (3.1). The 
double sum follows from the fact that H ' ( f , e) is 
holomorphic only for I f -11 > 0. The last term is added 
because the anticipated contact pressure is to be identified 
with Tjj according to (2.26) and hence the horizontal resultant 
force on the crack is not zero. With these comments then (4.1) 
may now be formally considered as the complete outer ex­
pansion of the linear equations of the theory of elasticity. 

To facilitate matching, we need the inner expansion of the 
outer expansion. It is 

H'il-eio.e) 

r£(l+8), . ,., y, m- 1 , 
(4.2) 

4.2 Inner Expansion ( k I < < a or I f -11 < < 1). For the 
inner expansion, we use the independent variable a defined by 
(2.35). Then, using (2.39) and (4.2) we write 

<7(e) 
(4.3) 

By comparing (4.2) and (4.3), we conclude that 

<7(e)=alCT22le. (4.4) 

The stress continuation (2.29) and the boundary condition 
(2.24) imply that h' (a, e) is holomorphic in the whole f-plane 
cut along the e-circular arc defined by 

f=e''" (Ir/l&sirr 'eX) (4.5) 

which, in terms of (2.35), (2.37), and (2.26), is just 

i 
ff=ffo(ffi,e) •o\ - f y o i + • • • (lo-ilsX). (4.6) 

Then, in the limit as e -~ 0, the function 

hi(a)mh'(a,0) 

must be holomorphic in the whole cr-plane cut along the real 
axis (c.f., Fig. 1) 

a=ffo(ffi,0) = a1 (la, ISA). (4.7) 

The function hn(a) must now be determined to satisfy (2.25) 
and (2.26). 

We first examine the property of hi (ff) as a — oo. This is 
determined by the inner expansion of the outer expansion. It 
follows from (4.2) and (4.4) that 

1 + 5 
hi(a)= — r (a22 - Jffi2) as 

2 1022 I 
I f f l— oo (4.8) 

-z 

1 

-1 

(B) y^ 

1 — 

- I 

Fig. 2 (a) Cusp shapes before and after deformation; and (b) contact 
pressure and normal stress ahead of cusp tip 

Substituting (2.37) into (2.42), we find 

e(l+28) 1 
± ~- (r{5 + iriv )=i— [hi + (a,) - hi ~ (ff,)] (4.9) 

lff22 I 0"l 

where hi ± ((j,) = hifa ± (0). Equation (2.25) now becomes 

hiUoi) + hTrI^)-Wrfa~)-hi-(ol)==0 (4.10) 

or 

lim [hi(o)-hJ(dj]= lim lhi(a)-hjidj] (4.11) 
_L ;n ~ _ in a = ffi +/0 ff— a\ ~i0 

Since both hi (a) and hi (a) are holomorphic in the whole 
plane cut along Iff] I < X, the preceding condition, together 
with (4.8), yields 

hi(a)-hi(d) = -i(l + 8)-p^-. 
1022 I 

Substituting (2.37) and (2.38) into (2.40), we obtain 

— (Mi +iu2) = 
OCT, 

- ' ' ^ [ * * o ' + (<n)+A<r(*i)] (lffil<X) 
2/t 

which, in view of (4.12), yields the relation 

du2 

doi 

(4.12) 

(4.13) 

•7(0 
(K-H)[^ ' + (ff,) + A0'-(ff.) + i ( l + o ) - j ^ ] (4.14) 

4/* ' L Iff22 

Equation (2.26), with 77 replaced by - ecr,, now yields 

hi + (a,) + hi ~ (a,) = - ~ of - i(l + 6) -p±-, 
K + l lff22l 

q{e) = /«?5e3. 

We conclude from (4.4) and (4.16) that 

(4.15) 

(4.16) 
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•> 'ff22 I 
'2=—^-<<l. /t6 

The solution for (4.15) and (4.8) is just 

6t2 

(4.17) m 
<7(e) 3X4 

= — (K+l ) ( l+5 ) 2 a l f f 2 2 l (4.30) 

hi(o) 
x _r^+ / ( 1 + 6 )^i 
x L K + 1 Iff,, | J 

1 + 6 

,X(a) 

2TT/ J - X X+ (t)(t-a) 
dt 

e 8 ( K + 1 ) 24 

We have thus completed a solution accurate to the order of e2 

in terms of the linear equations of elasticity. The solution, 
however, is actually exact in terms of the accuracy of the 
linear theory of elasticity. 

The following summary is provided (see Fig. 2): 

+X(o)o— r(a22-iau) 
2 lff22 I 

(4.18) 

Contact Length 

c 1 lcr22l 

where the Plemelj function 

X(ff) = (o 2 -X 2 ) - ' / ! (4.19) 

has been chosen so that <TX(CT) — 1 as Id — oo. The in­
tegration of (4.18) is straightforward and the result is 

. 1 + O CT12 3 

£ U + l ) ( l + o ) ( l + 2 a ) — ^ - < < \ ( a 2 2 < 0 ) (4.31) 
a 6 Sn 

Maximum Contact Pressure 

2 r3( l +5)5^ICT22 I
 n 1/2 2 1-3(1+6)8^22 1 1 ' 

Pm 1+26 L K+1 J 
(4.32) 

hi(a) = -i-
2 I cr221 K + 1 

a2 

+ K+i (ot-x2)* c L 
X2 ( K + 1 ) ( 1 + 6 ) ff22 

]) 

Contact Pressure 

f « = ~P< • ( • • * ) ' 
( - c < x , < 0 ) (4.33) 

2 6 lff22 I 

(4.20) 

The requirement that the contact pressure vanishes at a = X 
leads to the conclusions: 

Normal Stress A long Xj -axis 

1/2 

a 2 2 < 0 , X 2 = - ( K + 1 ) ( 1 + 5 ) , (4.21) 

and hence 

hi(o) = -i^-^T-^-[o2-o(o2-\2)*]. (4.22) 
2 I <r221 K + 1 

The contact pressure may now be computed from (4.9) and 
(4.22). It is 

r22(^,0)=-pm[(l + ^- ) - ( 7 - ) ] ®-Xi) (4"34) 

Cusp Shape Before Deformation (x2 = +0) 

/ x, \ 3/2 

x2 = Yt(xl)=A(--±) (*,<0) (4.35)3 

Displacement Near Cusp Tip (x2 = +0) 

(sgn(a22)Y,(xl) ( - c < x , < 0 ) 
u2 = (4.36) 

sgn(ff22)[y/(Jfi)-^(*i+c)] ( x , < - c ) 

[ >• ff \ 2 -11/2 
1 V~\~) (lffil<X) (4.23) Cusp Shape After Deformation (x2 = +0,a22<0) 

= - p m [ l + ^ - ] 1 / 2 ( - c < x , < 0 ) (4.24) 

where the maximum contact pressure pm and the contact 
length c defined by (2.27) are 

2 |-3(l + 6)6Mlff22l1 ' /2 

P m = l T 2 6 l KTI J ' (4 '25) 

— = i ( K + l ) ( l + 8 ) ( l + 2 6 ) - ^ i < < l . (4.26) 

a b bjx 

We note that the estimate given by (3.7) is off by the factor 

5/3<(2 + 36) / ( l+25)<2 . (4.27) 

The resultant contact force P is 

( 0 ( - c < x , < 0 ) 
* 2 = . M * i ) = j (4-37) 

^ y , ( x , + c ) ( x , < - c ) 

"Amplitude" of Cusp Opening 

A=Y^-c^^-2c^vA^kaT • (4-38) 
It is noted that the change from (4.35) to (4.37) is merely a 
translation to the left. If we d e n o t e ^ by 

K^a22,a,d) = f f 2 2 ( 7 r e ) * ( 1 ^ ) l / 2 , (4.39) 

which is just the stress-intensity factor defined by (3.2) but has 
no special implication in the present nonsingular stress field, 
then 

P= -J CPm 
( CK\ 1 / 2 

Kx{\<j22\,a,h)=y — } p m . (4.40) 

2 r (K+l ) ( l + 6) lor22l -|1/2 

j[ 36ft ] l/2 

(l+5)lff2 2 la, (4.28) 

and the resultant horizontal force on the crack, a consequence 
of interpreting r^ as the "vertical" contact pressure, is (c.f., 
(4.1)) 

2 p m 7r(K+l)( l + 6 ) 2 6 , 2 

e Px(yi) = — T . — — lff22 I aez. (4.29) 
4(1+26) 

The constants F^}„ involved in (4.2) may be identified with the 
expansion of A0' (a) at infinity. In particular 

As X\ — 00, in the sense of the outer expansion of the inner 
expansion, (4.34) becomes 

r2 2(x, ,0 )= -Pm ^ s f * = * ' ( g 2 2 ' f f } (Xl»c) (4.41) 
2 (2 70:!) 

which indicates that the present regular stress field approaches 

" Same as (2.15). 
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the singular stress field obtained without including the effect 
of contact. We conclude this section by noting from (4.31) 
and (4.32) that 

u + 
2 3(1 + 5) fy 

25 K+ 1 lff22 I • 
lor22 I > > l<*22 I ( 0 < 5 < 1 ) . 

(4.42) 

5 Barenblatt ' s T h e o r y - T h e Contact P r o b l e m in 

Reverse 

To set the stage for the ensuing discussion, we first deduce 
from (4.31), (4.32), (4.38), and (4.39) the following identities: 

K + l if?(l<722l,«,5) 
Pm = 

2 
~ \ — 
T L (K + 

3TT IXA 

3irfiA 

(5.1) 

a,S)\ (K+ l ) ^ , ( l a 2 2 I 

The values of pm and c evaluated at 5 = 0 are denoted by 

K + 1 K\(\a22\,a) 
Po = 

2 

3ir \>A 

3-K\XA 

(5.2) 

(5.3) 

_ 2 [" 3irnA "J-
Co='i\.(K+l)KI(\oxl\,a)\ 

(5.4) 

where 

KI(cj22,a)=Kl^22,a,0) (5.5) 

Consider now a straight crack defined by ( - 2a < xx < 0, 
x2 = ± 0 ) . The infinite region containing the crack is loaded 
by a remote crack perpendicular tension + o-22 and the crack-
surface tension 

Tyy(xu±0)= +p0 K) 1/2 
( - c 0 < x , < 0 ) (5.6) 

where p 0 and c0 are defined by (5.3) and (5.4) in which the 
ampli tude A is assumed to be given. The solution to this 
problem may be easily obtained from the results of Section 4 
by replacing (5,pm,c) by (0,p0,co). In particular, the 
displacement of the crack surface x2 = + 0 near xt = x2 = 0 
is just (4.6), i .e., 

M 2 ( * I > + 0 ) = 

\ c 0 / 
( -c0<x, <0) 

(5.7) 

Before proceeding we first review the hypotheses of the 
Barenblatt Theory [8 ,9 ] : 

(H-\) The molecular attractions across a crack near the 
ends are not insignificant. These attractions denoted by g(x) 
are called cohesive forces. The positive singularity caused 
external load and the negative singularity caused by the 
cohesive forces cancel each other so that the net result is a 
stress field without singularity. 

(H-2) The cohesive force distribution g (x) is confined to a 
small zone extending inward for a distance cc from the crack 
tip. 

(H-3) Crack becomes unstable when g(x) = gm{x) and 
gm (x) is a material property. 

These hypotheses lead to the conclusion that [9] 

gm(-t)t-'A dt 
- ' - ( ! ) • 

Kl(o22,a) (5.8) 

where C is a material constant called the modulus of cohesion. 
It takes at least two constants , gm(0) and cc, to define the 
"mater ia l funct ion" gm(xi). The modulus of cohesion gives 
only one condition, and the other condition is the qualitative 
statement that cc must be small. The equivalence of the 
Barenblatt theory and the A' / c-cri terion has been established 
in many occasions [9, 10] but , to the best of our knowledge, 
no specific form of gm (x{) has been determined or suggested. 
Equat ions (5.3)-(5.8) enable us to restate (H-3) as follows: 

(H-3') crack becomes unstable when 

/ x \ 1 /2 

gm(x)=Pc(l + J-) ( - C c < X , < 0 ) 

Pc = 

2 

K+IK2IC 

3TT /XAC 

7nt\xAc 

(5.9) 

(5.10) 

2 \ 3wnAc y 

where KIC is the fracture toughness &n&Ac a material length. 
Substituting the foregoing into (5.8), we conclude that the 
modulus of cohesion is just 

HI) KIC (5.12) 

and the fracture criterion is simply 

K,=KIC. (5.13) 

Our statements preceding (H-3') seem to have implied that 
(H-3') is more complete than (H-3), but what is Ac1 One may 
argue that there is no need to know Ac since the objective of 
the theory (5.12) and (5.13), is completed without the 
knowledge of Ac. Still the thrust of the theory lies in its 
assumption that the stress field is nonsingular, and it is of 
interest to know the magnitude of the cohesive force. If one 
insists on interpreting the cohesive forces as molecular at­
tractions then, since 2AC is just the separation at the end of 
the attraction, Ac must be of the order of the distance between 
a toms. It follows from 

KIC = 0(lQ5)psiyJhi., /x = 0(107)psi, AC = 0 ( 1 0 - 8 ) i n . (5.14) 

that 

pc = 0 ( 1 0 " ) p s i > > theoretical strength = 0(106)psi. (5.15) 

This estimate is obviously unrealistic even though the stress 
field is now finite. 
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Torsional Impact Response in an 
infinite Cylinder With a 
Circumferential Edge Crack 
The problem of torsional impact response in an infinite cylinder with a cir­
cumferential edge crack is solved. Using Laplace and Fourier transforms the 
problem is reduced to a singular integral equation of the first kind that has Cauchy-
type, logarithmic and generalized Cauchy-type singularities. The kernel of the 
integral equation is improved in order that the calculation may be made easy. 
Dynamic stress-intensity factors are estimated with good accuracy. 

Introduction 

In the structure having pre-existing crack under dynamic 
loading, the waves are transmitted to all parts of the structure 
and are reflected and refracted at the crack, causing higher 
stress elevation than that of similar type of static loading. 
Therefore, since the crack problem concerning transient 
response in the elastic body has been considered as one of the 
most important problems in fracture mechanics, various 
research has been done up to date. Regarding three-
dimensional axisymmetric crack problems, we may mention 
the work analyzed by Sih and Embley [1] for the problem of 
the dynamic stresses around a penny-shaped crack in an 
infinite elastic body under torsional impact in which the 
maximum stress-intensity factor has been determined to be 
about 1.19 times as large as the factor of the corresponding 
static problem. In the case of finite elastic body, there appears 
a reflected wave from the boundaries and a scattered wave 
from the crack, and the analysis becomes complicated. Chen 
[2] studied the problem of an infinite cylinder having a penny-
shaped crack under torsional impact loading by solving the 
Fredholm integral equation of the second kind, and clarified 
the impact and geometry effect on the dynamic stress-
intensity factor. In these researches, however, since the 
estimation of the kernels involved in the Fredholm integral 
equation of the second kind was not performed, the numerical 
evaluations are to be laborious in order that the accurate 
results may be obtained. 

The present paper deals with the problem of the torsional 
impact response in an infinite cylinder with a circumferential 
edge crack. By the method of integral transforms, the 
problem is reduced to that of solving a singular integral 
equation of the first kind transformed from a dual integral 
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equation. The solution of the integral equation is expanded in 
terms of the Jacobi polynomials with unknown coefficients 
which are solved by an infinite system of linear algebraic 
equations for the coefficients [3]. In the treatment, the in­
tegrals concerning Cauchy-type and logarithmic singularities 
involved in the singular integral equation of the first kind are 
estimated analytically, and the slow convergency of two sorts 
of integrands in the equation is improved by using contour 
integrations and asymptotic expansions. The expression of 
singular stress near the crack tip is given by a closed form and 
the solution is transformed into the physical plane by using 
the numerical Laplace inversion technique [4]. The stress-
intensity factors subjected to time-dependent loadings are 
shown in a figure for various crack depths. The related static 
problem has been studied by Shibuya, et al. [5]. The results 

, 

0 

, 

*-a-»h-c-» 

*— 1 — 

T r 

Fig. 1 Geometry and coordinate system 
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are also obtained from the present solution by taking a 
limiting case. Both results are compared and made good use 
of for clarifying the impact effect on the dynamic stress-
intensity factor. In addition, it may be mentioned that the 
present solution is identical to that for the sudden appearance 
of a crack in an infinite cylinder under stationary twisting. 

Formulation of the Problem 

Let us take cylindrical coordinates and the z-axis as the axis 
of symmetry of a circular cylinder which is made from 
homogeneous and isotropic material. For convenience, r and 
Z will be regarded as dimensionless quantities referring to the 
radius of the cylinder b. The present problem is, as shown in 
Fig. 1, that of an infinite circular cylinder of radius 1 having a 
circumferential edge crack of depth c lying in the plane z = 0. 

The displacement field in the r, 8, and z-directions is 
denoted as ur, ue, and uz, respectively. For torsional motion, 
we have 

ur = uz=0, ug = ue{r,z,T) (1) 

where Tis time. The corresponding stress field is as follows: 

rre(r,z,T)=n(ue,r~ue/r) (2) 

T6z(r>Z,T)=fMg:Z (3) 

where fi is the shear modulus of elasticity and a comma 
denotes partial differentiation with respect to coordinate 
variables. The other stress components are all vanishing. 
Hence, two of the equations of motion are identically satisfied 
and the remaining one gives 

d2u„ 1 d2Un 
(4) 

d2»g J_ d"e 
dr2 r dr r2 + dz2 c\ ar2 

where c2 = (/*/p)Vl and p is the mass density of the material. 
In the present problem, a circular cylinder is initially at rest 

and a stress r te = — r0r, with T0 having the dimension of 
stress, is prescribed at the crack surface for T > 0. That is, a 
torque M0 of magnitude of IVT0/2 is prescribed suddenly at 
Izl = oo. For the resulting problem of scattering field of a 

normally incident torsional impact wave by the crack, the 
boundary condition is given as follows 

Tr9(l,z,7) = 0 (5) 

T6z(rfi,T)=-TarH{T), a<r<\ (6) 

ue(r,0,T) = 0, 0<r<a (7) 

where a = 1 - c and H(T) is the Heaviside step function. 

Analysis 

The time variable is removed by the Laplace transform 
relations 

r(p) = \"'f(T)e-"TdT, / ( T ) = - M r(p)epTdp (8) 
J0 2TH J Br 

The path of integration in the second equation of (8) is the 
Bromwich path, which is a line on the right-hand side of thep-
plane and parallel to the imaginary axis. Applying the first 
equation of (8) to equation (4) results in the transformed 
equation 

d2u . j 1 dUg 

dr2 r dr 

1 

dz2 c2 
ue (9) 

Referring to the upper half space z > 0 , solution of equation 
(9) can be written as 

* r°° 
ue =\ A(a,p)J{(ar)e yzda 

{
00 1 

B(a,p)Ii(yr)sin(az)da+c0r— e-
{p'c2>z (10) 

0 D 

where /„( ) and /„( ) denote the n-order Bessel function 
and the modified Bessel function of the first kind, respec­
tively, A(a), B(a), and c0 are unknown functions and 
coefficients to be determined later, and y denote 

y=(a2+p2/ci)'A (11) 

The relation between unknown functions is determined 
from the Laplace and Fourier sine transforms of the boun­
dary condition (5), by using equations (2) and (10), in the 
form 

niA(rj,p)J2(y) 
0 

OL'+l 
dri (12) 

Similarly, from the boundary conditions (6) and (7) in the 
transformed plane, a pair of dual integral equations is ob­
tained as 

S oo n oo 

A(a,p)yJ1 (ar)da+ \ B(ct,p)I{(yr)a da 
1 

= -T0rJnp + cQr-
c2 

A (tx,p) J, (ar) da + c0r - = 0, 
Jo p 

a<r<\ 

0 < r < a 

(13) 

(14) 

In order to solve the equation, the following definition is 
made on the crack surface displacement: 

«</•<! 

= 0 0<r<<7 (15) 

From equation (15), A (a,p) is determined by the form 

A(a,p)=-\ia tv*(t,p)J2(at)dt (16) 

Substituting equation (16) into equation (13), and using 
equation (12), a singular integral equation of the first kind is 
obtained as 

1 
= -T0r/np + c0r-

where 

R0(r,t) m 

4 

Cl 

aJ2(at)Ji(ar)da 

a<r<\ (17) 

•KV 
[K(t/r)-E{t/r)] + 

ir (t2-r2) 
E(tlr), t<r 

= —\K(r/t)-E(r/t)} 
•wrt 

Ri(.r,t) 

R2(r,t) 

irrt 

i oo 

0 

l(t2-r2) 
E(r/t)-K(r/t)\, t>r 

(7 — a) J2 (at) J] (ar)da 

2 f" 

7T JO 
-I2(yt)K2(y)I, (yr)da 

(18) 

(19) 

(20) 
)0 yl2(y) 

where K and E are complete elliptic integrals of the first and 
second kind, respectively, and K„ denotes the n-order 
modified Bessel function of the second kind. Similarly, from 
equation (14), unknown coefficient c0 is determined as 

f 1 
Co=/> —<P*(?j>)dt (21) 

J a t 
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branch l ine 

where 

»Re k 

Fig. 2 Contours of integration for integrals in equations (29) and (30) 

The kernel R0(r,t) in equation (17) has Cauchy-type and 
logarithmic singularities and can be written in the following 
form by separating the singularities: 

t2R0(r,t) = 
ir(t-r) 2-K 

log 
Vf-r) 
1-fl 

+LQ(r,t) (22) 

where L0(r,t) is the Fredholm kernel which has no 
singularities and is written as 

L0(r,0- Lt(t + r) J 
E(t/r) + 

-[y£(//r)-l] 
i r ( / - r ) 

4K(t/r) 3 , 
+ + — log 

ir 2ir 

2 ( / - r ) 
\-a 

, t<r 

1 r r "I r[E( 
= — — -2{t/r) \E(r/t) + — 

r[E(r/t) - 1 ] 

2 — K(r/t) 
r 3 , 

+ + — log 
2(t-r) 

\-a 

(t-r) 

t>r (23) 

For the sake of convenience of analysis, we perform the 
following change of variables and function: 

r=-[(l-a)s+l+a], t= -[(1 -a)r+ 1 +a] 

P=p/c2 

^ / 7 ) / ( T 0 / M p ) / = * * ( T , p ) ( - j ^ ) ' 

Then, equation (17) is written as 

1 f> r 1 3 (1 -0 ) 
— lOglT-sl 
7r J -1 IT—S Ar 

(24) 

(25) 

(26) 

K(S,T) = 
\-a 

2r 
T[L0(r,t)+t2Rl(r,t)+t2R2{r,t)] (28) 

Next, let us consider the kernels Ri(r,t) and R2(r,t), 
respectively. First, regarding Rt(r,t) expressed by equation 
(19), it is a form of integral of bad convergency. To evaluate 
the integral accurately, we consider the contour integrals 

Ici=hiL{y,k)J2{kt)H\l\kr)dk, t<r (29) 

IC2 = §c2L(y,k)J2(kt)H\2\kr)dk, t<r (30) 

where 

L(y,k)=k-y = k-(k2+P2YA (31) 

In equations (29) and (30), contours cl, c2 are defined in Fig. 
2 and H\l), H[2) are the first-order Hankel functions of the 
first and second kind, respectively. The integrals in equations 
(29) and (30) satisfy Jordan's lemma on the infinite quarter 
circles, so that 

/c l = j o (a-y) J2(ca)H[1\ar)da 

+ \ (ia-iv')J2(iat)H[l\iar)idct 

+ (ia-v)Ji(iat)H<p(iar)ida 

Ic2 = j " {a-y)J2(.at)H¥Har)da 

+ ( -ia + iv')J2(-iat)H[V(-iar)(-i)da 
J 00 

+ f (-ia-iv)J2{-iat)Hf\-iar) (-i)da 

(32) 

(33) 

where 

v={P2-a2)'' v' ={<x2-P2)'' (34) 

Because of Icl + Ic2 = 0, R[(r,t) for t<r can be finally 
written as 

Ri(r,0= — P2\\ cJ2(cJ>t)Ki(oJ>r)da 

+ f [<x-(u2-X)v']I2{cJ>t)K\(aPr)do^, t<r (35) 

R\(r,t) for t>r can be also found as follows: 

i?,(r ,0 = P2\\ aK2{otPt)Ii{aPr)da 
IT (-J0 

+ f [a-(a2-l) ' / 2]A:2(aP?)/i(af , ' - )c?aj 

+ ^Uu+ht), t>r (36) 

where the integrands have the pole of first-order, so that Iu 

and I2e expressed by the following forms are to be necessary. 
That is, 

7 u = l i m L(y,eeie)H2
[Hteeie)Jl(reew)ieewde=Pr/t2 

. e—0 J T/2 

(37) 
Ar 

l - i \ ,/! 1 
+ K(S,T)](T+V) **(T>P)dr=-l+cofPl*/To (27) 

72e=lim L(y,eei<>)H2
2\teeie)Jl{ree'e)kewdd=Pr/t2 

£ _ 0 J -7T/2 

(38) 
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The kernels given in the form of equations (35) and (36) will 
allow their numerical evaluation with good accuracy. 

Successively, for the sake of convenience of the numerical 
calculation, we rewrite equation (20) in the form 

R2(r,t) = - ~ j " [-^/2(7Otf2(7)/i(7'-)-^'(«. '- .0]<*a 

2 C°° 
A*(a,r,t)da (39) 

w Jo 

(-£) dr 

3( l -a ) 
4r 

(j-log 2), w = 0 

3(l-a)(2/Q! f 1 
4r(nl)222" 

where 
«2 

^4*(a,r,0=«ie^(2"''"')a+ —[e" ( 2" ' '"" a-e- f a] 

j"y4*(a,/v t)da = 
2-r-t 

+ a2ln[5/(2-r-t)] 

(40) 

(41) 

\—T„(s)-^-Tn+l(.s)], in M + 1 J 
« = 1,2, . . . 

I f 1 / l - r \ ' / ! 

PAS)=—\ K(S,T)P^ - *>(T) ( — — J dr 
IT J -1 \ 1 + T / 

(45) 

(46) 

The forms of a, and ff2 come from the leading terms in the 
asymptotic (a-~oo) expansion of a2I2(yt)K2(y)Il(yr)/yI2{y), 
and are given, respectively, as: 

1 
2{rty 

«2 = -[T('-T-T) 
(2-r-t)P2 

(42) 

Besides, to use the a2/<x term without causing divergence of 
the associated integral term, it is necessary to artificially 
include e~Sa. We merely choose 5 so that it has little effect on 
the integrand values for large a; We actually use 5 = 2. 

Now, to solve equation (27), we assume the unknown 
density $*(T) in the form [3] 

**W= Y,BnP^-v>\r) (43) 

where PHA,~'A)(T) denotes the Jacobi polynomials. Sub­
stituting equation (43) into equation (27), we obtain the 
equation 

£ Bn[-P(„-'/iM)(s) +w„ (s) +pn (s)] = 

where 

w„ (s) = -
3(1-a) 

4irr 

• l+y( l -« )£„*• /> 

( lOglT-slP^--" '^) 

(44) 

T„ (s) in equation (45) denotes the w-order Chebyshev 
polynomials of the first kind. Considering the orthogonality 
relations of the Jacobi polynomials, the following equation is 
given from equation (44): 

6fA'A)Bk-fi[lkn+Ckn}Bn 
71=0 

= rft[l-i(l-a)B0^], * = 0,1,2 

where 
-Vz,V!) _ . 

e{ Vi,Vi) _ . 2(2/c)!(2A: + 2)!7r 
(1+2A:)(A:!)3(A:+1)!22<2<:+1> 

yk„ = j ' , Pi~,AM(s)wn(s) ( i ± ^ - ) Vl ds 

Ckn = j ' [ Pk~ >A'A\s)pn (s) ( - j - t l ) A
 ds 

dk = w5k 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

5*0 in equation (52) denotes the Kronecker delta. 
The evaluation of integrals in equation (50) and (51) can be 
easily performed by using the following Gauss-Jacobi 
quadrature formula [3], i.e., 

r1 / 1+5 \* „ 2w £ , 

/ 2 / -1 \ 
a,=cm\-2Ntrv (53) 

0.6 

0.5 

0.4 

1.0.3 

0.2 

0.1 

/ 
-—.-£JELQ3__ 

0.5 

07__ 

static solut on 

0.524 

0.466 

Q364 

1 2 3 4 5 6 7 8 
T. 

Fig. 3 Variation of dynamic stress-intensity factor with time 
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J!, (-}£)"•"'>** i i & i ; * 1 - ^ 
/ 2/ir \ (54) 

Dynamic Singular Stresses Near the Crack Tip 

To find the local dynamic stress field, the inverse Laplace 
transform of the expressions r%(r,z,p) and Tgz(r,z,p), which 
are obtained by substituting equation (10) into equations (2) 
and (3), must be applied. The singular stresses are obtained by 
expanding the integrands in the stress integrals of T%(r,z,p) 
and Tgz(r,z,p) for large a. Considering the theorem [6] on the 
behavior of Cauchy integral near the ends of the path of 
integration and performing the Laplace transform inversion 
of the singular stresses, dynamic singular stresses near the 
crack tip are obtained as 

Tre(r,z,T)-
(21rp,)'/j 

cos(0, /2) 

T$z(r,z,T)~ ,„__ v/2 sinffl/2) 

(55) 

(56) 
(2*0, )> 

where Km(T) is a so-called dynamic stress-intensity factor 
defined as the following expression 

Kw (T) m lim [2TT(«- r) ] >A T6Z (r,0, T) 

= T 0 ( 2 c ) ' / i « - ^ : [ -L9*(-l,P)ePc2TdP (57) 

In equations (55) and (56), p{ ,d\ denotes the following polar 
coordinates, that is, 

Pi=[(r-a)2+z2]'A, et=tan-l(^) (58) 

The Laplace transform inversion of equation (57) is carried 
out numerically by using the formula [4]: 

F*(P/I3)=[ F ( 7 " ) e - ™ r d 7 " 

7=1 

(59) 

where /3 is a variable that regulates time scale, 

Xj (/' = 1. • • • ,N) are the roots of the equation PN(l-2x) = 0 
in which PN( ) denotes the Legendre polynomials of order n, 
and Wj denotes weight functions given by the relation 

1 f1 PN(\-2x) 
-dx (60) Jo ix-Xj) 2 Jo (x-Xj)[Pk(l-2x)]x.. 

(60), P ^ ( l - 2 x ) denotes the differentiation In equation 
dPN(\-2x)/d(\-2x). 

Numerical Results and Considerations 

Solving the infinite system of linear algebraic equation (47) 
and performing the Laplace transform inversion numerically, 
we have determined dynamic stress-intensity factors of an 
infinite cylinder with a circumferential edge crack under 
sudden twisting. The dimensionless values of Km/T„ versus 
T0 are shown in Fig. 3 for the cases of c = 0.3, 0.5, and 0.7. 
T„ denotes nominal stress 2M0/7ra3, and T0 denotes 
dimensionless time c2 77c, and the results shown by the dotted 
lines are those of the related statical solution for the case of 
P = 0 in equation (47), and are in good agreement with the 
results in reference [5], Generally, the values of the dynamic 
stress-intensity factor become larger and reach the maximum 
values close to those of statical one through the point of in­
flection as the time increases. 

We note that the term of rigid displacement given in the 
present solution is important for solving such problems of 
dynamic stress-intensity factor. 
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Effective Longitudinal Young's 
Modulus of Misoriented Short 
Fiber Composites1 

This paper examines the effective longitudinal Young's modulus of composites 
containing misoriented short fibers. The analysis is based on the Eshelby's 
equivalent inclusion method and the average induced strain approach of Taya, 
Mura, and Chou, The present approach is unique in that it takes into account the 
interactions among fibers at different orientations. Numerical results are presented 
to demonstrate the effects of fiber elastic property, aspect ratio, volume fraction, 
and orientation distribution function on composite Young's modulus. Fiber 
orientation distribution has a more significant effect on composite longitudinal 
Young's modulus than fiber volume friction, within the range examined. 

1 Introduction 
Discontinuous-fiber reinforced plastics are attractive in 

their versatility in properties and relatively low fabrication 
costs. They consist of relatively short, variable length, and 
imperfectly aligned fibers distributed in a continuous matrix 
material. The orientation of the short fibers depends on the 
processing conditions employed and may vary from random 
to nearly aligned. Thus, it is imperative to take into con­
sideration the effects of the bias in fiber orientation and 
variation in fiber aspect ratio on composite elastic properties. 

The stiffness properties of two-dimensional random fiber 
composites were analyzed by Halpin and Pagano [1] for 
instance, under the assumption that such materials can be 
modeled as laminated systems composed of layers of 
unidirectional short-fiber composites oriented at specific 
angles with respect to the reference axes. The case of three-
dimensional misaligned fiber composites has been analyzed in 
[2, 3]. Christensen [2] obtained the results by summing up the 
contributions to stiffness for all the fiber orientations. The 
stiffness value of each orientation was obtained by the tensor 
transformation of stiffness of the system with aligned fibers 
parallel to the loading direction. Chou and Nomura [3] used 
the results from both the bound and self-consistent [4] ap­
proaches for the values for each orientation. In the analyses 
of [2] and [3] the interactions between fibers at different 
orientation are not considered. 
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In this paper we consider the effect of the distribution in 
fiber orientation on the effective Young's modulus. The 
interaction among fibers at different orientations is included 
in the analysis by adopting the average induced strain ap­
proach [5, 6] and the modified Eshelby's equivalent inclusion 
method [7]. 

In the formulation, the general approach is described first 
and it is shown that the average induced strain has only two 
unknown components. Then we describe the approach in 
detail by the use of this result. Numerical results of effective 
Young's modulus are presented for two types of fiber 
distribution patterns (uniform and cosine-type) with the 
parameter of distribution limit a as a function of fiber 
orientation angles. The effect of the volume fraction is also 
presented. 

2 Formulation 
The infinite elastic body containing misoriented short fibers 

and subjected to the applied stress a0 is shown in Fig. 1(a). 
The fibers are modeled as ellipsoidal inclusions of the same 
size. Let the domains of the infinite body and the fibers 
(inhomogeneity) be denoted by D and Q, respectively. Hence 
the domain of the matrix becomes D — 0. The elastic stiffness 
tensors of the matrix and fiber are denoted by C0 and Cf, 
respectively. The bold-face letter stands for tensorial 
quantity. 

Under the applied stress <r0, the average of the total stress in 
the matrix can be given by a0 + < <r >, where 

<<r>=C0e~ (1) 
Here, < > denotes the volume average of a quantity and e 
stands for the average disturbance in strain of the matrix due 
to the presence of all fibers. 

Following Mori and Tanaka [8], a single fiber is introduced 
into the composite D. The orientation of this fiber is defined 
by the angles 6 and </> as shown in Fig. 1(b). To apply the 
Eshelby's equivalent inclusion method [7] to this single fiber 
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the local coordinate system x{ x{ x{ is also adopted, where 
thex3 ' axis coincides with the fiber axis. Then 

<70' + <f' = C0 (e0' + e' + e ' — e*') 

= C / ( e 0 ' + e ' + e ' ) (2) 

and 

e ' = S e " (3) 

where a' is the disturbances of stress due to this single fiber, 
e' is that of strain due to only this single fiber, S is the Eshelby 
tensor for fl (see [9] for details), and e*' is the eigenstrain (or 
transformation strain), which has nonvanishing components 
in Q, but becomes zero outside 0. The prime indicates ten-
sorial quantities referred to the local coordinate system x{ x{ 
x{. The stress disturbance a' in fi can be obtained from 
equation (2). 

«7 '=C 0 ( e " '+Se* ' - e* ' ) (4) 

Also, 
ob' = C0 e0' (or a0 = C0 e0) (5) 

Since the added single fiber can be regarded as any fiber in the 
composite, equations (2) and (4) hold for any inclusion in the 
matrix. From equation (2) 

e* '= -((CV-CoJS + Co)-1 • (Cy-CoXeo'+e-') (6) 

and 

e ' - e * ' = - ( S - I ) ( ( C / - C 0 ) S + C 0 ) - 1 . (C^-CoXe,,'+e')(7) 

The results of e*' and e' from equations (6) and (7), after 
being transformed to the global coordinate system of xx x2 x3, 
are applied to the following relation 

e+l/V, °h (^ e*)dV=0 (8) 

where VD denotes the volume of domain D. It is shown in 
Appendix A that equation (8) is equivalent to the requirement 
that the integration of the stress distrubance over the whole 
domain vanishes [5, 6, 9] namely, \D a dV = 0. Equation (8) 
represents, in general, six linear algebraic equations with the 
six unknown components of e". The subsitution of e into 
equation (6) yields e*' . 

Furthermore, the equivalency of the strain energies of the 
composite system [5] can be expressed by 

1/2 a0 • C " 1 ff0 = 1/2 <r0 • e0 + 1/2 \/VD\a a0 • e*dV (9) 

where Cc is the effective stiffness tensor of the composite to 
be computed. We consider here the uniaxially applied stress a0 

along the x3-axis as shown in Fig. 1(a). Then the effective 
longitudinal Young's modulus EL of the composite can be 
obtained by inserting e*' into equation (9). 

Eo 

1 

o 1 f 
(10) 

1 + 
°o 

where E0 is the Young's modulus of the matrix and e33 is the 
normal eigenstrain along the x3 -axis. 

The volume integrals of equations (8) and (10) are per­
formed by the use of the density function p [Appendix B], 
which is a function of 0 only, and also by the use of the 
relations between e* (0, cf>) and e* (0, 0), and between e(0, </>) 
and e(0, 0) [Appendix C]. 

By taking into account the fact that e" has only two 
Unknown components, eu (= e22) and e33 [Appendix D] and 
using the results of Appendices B, C, and D the following 
results are obtained from equation (8) 

iu + / ( " * ( * ) 1/2 {eu(d,0) + e22W) 
*) 0 

-e*n(6,0)-e*22(0,0))d6 = 0 

I I I 
(a) <b) 

Fig. 1 Calculation model 

«33 + / J J * ( 0) • ( 3̂3 (^.°) - g3*3 (6.0) ) d8 = 0 (12) 

where/is the volume fraction of fiber and 

g(&) = 

sin0 

1 - cos a 
for p = p0 (13) 

cos a 0 sin d 
for p = p0 cos a 8 

l - c o s ( l + « ) a t l - c o s ( l - a ) a / ^ 
2(1 +a) 

• + • 
2 ( 1 - a ) 

Here, the fibers are assumed to be distributed in 0 ^ 8 ^ a. 
Also, ejj(8, 0) and e,*(0, 0) are, respectively, components of 
the induced strain and eigenstrain for a fiber in the global 
coordinate system. For convenience of calculation, this fiber 
is assumed to lie in the x2 - x 3 plane at an angle 0 with the x3-
axis. 

By using the vector notation, 

eo'(0,O) = ( - c , s in 2 0-ccos 2 0 , - i ' s in 2 0 + cos20, 

0,0, ( l + »<)sin0cos0)' 
Eo 

(15) 

(11) 

e'(0,O) = ( e n , e33 sin20 + e u cos20, eu sin20 

+ e33 cos20, 0,0, (e33 - e u ) s i n 0 c o s 0 ) ' 

where t denotes the transpose. 

Then, from equations (15) and (6) and the tensor trans­
formation it can be shown that the integrals in equations (11) 
and (12) are functions of the linear combinations of the 
unknowns i\ x and e33 

e"n + / ( « n en +an e}3 +ai0) = 0 

e33 +/(cr3i <?u +o3 3 e3i +fl30) = 0 (16) 

where ay are constants. 
Inputting solutions of en and e33 into equations (15) and 

(7), and replacing unit matrix I by zero matrix 0 in equation 
(7) leads to the result that the left-hand side of equation (7) 
becomes \/VD \ae*dV. This result is substituted into equation 
(10) to obtain the solution of EL. 
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3 Results 
Results of this analysis are first compared with existing 

solutions of composite elastic moduli where the fibers are 
completely random in their orientations. Figure 2(a) shows 
the comparisons of the effective Young's modulus EL for the 
short fiber case where the elastic properties, following those 
of [3], are Ey/Eo = 20, vf = 0.3, and v0 = 0.4, and L/r = 2. 
E/ is the fiber Young's modulus, v0 and vf are, respectively, 
matrix and fiber Poisson's ratios. Also, fiber length is 1L and 
diameter is 2r. The dotted lines are the upper and lower-bound 
predictions of Chou and Nomura [3], Figure 2(b) is for the 
case of continuous fibers and the elastic properties [3] are 
E//E0 = 32.4, vf = 0.25 and v0 = 0.4. L/r = 10,000 is 
actually used in the present calculations. The present theory 
again lies within the bound predictions of [3] and is lower than 
that of a self-consistent approach by Chou, Nomura, and 
Taya[4]. 

Figures 3 and 4 demonstrate the effect of fiber density 
distribution on the effective Young's modulus EL. The case of 
short carbon fiber-reinforced polyamide 66 is considered and 
the material elastic properties are E//E0 = 100, v0 = 0.42 
and Vf = 0.17. Two fiber density distributions, uniform and 
cosine types, are examined (see equations (5-4) and (5-5) for 
details). The angle a denotes the range of fiber orientation 
distribution relative to the x3-axis or the loading direction. 

Figure 3 shows that, for a fixed fiber volume function/, EL is 
higher for the cosine-type orientation distribution than the 
uniform-type as expected. The case of uniform fiber orien­
tation distribution and a = 90 deg gives rise to an isotropic 
material and thus the lowest effective Young's modulus. 

Figure 4 demonstrates EL as a function of a for both types 
of fiber orientation distributions. The effective moduli in Fig. 
4 are normalized by E,,, the composite effective moduli when 
the fibers are aligned with the x3-axis. E, naturally is a 
function of fiber volume fraction and its values are, for in­
stance, 8.50 E0, 16.41 E0, 24.77 E0 and 33.62 E„ for/ = 0.1, 
0.2, 0.3, and 0.4 respectively. The values of E i /E , drops 
rapidly in the range of a = 30 and 60 deg. It is also interesting 
to note that EL/E„ is more sensitive to fiber orientation 
distribution than fiber volume content. 

4 Conclusions and Discussions 
1 The present analysis is based on the Eshelby's equivalent 

inclusion method [7] and the average induced strain approach 
of Taya and Chou [5], and Taya and Mura [6]. 

2 Previous theories [2-3] of effective Young's modulus of 
misoriented short fiber composites are performed by first 
evaluating the modulus of the aligned short fiber composite at 

present result 

bound theory [ 3 ] 

0.2 

(a) 

" 
present result 

bound theory [3 ] 

self consistent 
approach [ 3 ] 

/ 

/'t 
<'2r 

1 1 1 

/ 

1 

0.0 

(b) 

Fig. 2 The effective Young's modulus EL for the cases of: (a) EflE0 = 
20.0, vf = 0.3, >.0 = 0.4, Llr = 2.0; and (b) E , /E 0 = 32.4, », = 0.25, » 0 = 
0.4, L/r - oo 

/ ! a-30' 

Fig. 3 The variation of effective Young's modulus EL with fiber 
volume fraction f 

f 
0.2 

a (degrees) 

Fig. 4 The variation of effective Young's modulus ratio E(.'E» w i l n 

fiber distribution limit angle a 
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the same fiber volume content. The modulus value at a 
specific fiber orientation is obtained by tensor transformation 
of the aligned fiber case. Then the effective Young's modulus 
is derived by integrating the modulus values within the range 
of fiber orientation distributions and using the fiber orien­
tation distribution function as the weighting function in the 
integration. The linear superposition of elastic moduli of 
different orientations neglects the interaction of the fibers, 
which is included in the present analysis. 

3 The effective Young's modulus of a short fiber com­
posite is more sensitive to fiber orientation distribution than 
fiber volume content. 
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A P P E N D I X 

Appendix A (Derivation of equation (8)) 

The equation (2) is rewritten as follows by using the global 
coordinate system x, x2 x3 

a0 + a = C0 (e0+e~ + e-e*) 04-1) 

Applying equation (,4-1) to \D a dV = 0 along with the use of 
(To = C0 e0 we obtain 

\D_a C0 (6+e)dV+\a C0 (€ + e-e*)dV=0 (A-2) 

The first integral in (A-2) of the matrix region D — Q is defined 
in equation (1) as C0 i'VD^a, where Kz,_fl is the volume of 
the matrix region. Then 

J B _ n C 0 ec?K=0 04-3) 

and 

\D C0€dV+\aCa(e-e*)dV=Q 04-4) 

Premultiplying equation [A-4) by C0
_1 and dividing by the 

total volume VD, we obtain 

e+l/VD\a(e-e*)dV=0 (6)and04-5) 

Appendix B (Volume Integrals in equations (8) and (10)) 

We consider the case of e*. When the direction of the fiber 
OP in Fig. 5 is determined, e* has the unique value and the 
reason is as follows. We consider fibers of the same size, that 

ds = sin0d0d<£ 

Fig. 5 Fiber orientation space 

e 0
+ l ' ^ 

(a) (b) 
Fig. 6 The relation of strain tensors for e and e* between 6 = 0, <j> = 0 
and e = 0, <4 = 0 

is, the Eshelby tensor S is the same for every fiber. Then, the 
stiffness C/ and C0 are constant, and e0' and e' are functions 
of 8 and <$> only because e0 and e are constant. Thus from 
equation (6), e*' or e* is also a function of 8 and </> only, e* = 
e* (0,0). 

Then, the volume integral of e* is 

1/VD\ e*dV=l/VD\a\ *\*(8,4>)>p(8,4>)>VdS (B-V) 
J si JO JO 

where p(8,<j>) is the number of fibers intersecting a unit area of 
the surface of the unit sphere in Fig. 5, Kis the volume of a 
single fiber, and the infinitesimal surface area of the sphere dS 
= sinddddcj). The distribution of fibers is in the region defined 
by 0 < 4> < 2ir and 0 < 8 < a. The volume fraction of fiber/ 
is defined by the following equation. 

f=l/VDlaP(8,<t>)VdS (fl-2) 

By inserting equation (B-2) into equation (B-\), we obtain 

I \ z*[6,<t>)'p(8><l>)'sm8d8d<t> 
Jo Jo 

\/VD\Qe*dV=f. 03-3) 
P(6, 

o Jo 
<t>)smdddd4> 

We consider two types of orientation distribution function: p0 

and p0 cos ad, where a and p0 are the constants. When p(8,<j>) 
= Po> 

r ra sine r21 

\/VD\ e* Dv=f\ dd'inA e*(8,4>)d<t> (5-4) 
Jn Jo 1 — cos a Jo 

When p(8,4>) = p0 cos0, 

• I . 1/KD t*dV 

Jo 

cos a8 • sin 8 

1 

2(1+0) 
( l - c o s ( l + a ) a ) + 

1 

2(1 -a) 
( l - c o s ( l - o ) a ) 
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i t* 
e* (0,</>)tf</> 

(5-5) 

Appendix C (Derivation of Eigenstrain e* (8,<p)) 

We apply equation (6) to the case of Fig. 6(a), where 0 = 0. 
After the transformation from the local to the global system 
we get eft (0,0), e2*2 (0.0), eJ3(0,O), ef2(0,O), ef3(0,O), and 
e23(0,O), which are components of the eigenstrain e*. The 
general case, that is, a fiber indicated by the solid line (Fig. 
6(b)) has the same components of the eigenstrain as those of a 
fiber indicated by the dotted line and represented by the local 
coordinate system X\ x2 x3 . Then 

ef1(0,0)=er1(e,O)cos2« 

+ e*2(0,O)(-2sin0 cos<£) +e2'2(0,O)sin20 

e2*2(0,</>) =ei,(0,O)sin20 

+ e*2(0,O)(2sin0 costf>) +e*2(0,O)cos20 

eM9,4>) =eh(6fi) 

eW,4>) = (ef, (0,0) - e&(ff,0))sin* 

cos 0+e*2(0,O)(cos2<£-sin2</>) 

eh(0,4>) =et3(0,O)cos0-e2*3(0,O) sin0 

e23(0,0) =e*3(0,O)sinc/) + e|3(0,O) cos0 (C-1) 

Appendix D (Unknowns in equation (8)) 

By the use of equation (C-1) we get the integral 1/2 TT J2,' 
efj(6,<t>)d<l> in equations (B-4) and (5-5) as follows, 

l/2(efi(0,O) + e2*2(0,O)) 

eW,0) 
0 

for 

for 

for 

(i,y) = ( l , l )or(2,2) 

(»,/) = (3,3) (D-l) 

(/,y) = (l,2),(l,3),or(2,3) 

Thus the volume integral of eg- gives 

1/KD Jfie*2 rfK= 1/KD Jnef3 rfF= 1/KD foejj c?K=0 (Z»-2) 

The same discussions are applicable to the volume integral of 
e - e* in equation (8). We can conclude that a normal 
component of e along the x{ axis is the same as the one along 
the xz axis, and that shear components are zero. Then 
equation (6) has only two unknowns. 
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Boundary-Layer Effects in 
Composite Laminates: 
Part 1-—Free-Edge Stress Singularities 
A study of boundary-layer stress singularities in multilayered fiber-reinforced 
composite laminates is presented. Based on Lekhnitskii's stress potentials and the 
theory of anisotropic elasticity, formulation of the problem leads to a pair of 
coupled governing partial differential equations (P.D.E.'s). An eigenfunction 
expansion method is developed to obtain the homogeneous solution for the 
governing P.D.E. 's. The order or strength of boundary-layer stress singularity is 
determined by solving the transcendental characteristic equation obtained from the 
homogeneous solution for the problem. Numerical examples of the singular 
strength (or singular eigenvalues) of boundary-layer stresses are given for angle-ply 
and cross-ply composites as well as the cases of more general composite lamination. 

1 Introduction 

The response of a multilayered fiber-reinforced composite 
laminate near its geometric boundaries has been a subject of 
intensive investigation during the last decade. Both ex­
perimental studies and approximate analytical solutions have 
indicated that complex stress states with a rapid change of 
gradients occur along the edges of composite laminates; see, 
for example, references [1-15]. This phenomenon is con­
sidered to result from the presence and interactions of 
geometric discontinuities of the composite and material 
discontinuities through the laminate thickness. The anomaly 
has been found to occur only within a very local region near 
the geometric boundaries of a composite laminate, and is, 
therefore, frequently referred to as a "boundary-layer effect" 
or "free-edge effect"—a problem unique to composite 
laminates and not observed in homogeneous solids in general. 
It has been shown further that the boundary-layer effect is 
three dimensional in nature and not predictable by classical 
lamination theory (C.L.T.) [16, 17]. The boundary-layer 
effect is apparently one of the most fundamental and im­
portant problems in the mechanics and mechanical behavior 
of composite laminates. The high stresses developed in the 
boundary-layer region coupled with the low interlaminar 
strength are certainly of critical significance in aggravating 
the failure of composite materials and structures. For 
example, boundary-layer stresses have been observed to be 
responsible for the initiation and growth of local 
heterogeneous damage in the forms of interlaminar 
(delamination) and intralaminar (transverse cracking) 
fracture in composite laminates under static loading [3, 18]. 
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Discussion on this paper should be addressed to the Editorial Department, 
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They are considered to have even greater effects on the long-
term strength of composite laminates under cyclic fatigue 
loading [19,20]. 

While the significance of boundary-layer effects has long 
been recognized, research progress on this subject has been 
relatively slow. The situation is apparently caused by the 
inherent complexities involved in the problem: the strong 
anisotropy of mechanical properties of each individual ply, 
the abrupt change of material properties through the laminate 
thickness direction, the geometric discontinuity along 
laminate boundaries, and the coupling between in-plane and 
transverse deformations and stresses near the edges of a 
composite laminate. According to Pagano [14], analytical 
studies of this problem to date may be roughly classified into 
two general categories: approximate theories and numerical 
solutions. The first approximate solution for finite-width 
composite laminates was proposed by Puppo, et al. [4] based 
on a laminate model containing anisotropic laminae and 
isotropic shear layers with interlaminar normal stress being 
neglected throughout the laminate. Other approximate 
theories were also attempted to examine the problem such as 
the extension of the higher-order plate theory [21] by Pagano 
[10], the perturbation method by Hsu, et al. [12], and a 
boundary-layer theory by Tang, et al. [11]. Recently, Pagano 
[14, 15] has developed an approximate theory based on 
assumed in-plane stresses and the use of Reissner's variational 
principle. Even though there is no singularity involved in the 
formulation, the approach has certain features significantly 
important in objectively determining detailed laminate stress 
fields. The study of edge stresses in composites by using a 
numerical (finite difference) method was apparently first 
made by Pipes, et al. [5]. Isakson and Levy [6] developed a 
finite-element scheme containing membrane elements, which 
closely resemble the laminate model of Puppo et al. [4]. Later 
finite element studies on this subject by Wang, et al. [13] and 
Herakovich, et al. [18] led to numerical solutions similar to 
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that given by Pipes [5]. Due to the singular nature of the 
problem, a large number of elements, especially through the 
thickness direction, are required in conjunction with a lengthy 
extrapolation procedure in order to achieve satisfactory 
solutions even for a simple two or three-layer laminate. 
Improved finite-element methods by using a more complex 
element stiffness formulation based on Maxwell stress func­
tions [7] and by hybrid-stress elements [22] have been able to 
achieve an expeditious computation with significantly less 
elements. Unfortunately, the refinements do not guarantee 
[23] the convergence and accuracy of the numerical solutions 
because of the singular nature of the boundary-layer stress 
field. That is, with each more refined analysis, numerical 
values of the maximum interlaminar stresses are shown to rise 
with continuously decreasing element size. The quest, ap­
parently, is to show that a stress singularity exists at the edge 
of a composite laminate. 

From a linear elasticity point of view, it is well known that 
stress singularities generally occur at the corners of geometric 
boundaries joining dissimilar materials (see, for example, 
[24-26]). Unfortunately, the search for the order of stress 
singularity in the boundary-layer region of a composite 
laminate containing anisotropic plies has not been successful 
to date, to the authors' knowledge. Since the singular 
boundary-layer stresses are observed to be very localized, the 
precise nature of the boundary-layer effect will not be fully 
understood until the exact order of the stress singularity is 
determined. In this paper, the first in succession, a theoretical 
investigation of the free-edge stress singularity in composite 
laminates is presented. 

In the next section, a mathematical model and basic 
equations for each lamina of the composite are presented. 
Based on the theory of anisotropic elasticity and Lekhnitskii's 
stress potentials [27], a pair of linear governing partial dif­
ferential equations is derived. Associated near-field boundary 
conditions, interface continuity, and end loading conditions 
are also given. The homogeneous solution for the problem is 
obtained in Section 3 by an eigenfunction expansion method. 
A solution procedure used to evaluate the exact order of the 
boundary-layer stress singularity is presented. Commonly 
used cross-ply and general angle-ply composite laminates are 
examined in detail. Numerical examples of edge stress 
singularities for graphite-epoxy composites with various fiber 
orientations are given in Section 4. As will be shown later, the 
free-edge stress singularity in a composite laminate is 
determined explicitly in this paper. It settles, once and for all, 
the previous conjecture of boundary-layer stress singularities 
in composite materials, and provides a rigorous mathematical 
method for determining the exact order of the edge stress 
singularity. This gives a fundamental basis for the 
development of boundary-layer theory in composites. Some 
of the results have been reported earlier in [28]. 

dw dv 
£6 = 7-=^T + ^ ' (2) 

where u, v, and w are the components of displacements. The 
stresses, 07, are defined in an analogous manner in the 
Cartesian coordinate system. 

The composite laminate considered here has a finite width 
and is subjected to surface tractions acting in planes normal to 
the generator of the lateral surface and not varying along the 
generator, i.e., the z-axis (Fig. 1). The composite is assumed 
to be sufficiently long that, in the region far from the ends, 
the end effect is neglected by virtue of Saint Venant's prin­
ciple. Consequently, the stresses in the laminate are in­
dependent of the z-coordinate. The case of a finite-width 
composite laminate subjected to a uniform axial strain, ez = 
e, along the z-axis has been intensively studied by many 
researchers [5-13]. The special case in which stresses and 
displacements are independent of z and ez = 0 corresponds to 
the well-known generalized plane deformation [27]. Under 
these assumptions, the equations of equilibrium without body 
force read 

do, drx dr drx: drK = 0. (3) 
dx by dx dy dx dy 

Following the procedure in [27], it can be shown after some 
mathematical manipulation that the general expressions for 
displacements and the stress component az have the following 
forms: 

« = - ~AiS33z
2-A4yz+U(x,y)+u2z-u3y + u0, (4a) 

v= - — A2S33z
2+AAxz+V(x,y) + w3x-wlz + v0, (4b) 

w=(Axx+A2y+A3)S33z+ W(x,y) + oiyy- u2x+ w0, (4c) 

oz=AlX+A2y+Ai-Sy(jj/S31, (y= 1,2,4,5,6,). (4d) 

The unknown functions, U, V, and W depend on x and y 
only, and can be shown easily to obey the following relations: 

dU 
••Syaj + SniAiX+Arf+A)), (5a) dx 

dV 

~dy~ 

dW 

~~dx 

dW 

~~by~ 

= S2Jaj+S23(A1x+A2y+A3), (5b) 

= S5jcTj + Ss3(Alx+A2y+A3)+A4y, (5c) 

= S4J(Tj+S^(A]x+A2y+A3)-A4x, (5d) 

2 Formulation 

2.1 Basic Equations. Consider a composite laminate 
composed of fiber-reinforced plies with constitutive equations 
described by generalized Hooke's law in contracted notation 
as 

ei = Suoj (ij= 1,2,3,4,5,6), (1) 

where the repeated subscript indicates summation and S,y is 
the compliance tensor. The engineering strains, e,, in (1) are 
defined in a Cartesian coordinate system by 

_ _ du dv dw 
€1 — ex ~ . t2 = ty = - ^ 7 > «3 : 

«4 = 7v: 

dx • 

dw 
~dy~ 

dv 

~dz 

dy 

e$ = 7xzl 

~<=z 

dw 
dx 

+ 

bz 

du 
dz 

Fig. 1 Geometry and coordinates of a free edge in a composite 
laminate 
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dU dV -
~dy~ +-^=S6jaJ+S63(Aix+A2y+A3), (5e) 

where 

Su = Sv-SBSj3/S33, (/, j= 1,2,4,5,6). {5f> 

It is obvious that the constants, u0, v0, vv0, and co, (/' = 1,2,3) 
in equations (4«-4d) characterize the rigid-body translation 
and rotation of the solid. Ax and A2 represent the bending of 
the laminate in the x-z and y-z planes. A3 characterizes the 
uniform axial extension of the composite laminate, and A4, 
the relative angle of rotation about the z-axis. 

2.2 Governing Partial Differential Equations. In­
troducing Lekhnitskii's stress potentials, F{x,y) and \j/(x,y) 
[27], such that 

d2F 

"dy2 

dy ' 

d2F d2F 

dxdy' 
(6) 

T « - a „ • T « - d x > 

one can show that the equations of equilibrium are satisfied 
identically. Eliminating U and V from equations (5a), {5b), 
and (5e) and W from equations (5c) and (5rf) by dif­
ferentiation, we obtain the following system of governing 
partial differential equations for the problem: 

'L)F+L2\P= -2A4 +AlS34 -A2S35, 

L4F+L3^ = 0, 

{la) 

{lb) 

where L2, L3, and L4 are linear differential operators defined 
as 

L2 - S44 —-j- — .̂045 
d2 - d2 d2 

— 2Sas — f" S55 —-j , 
dxdy dy2 

P_ . .« a . a
3 

dx3 

(7c) 

a3 = a3 

dx2 dy 

— {Sl4 + S56) 
dxdy 

+ SV 
By'3 {id) 

LA — ST 
dx" 

-2S 2 ( 
dx' dy 

+ {2Sl2 + S66) 
a4 

dx2dy2 

, e d4 - 9" 

'2Sl6d~xW+SnW 
(7e) 

2.3 Boundary and End Conditions. Assuming that the 
edges of a composite laminate, dBF, are traction free and that 
the interface of the /nth and {m + l)th plies is a straight line 
meeting the traction-free edge at a right angle (Fig. 1), we can 
obtain the following boundary conditions along dBF: 

°x = Txy=Txz=0. (8) 

The conditions at the ends of the composite laminate may 
have the forms from the statically equivalent loads as 

\\B
Txzdxdy = 0, \\B TyzdX dy = °> \\B

azdxdy = Pz' 

II azydx dy=Mx, II azxdx dy=My, 

\ \ B ^y^" T^y)dx dy=M" (9) 

where the integrals are taken over the entire area B of the 
cross section, and Pz, Mx, My, and M, are the applied force, 

bending moments, and twisting moment acting on the ends of 
the composite, respectively. 

2.4 Interface Continuity Conditions. Consider a portion 
of the laminate cross section composed of the wth and 
(m + l)th fiber-reinforced laminae, as shown in Fig. 1. 
Assuming that the plies are perfectly bonded along the in­
terface dBj, one can immediately establish the continuity 
conditions of the stresses and displacements along the in­
terface as the following: 

ox
m)nx

m)+TxpnW = -<7<"' + 1>«*"'+'> -Ti;n + 1»«j'" + 1>, (10a) 

xp nx
m) + oy"'i ny

m) = - T | ; " + V " + 1 ) - t f j ' " + l) <" + 1), (10ft) •xy 

r < m > / 2 < m > + T < l " > / 2 < " ' ) : 
(m + l ) n ( m + l ) _ T ( m + l ) n ( m + l ) 

' xz "x ' 'yz '*y 

and 
M(m) = u ( ' «+ l ) ) v(m) — vU» + \) w (m)_w (m+l) 

(JOc) 

{I0d-f) 

where the superscripts denote the /nth and {m + l)th plies in a 
composite laminate, and nx and ny are components of unit 
outward normal to the interface. 

3 Homogeneous Solution and Free-Edge Stress 
Singularity 

The governing equations, (7a) and {lb), are coupled linear 
partial differential equations with constant coefficients 
related to the anisotropic elastic constants of each individual 
lamina. With the aid of aforementioned near-field boundary 
conditions and interface continuity conditions, the structure 
of the homogeneous solution for the governing P.D.E.'s can 
be determined easily. The homogeneous boundary conditions 
and interface continuity conditions also provide important 
information for determining the strength or the order of the 
free-edge stress singularity in a composite laminate, which is 
the major concern in this paper. 

According to Lekhnitskii [27], the homogeneous solution 
for the governing partial differential equations has the general 
form as 

6 6 
F<x,y)= J^Fk{x+^ky), ^{x,y)= £ ) r,kF'k(x+ nky), 

t = l k=\ 

(lla.ft) 

where the prime (') in equation (lift) denotes differentiation 
of the function Fk (x + ixky) with respect to its argument, and 
the coefficients nk are the roots of the following algebraic 
characteristic equation: 

I4{^)12{^)-12
3{^) = 0, (12a) 

and 

1k=-hbk)/hbk) = -hbk)/h<j>Lk), (12ft) 

where 

l2(ji) = Si5^-2S„n + SA4, (12c) 

l3{^) = Sl5^-{Sl4 + S56)fi
2+{S25+S46)^-S24, {12d) 

l4{tj) = Sn^-2Sl6ti
3+{2Sl2 + S66)li

2-2S26li + S22. (12e) 

It can be shown that equation (12a) cannot have a real root 
(thus, nk have to appear as complex conjugates) and that Fk 

are analytic functions of the complex variables Zk = x + nky 
= r{eie + \ke~ie)/{l + X,) with X, =(1 + / > t ) / ( l - />,) 
and r and 6 being components of polar coordinates. Sub­
stituting the expressions of F(x,y) and i>{x,y), equations (11a) 
and (lift), into equations (6a-e), the homogeneous solution 
for stresses 07 may be expressed in terms of Fk {Zk) as 

°xh)=t,AF'azk), (13a) 
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s homogeneous boundary conditions and interface continuity 
ayh) = E F'k'(Zk), (136) conditions. This leads to a standard eigenvalue problem for 

*=i determining the values of 5. It is noted that 5 generally ap-
« pears as a set of complex conjugates, which enable us to make 

^n !=~ Lj^kF'ktZk)' (13c) equations (16) and (17) real functions by superposition. 
*=' Furthermore, the value of 5 is required to satisfy the condition 

,/,) V p „ l 7 > ,.--. Re[8]>-1 (18) T*z = L Mk^kiZk), (13«0 
*=i to ensure the finiteness of displacement components at the 

6 origin, where Re represents the real part of 8. 
Tvp = - E iikFk(Zk). (13e) To expedite further developments, we transform the stress 

k=\ and displacement components from Cartesian coordinates to 
„, „ ,. , . . , , polar coordinates. Thus, we have 
The expressions for displacement components may be ob- ^ 
tained directly from equations (5), (7), and (13) with omission 3 
of the terms that are to be included in the particular solution, om = 2J (CkHlkZk + Ck+}HlkZk), (19a) 

k=l 
3 

««*» = 

„<*> = 

w<"> = 

= YjPkFk(Zk), 
k=\ 

6 

= TtikFk(zk), 

6 
= E tkFk(Zk), 

{Ua) rb= £ (CkH2kZi + Ck+3H2kZi), (196) 
k=[ 

{Ub) Ter= E (CkHMZ*k + Ck+3HMZi), (19c) 
A r = l 

3 
( 1 4 C ) *„• = £ (CkH,kZi + Ck+1HAkZi), (19d) 

where " *=i 

PAr=-Si i /x | + S 1 2 - S ,
1 4 r ; < . + S 1 5 T ) < . ^ A . - S 1 6 / X A . , ( 1 4 d ) _ V / / - r / V « _ L ^ r> 7S-, 

_ _ Trz~ Lj \l^k"skZ'k + ,-k + 3MSk^'k)' 
<lk = S12Hk + S22/Hk-S24Vk/l*k + S25Vk-S26> U4*?) k=\ 

(lite) 

'* = Sufik + S2A/jxk -S44rik/nk + Si5rjk - S46. (14/) 

We now choose the form of Fk(Z k) as ur= E [CkH6kZl+1/(8 + l) + Ck+3H6kZ
6
k
+1/(8 + 1)], (20a) 

Fk(Zk)=CkZi+2/[(8+l)(8 + 2)], (15) *;* 

where Ck and 5 are arbitrary complex constants to be Ug = J^ [CkHlkZ
6
k
+1/(8+l) + Ck+JHuZ

5
k
+l/(8 +1)], (206) 

determined later. Substituting equation (15) into equations k=\ 
(13) and (14) gives 3 

3 uz=^lCkHuZi+l/(8+l) + Ck+,HskZi+[/(8+l)], (20c) 
4h) = E [Ckn

2
kZl + Ck+3jil Zf], (16a) *=> 

*= l where Zk are defined in polar coordinates, and Hjk (j = 
3 1,2, . . . 8) are functions of rjk, \ik, pk, qk, tk, and 6 given in 

°{yh)= T,[CkZt + Ck+iZ6
k], (166) Appendix 1. . 

>• w * * K+J *J> T h e traction-free boundary conditions, equations (8a-c), * = i 
along the free edges of the mth and (m + l)th plies in polar 

3 coordinates read 
i * ' = - E [C*ij*Zi + C t + 3 ^ Zf], (16c) 

k=\ 

3 

* ) = 4 r ) = r < 9 ' " » = 0 on 0 = y , (21a) 

T « ' = E lCkVkHkZk + Ck+3 t}k p.kZ
6
k], (16c() (7^+i) = T ^ + i)=7. ((m+i)=o o n e=_JL. (216) 

K= 1 2 

3 The continuity conditions, equations (\0a-f), along the ply 
W = - E [C*^Zjf + C, + 3 fik Z\\, (16c) interface give 

*=• [*),4r)>^",>,"r
(",),"im),"iffl)) 

and = ( a ^ + 1),T^ + ",Tr
(
e'"

+1),Wr(
m+1>,^'" + 1»,Wi'"+1)) 

" (* ) = E [ C * P * Z i + 1 + C t + j p t Z | + 1 ] / ( 8 + l ) , (Ha) o n * = 0- ( 2 1 c ) 

*=i More explicitly, the homogeneous boundary conditions, 
3 equations (21a,6), and the continuity conditions, equation 

(A) = E \PkqkZ\^ +Ck+igkZi+l]/(8+ 1), (176) (21c), provides v 
k=\ J_ 

3 Efa'"'//<f>(-)k'«>(^)l 
™W = E [CktkZi+i+Ck+3ikZl+l]/(8+l), (17c) *-i X 2 / l V 2 / J 

where the overbar denotes the complex conjugate of the +Ck'1\Hi
k
m) ( — ) Q£m> ( — ) j =0, (22a) 

associated quantity. For convenience, we drop the superscript \ 2 / L \ 2 / J J 
h associated withthe aforementioned homogeneous solutions 3 . , 
for stresses and displacements in this paper. Y\ j Ck

m+x)H\k
m+l'l( ~ ) r o | m + 1 ) ( ~% )1 

The homogeneous solutions are required to satisfy the *=i ^ \ 2 / L \ 2 / J 

544/Vol. 49, SEPTEMBER 1982 Transactions of the AS ME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///0a-f


+ Ctttl)H}r,)(-^)[W"+1)(^L)] ]=0, (226) 

3 

E l[clm)r^ + cffir<f>]-[cim+1 'r<f+1> 
* = i 

+ C#J1>f«r1>]}=0, (/'= 1,2,3; r= 1,2,3,4,5,6), (22c) 

where i/yVt (7r/2) and //,* ( — 7r/2) are values of Hy evaluated 
at 6 = w/2 and 6 = — TT/2, respectively; Qk (6) are defined as 

0*(fl) = (e" + \K?-")/(l + \ t ) , (23) 
and 

r\* = i,r2t = '7*,r3i=A**,r4*: =Pk>r5k=Qk,r6k = tk. (24) 
Solving for Ck

m) from equation (22c) in terms of Ck
m + i), one 

finds 

a»>=flfaCi'»+,> (*,.*= 1,2, . . .6). (25) 
Substituting equation (25) into equation (22a) gives 

+«);-> ( y )«„.J»[n(-' ( | ) ] ' ) ) -o. (26) 

Equations (22b) and (26) constitute a system of homogeneous 
linear algebraic equations in Cj'"+1). The existence of a 
nontrival solution for Ck

m+X) requires vanishing of the 
coefficient determinant 

IA(5)I =0, (27) 

where A (5) is a 6 x 6 matrix involving 5 in a transcendental 
form. Thus, equation (27) is a transcendental characteristic 
equation for the standard eigenvalue problem. It has a very 
complicated structure as can be seen from the coefficients of 
Ck

m + I) in equations (22) and (26), and the detailed expression 
for A (6) is not given here. To obtain solutions for the 
characteristic equation requires the employment of standard 
numerical techniques such as Muller's method [29] with the 
aid of a digital computer. The eigenvalues obtained from the 
numerical solution of equation (27) give important in­
formation concerning the behavior of the edge stress and 
displacement. Due to positive definiteness of strain energy of 
the elastic body and the argument given in equation (18), the 
eigenvalues, 5„, bounded by 

-KRe[6„}<0, (28) 
characterize the order of stress singularity in the boundary 
layer. Thus, for small values of r, the asymptotic stresses are 
proportional to rRel6^, provided that <5„ satisfy equation (28). 

w = (Aix+A2y+Ai)Si3z + o)ly-o}2x+w0, (29c) 

(jz=Alx+A2y+A3-(S3lcx + S32ay)/S33. (29d) 

Following the same procedure shown in the preceding 
section, the governing partial differential equations are 
uncoupled and may be written as 

L4F(x,y)=0, 

where L4 is defined as before 

to4 + (2SI2 + S66) dx2dy2 +S[] dy4 

(30a) 

(30b) 

The homogeneous solution for equation (30a) may be ob­
tained in a simplier form as 

F(x,y)= I > * (*+/**». (31) 

where fik are the roots of the following algebraic equation: 
/4(^=S l l M

4+(2S1 2 + S66)^ + S22=0. (32) 

The homogeneous stress and displacement solutions are then 
given as 

4 4 

°*= E dFk(x+tiky), ay=Yt Fk(x+nky), 
k=\ * = 1 

4 
T*y = ~ E »kFk(x + nky), (33) 

k=\ 

4 

U(x,y)= TtPkF"k(x + ixky), 

4 

WW) = E lKF'k ix+My) > (34) 
k=\ 

where 

Pk = S\it*l + Si2< Qk = S2i^k + S22/nk. (35) 

We shall choose the form of Fk (x,y) as 
4 

Fk(Zk)= £ Q Z £ + 2 / [ ( 5 + 1 ) ( 5 + 2)], (36) 

where Ck and 5 are, as before, arbitrary complex constants to 
be determined later. Imposing the homogeneous traction-free 
boundary conditions along the free edges and the continuity 
condition along the ply interface, one can proceed with the 
same procedure outlined in the preceding section. Then, the 
eigenvalues and eigenfunctions can be determined in a manner 
similar to those in the previous cases. 

4 Degenerated Cases—Cross-Ply Composite 
Laminates 

In the case of a cross-ply composite laminate, i.e., laminae 
with 0 and 90 deg fiber orientations only, the stresses ax, ay, 
rxy are uncoupled with TXZ and ryz by virtue of the material 
symmetry in each lamina. For illustrative purposes, we 
restrict our attention to the problem of composite laminates 
under stretching and/or bending; thus, we shall concentrate 
our study on the four stress components, ax, ay, rxy, az. The 
general expressions for displacements and az may be sim­
plified as 

u=- — A,Snz
2 + U(x,y) +o}2z-co3y + u0, (29a) 

— A2S33z
2 + V(x,y) + u^-oiiZ + Vo, (29b) 

5 Numerical Examples 

From the structure of the governing partial differential 
equations and the homogeneous solution for the problem, it is 
clearly seen that the asymptotic stress and strain fields in the 
vicinity of the edge are governed by the singular terms with 
the strength of stress singularity 5„ determined from the 
eigenvalue analysis. Examining the structure of equations 
(22b) and (26), we easily find that the eigenvalue solution and, 
therefore, the edge stress singularity is related to laminar 
constitutive properties and fiber orientations of adjacent plies 
only. 

Consider a composite laminate with ply properties typical 
of a high-modulus graphite-epoxy system [5]: 

£ L = 2 0 x l 0 6 p s i , £>=.&. = 2.1 x l0 6 ps i , 

G,.T — G,, = G7 = 0.85xl0 6psi , (37) 

"LTZ "Tz- ••"LZ = 0 . 2 1 , 
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Table 1 Roots /iK of characteristic equations for graphite-
epoxy composite system with fiber orientation 0* 

Ml,2 H3.4 M 5,6 

15° ±0.88782 i ±1.10301 1 ±1.56776 i 

30° ±0.86222 i ±1.06956 1 ±2.53630 1 

45° ±0.80902 i ±1.03503 i ±3.44438 1 

60° ±0.73316 i ±1.01323 i ±4.15870 i 

75° ±0.66324 1 ±1.00294 i ±4.61201 1 

*0 is the angle measured counterclockwise from the positive 
z-axis to the fiber direction 

Table 2 First 12 noninteger eigenvalues* for free-edge stress 
solutions in [± 45 deg] graphite-epoxy composite 

-2.5575658 E-2 

8.8147184 E-l + i 2.3400497 E-l 

1.5115263 E 0 + i 7.9281732 E-l 

2.3389433 E 0 + i 1.1158402 E 0 

3.0913532 E O i i 1.7360464 E 0 

3.9520023 E 0 + i 2.0287146 E 0 

4.7440929 E O i i 2.5683871 E 0 

5.6021457 E O i i 2.8588510 E 0 

6.3962635 E O i i 3.3652707 E 0 

7.2565174 E O i i 3.6575937 E 0 

8.0497237 E O i i 4.1479983 E 0 

8.9120567 E O i i 4.4407609 E 0 

A 
Integers (0,1,2,...n) are always eigenvalues obtained from Eq 27 

where the subscripts, L, T, and z refer to the fiber, transverse, 
and thickness directions of an individual ply, respectively. 
The influence of material properties of composite plies on the 
boundary-layer stresses may be related to the roots pk of the 
characteristic equation, equation (12a). With the lamina 
properties given in the foregoing, the roots of the charac­
teristic equation for the graphite-epoxy laminae of different 
fiber orientations 9 are shown in Table 1. It appears that all 
the six roots nk are purely imaginary by virtue of the material 
properties in equation (37). Furthermore, the nk for the + 9 
ply are the same as those for the - 9 ply due to the in-plane 
rotation of fiber directions. 

Based on the material constants, fik>Pk><J[k, and tk obtained 
for the graphite-epoxy, the transcendental characteristic 
equation, equation (27), can be solved numerically to provide 
eigenvalues for the homogeneous solution. For illustration, 
the first 12 noninteger eigenvalues associated with the stress 
solution for the free edge of a [±45 deg] graphite-epoxy 
composite are shown in Table 2. Eigenvalues 5„ smaller than 
- 1 are excluded for the reasons given in the preceding sec­
tion. It is seen that there exists one and only one eigenvalue, 
i.e., 5[ = -0.02557, which satisfies the required constraint 
condition of equation (28) for the [±45 deg] laminate. The 
eigenvalue 6̂  is the strength (or the order) of free-edge or 
boundary-layer stress singularity, which is of major concern 
in this study. In fact, only one 8„ which meets equation (28) is 
observed in each case of all of the composites with various 
fiber orientations studied in the present research. Higher-
order eigenvalues, occurring as integers (including zero) and 
complex conjugates, always exist and should be included in 

Fig. 2 Strength of boundary-layer stress singularity in [±0] graphite-
epoxy composites 

determining the complete solution when remote boundary and 
end conditions are matched by an appropriate method. 

For the commonly used [±9] angle-ply graphite-epoxy 
composite, as anticipated, the order of boundary-layer stress 
singularity is a function of the fiber orientation 9. Numerical 
results of 5[ for each of the [±9] fiber composites are 
calculated and shown in a graphic form in Fig. 2. It is clearly 
seen from the figure that the free edge of a composite 
laminate having approximately [±51 deg] fiber orientations 
possesses the strongest boundary-layer stress singularity. As 
the 9 changes to either direction, the order of the stress 
singularity 8\ decreases rapidly. Its value converges to zero 
for the cases of 9 = 0 and 90 deg, since the two adjacent plies 
become identical with orthotropic elastic properties. 

In the case of a composite edge associated with plies of 
more general fiber orientations instead of the symmetric 
[ + 9 / — 9] configuration, solutions for the eigenvalues S„ are 
also obtained. To illustrate the nature of the eigenvalues for 
this situation, free-edge stress singularities associated with [30 
deg/9] fiber orientations in graphite-epoxy composites are 
determined, where 9 varies from 7.5 to 82.5 deg. The first few 
noninteger eigenvalues for various 9's are given in Table 3. 
The integers (including zero) are also eigenvalues, but not 
included in the Table. The [30 deg/30 deg] graphite-epoxy 
composite is not included either since the two plies are 
identical. Again, for each of the [30 deg/9] composite 
laminates there exist only one 8n which meets the requirement 
of equation (28) and gives the dominant edge stress 
singularity. 

The degenerated cases of cross-ply composite laminates 
discussed in the preceding section are also investigated. The 
eigenvalues for the boundary-layer stresses in a graphite-
epoxy composite with [0/90 deg] lamination are given in 
Table 4. The dominant stress singularity in the present [0/90 
deg] case has an order of magnitude similar to those in [± 9] 
angle-ply composites and in more general [9!/92] laminates. 
It is noted that the orders of the boundary-layer stress 
singularity for both angle-ply and cross-ply composites are 
generally much weaker than those associated with other 
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Table 3 First five noninteger eigenvalues* for free-edge 
stresses associated with [30 deg/0] graphite-epoxy composites 

7.5° 

15° 

22.5° 

30° 

37.5° 

45° 

52.5° 

60° 

67.5° 

75° 

82.5° 

-2.792991 E-3 

-1.986115 E-3 

-6.725306 E-4 

-9.077774 E-4 

-3.771122 E-3 

-8.292252 E-3 

-1.367358 E-2 

-1.897304 E-2 

-2.343868 E-2 

-2.668523 E-2 

9.887419 E-l 
±1 8.435637 E-2 

9.943591 E-l 
±1 6.113543 E-2 

9.989196 E-l 
±i 2.920556 E-2 

1.001306 E 0 
il 5.180632 E-3 

9.624687 E-l 

9.291682 E-l 

9.010723 E-l 

8.810614 E-l 

8.719040 E-l 

8.778236 E-l 

-S3 

1.930568 E 0 
±1 3.319540 E-l 

1.949288 E 0 
±i 2.882098 E-l 

1.989893 E 0 
±i 1.661871 E-l 

1.984327 E 0 

1.061916 E 0 

1.168571 E 0 

1.354059 E 0 
±i 1.864060 E-l 

1.321793 E 0 
±1 3.224246 E-l 

1.303673 E 0 
±i 3.820090 E-l 

1.310388 E 0 
+1 3.866969 E-l 

<i4 

3.095930 E 0 
tl 8.103959 E-2 

2.726071 E 0 

2.649382 E 0 

2.182540 E 0 
1.910473 E-l 

1.821684 E 0 

1.621302 E 0 

1.825695 E 0 
+i 6.942274 E-l 

1.773577 E 0 
±1 7.358765 E-l 

1.743059 E 0 
±1 7.550141 E-l 

1.725286 E 0 
±1 7.501905 E-l 

65 

862698 E 0 
204410 E-l 

441129 E 0 
183480 E-l 

3.342300 E 0 
±1 5.276117 E-l 

.204760 

.009168 E-l 

021985 
926242 E-l 

906136 E 0 
212519 E-l 

3.518516 E 0 
±1 1.413627 E 0 

3.488780 E 0 
±1 1.428440 E 0 

3.485411 E 0 
±1 1.425960 E 0 

3.513604 E 0 
±i 1.387356 E 0 

Integers, 0,1,2 n, are also eigenvalues. 

Table 4 First 12 noninteger eigenvalues for free-edge stresses 
in cross-ply graphite-epoxy composite* 

-3.33888 E-2 

8.80268 E-l 

1.41674 E 0 ± i 3.93303 E-l 

1.65345 E 0 ± i 6.85523 E-l 

2.83449 E 0 ± 1 1.76219 E 0 

3.75294 E 0 ± i 1.1853E E 0 

4.29235 E 0 ± i 2.66884 E 0 

5.70726 E 0 ± 1 3.57190 E 0 

5.79010 E 0 + i 1.52461 E 0 

7.12293 E 0 ± i 4.48145 E 0 

7.81068 E 0 ± i 1.76401 E 0 

Integers, 0,1,2,3..., are also eigenvalues 

typical singular elastostatic problems such as the elastic crack 
problem. The relatively weak singularity for the laminate edge 
stresses introduces several unique features as well as dif­
ficulties for the evaluation of boundary-layer effects in 
composites, which are discussed in [30]. 

6 Summary and Conclusions 

A study of boundary-layer stress singularities in both angle-
ply and cross-ply composite laminates has been presented. 
Formulation of the problem is based on Lekhnitskii's 
complex-variable stress functions and basic relationships in 
the anisotropic elasticity theory. An eigenfunction expansion 

method has been developed to obtain the homogeneous 
solution for the coupled governing partial differential 
equations for the problem. Angle-ply and cross-ply com­
posites as well as more general laminates have been studied. 
The strength of boundary-layer stress singularity for each case 
has been determined to illustrate the fundamental nature of 
the edge effects in composite materials. 

Based on the information obtained, the following con­
clusions may be reached: 

1. Boundary-layer or free-edge stresses in a composite 
laminate are generally singular in nature due to the 
geometric and material discontinuities. 

2. The order of boundary-layer stress singularity can be 
determined by solving the transcendental characteristic 
equation obtained from the homogeneous solution for 
the governing partial differential equations. 

3. The boundary-layer stress singularity depends only on 
material elastic constants and fiber orientations of 
adjacent plies in a composite laminate. 

4. For angle-ply and cross-ply composites as well as more 
general laminates the order of boundary-layer stress 
singularity is very weak in general. In a graphite-epoxy 
system, for example, 6] is much smaller than other 
kinds of singular stress problems in elastostatics such 
as the elastic crack problem. 
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A P P E N D I X I 

Expressions for Hy (0) in equations (19) and (20) 

Hik = (/-̂ sinfl + cosf?)2 

H2k= -t}k(it.ksmO + c.osff) 

Hu= - (/^sinfl + cosflX/^cosfl-sinfl) 

H*k = (fts-cos^-sin^)2 

H$k=rlk (iikcosd-sm8) 

H(,k =pkcosd + qksmd 

Hik = —pksmd + qkcosd 

H«k = tk 
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Boundary-Layer Effects in 
Composite Laminates: 
Part 2—Free-Edge Stress Solutions and Basic 
Characteristics 
Boundary-layer effects in composite laminates are considered. Based on the theory 
of anisotropic elasticity and Lekhnitskii's complex-variable stress function form­
ulation, the exact laminate elasticity solution is derived for the problem. The 
solution contains the exact boundary-layer stress singularity and higher-order terms 
in eigenfunction series. Convergence and accuracy of the solution are studied, and 
present results are compared with existing approximate numerical solutions. For 
illustrative purposes, the complete solution for a symmetric [45/— 45/ —45/45] 
graphite-epoxy composite is presented to elucidate fundamental characteristics of 
the boundary-layer effects. Detailed stress distributions in the boundary-layer 
region are determined. Boundary-layer stress intensity factors are introduced to 
characterize the singular edge-stress field. Physical significance of the parameters is 
discussed in the realm of fracture initiation and failure modes in the laminate 
boundary region. 

1 Introduction 

In the absence of complete and accurate information on the 
boundary-layer field, some of the most fundamental 
problems involved in simple mechanical testing and 
characterization of basic material properties and behavior of 
composite laminates still remain controversial and unresolved 
[1-7]. More complex problems such as fracture initiation, 
failure modes, and strength and stiffness degradations under 
static and cyclic fatigue loading conditions would not be 
tractable without a thorough knowledge of the complex state 
of stress and deformation in the composite laminate, 
especially in the boundary-layer region. Thus it is imperative 
to establish a rigorous, accurate, and complete solution for 
the boundary-layer problem in the current development of the 
composite material technology and in advancing more reliable 
design and analyses of composite structures. 

In an associated paper [8], a study of the fundamental 
nature of the boundary-layer effect in composite laminates 
has been formulated on the basis of the theory of anisotropic 
elasticity. The basic structure of the boundary-layer field 
solution has been obtained by using Lekhnitskii's complex-
variable stress potentials [9]. The boundary-layer stress field 
has been found to be singular at composite laminate edges, 
and the exact order or strength of the boundary-layer stress 
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singularity has been determined by the use of an eigenfunction 
expansion method. The formulation and the homogeneous 
solution given in reference [8] deal only with the local 
geometry and lamination variables at the free edge. Complete 
solutions for the boundary-layer stress and deformation 
require a full consideration of the overall composite laminate 
geometry, lamination and material variables, remote 
boundary conditions, and end loading conditions. In this 
paper, the second in succession, the complete solution for the 
boundary-layer problem is presented, and fundamental 
characteristics associated with the boundary-layer stress field 
are studied in detail. 

Specific objectives of this paper are directed to (1) deter­
mine the particular solution for a composite laminate with 
given lamination variables and loading conditions, (2) present 
complete solutions for symmetric composite laminates to 
illustrate fundamental characteristics of the boundary-layer 
stress field, and (3) introduce basic physical parameters, e.g., 
the boundary-layer stress intensity factors, which provide a 
practical measure of the severity of the singular stress field 
and its influence on failure modes and mechanics in com­
posite materials. 

In the next section, general solutions for boundary-layer 
stress and deformation fields in composite laminates are 
constructed from the homogeneous solution in the form of 
eigenfunction series and a properly selected particular 
solution in polynomials. A collocation method is used to 
determine free constants in the truncated series solution. To 
illustrate the solution method, commonly used symmetric 
composite systems are considered in Section 3. Further 
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simplifications and the detailed solution scheme are presented 
for both symmetric angle-ply and cross-ply composites. Based 
on the complete solution obtained, the asymptotic solution 
structure of the boundary-layer stress field is identified, and 
important physical parameters are introduced in Section 4. 
Due to space limitation, only the complete solution for a 
[45/ - 45/ - 45/45] graphite-epoxy composite under uniform 
axial strain is presented in Section 5 for illustration and 
comparison. A study of solution accuracy and convergence is 
also given. Characteristics of the boundary-layer stress field 
in composite laminates are determined. A more appropriate 
definition of boundary-layer width is introduced on the basis 
of strain energy density consideration. Influences of 
geometric and lamination variables, environmental con­
ditions, and loading modes on the boundary-layer stress field 
are reported in future papers. 

2 General Solution 

2.1 Homogeneous Solution. Once the eigenvalues 8n are 
determined, the relationships among C„'s can be established 
from equations (19)-(20) in reference [8]. Thus homogeneous 
solutions for the stress and displacement fields have the 
following expressions: 

n = l v * = l J 

KikzH, (la) 

3 

. 11=1 v ( t = l 

+ bik+3)„ru+i)kzk
5"+[)]/(8„ + i)} 

+ Ec2nIm{£[bknru+3)kZl«n + » 
n = l ^Ar=l 

rv3)ytz^+1>]/(5„ + i)], 

(i=l,2,4,5,6; j= 1,2,3), (lb) 

where bk„ are known constants related to the eigenvectors; cm 

are real constants to be determined, and Alk = p2., A2k = 1, 
A*k = —i)k, A5k = \>.kt\k, A6k = —ji.k, Y4k = pk, T5k = qk, 
andr6yt = tk with the constants pk, i\k, pk, qk, tk being 
defined in reference [8]. For the convenience of the later 
development, the homogeneous solutions, equations (la, b), 
are expressed in simpler forms as 

<*/*' = I X / A . (*»y; «o) (' = 1.2,4,5,6), (2a) 
n 

«/*' = D dn 8jn (x,y, 5„) (j = 1,2,3), (2b) 
n 

where fln and gjn denote the known eigenfunctions 
corresponding to the nth eigenvalue S„; the unknowns d„ are 
real constants to be determined in conjunction with a par­
ticular solution through remote boundary and end conditions. 
Generally, there are infinite number of eigenvalues 5„ so that 
the number of unknown constants d„ is infinite. Proper 
truncation of the infinite eigenfunction series is needed to 
approximate the edge-field solution. 

2.2 Particular Solution. The particular solution for the 
governing partial differential equations in [8] may be sought 
in the form of polynomials, 
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F(p) (x,y) =aix
3 +a2x

2y + a3xy2 +a4y
3 +a5x

2 +a6xy + a7y
2, 

(3a) 

Vp) (x,y)=asx
2+a9xy + al0y

2+anx+al2y, (3b) 

where a, are arbitrary constants to be determined later. The 
particular solutions for stress and displacement in each ply 
can be shown to have the general forms as follows: 

<jjp) =2a3x+6a4y + 2alt (4a) 

a(
y
p) =6aiX+2a2y + 2a5, (4b) 

TJf =-2agX-a9y-alu (4c) 

r{xP) =a9x+2al0y + al2, (4d) 

r#> =-2a2x-2a3y-a6, (4e) 

M(/» = _ -A{S33z
2-A4yz+U^ (x,y) +o,2z-<»3y + u0,(5a) 

v(P) = - -A2S33z
2 +A4xz+ V{p) (x,y) + w3x-wlz+ v0, (5b) 

w"" = (A{x+A2y+A3)S33z+ W-p) (x,y) +u1y-u2x+w0, 

(5c) 

where 

UW = ±Gnx
2 + Gl2xy + Gl3x+ l- (G62-G21)y

2 + -G63y, 

(6a) 

V<» =G2lxy+1-G22y
2 + G23y+ i (G61 -Gn)x

2 + l-G63x, 

(6b) 

W{p) = \G5lx
2 + (G52 +A4)xy + G53x+ l-G42y

2 + G43y, (6c) 

in which Gy are related to the lamina stiffness matrix Sy and 
the constants a, and Aj by 

Gji =2Sjia3+6Sj2a1-2Sj4as+Sj5a9-2Sj6a2+SjiAu 

(la) 
Gj2=6Sna4 +2SJ2a2-Sj4a9+2Sj5a]0-2Sj6a3 +Sj3A2, 

(lb) 

Gji =25,1 a7 +2Sj2a5 -§j4an +SJ5an-SJ6a6+Sj3A3, 

(7c) 

( /= 1,2,4,5,6). 

The particular solutions a\p) and u\p) given by equations 
(4) and (5) are required to satisfy the governing partial dif­
ferential equations for the problem. It is clearly seen that 
equation (lb) in [8] is satisfied identically and that equation 
(la) in [8] leads to the following relationship for each ply: 

-65 2 4 a , +2(S25+S46)a2-2(Su+S56)a3+6S15a4+2S44as 

-2S45a9+2S55al0 = -2A4 +AiS34 -A2S35. (8) 

Furthermore, equations (4) and (5) are also required to satisfy 
near-field traction-free boundary conditions and interface 
continuity conditions of the adjacent kth and (k+ l)th plies. 
These lead to the establishment of the following relationships: 

a,C")=0, 0 = 3,4,6,7,10,12; m = k,k+l), (9) 
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1 
0&» +«J*>: G^+»+<of+1>, G!f»=Gif+1», 

* ) = H I * + D Mi*' = 4 

ajk)=ajk+nt (/= 1,2,5,8,11); (10) 

y4/«S#>=/4/*+"S#+», (1 = 1,2,3); ^i*>=^i*+1>, 

(11) 

G|f»=G|f+l>,Gi*>=G|*+I ',Gif»-G{J>=G4*+1 '-G|f+», 

(12) 

(13) 

(14) 

(15) 

Examining equations (4), (5), and (8)-(15), we observe that 
for the kth and (k + l)th plies, there exist 44 unknowns (in­
cluding rigid-body translation and rotation) related by 34 
linear algebraic equations. After solving these algebraic 
equations, there remain 10 unknowns which may be deter­
mined in conjunction with the homogeneous solution by using 
the end conditions and remaining remote boundary conditions 
other than,those along the traction-free edges. 

The sum of the homogenous and particular solutions 
satisfies identically the boundary conditions at free-edge 
surfaces. However, along lateral surfaces (dB — BBF) other 
than the free edges, there appear residual tractions. The free 
constants in the homogeneous solution permit matching the 
complete stress solution (a/'" + ofp)) with the boundary 
conditions along these surfaces through the following 
relationships: 

a <A) nx + T<*> w„ = - a[Pl nr - T<?> 

T$)nx + <s^ny=-T%>nx ty> 
xy fly* 

rg> nx + T#> n, = - rjf > nx - r^ ny. 

(16a) 

(166) 

(16c) 

As the eigenfunctions are nonorthogonal, equations (16a-c) 
may be satisfied in the least-square sense by truncating the 
infinite series of the eigenfunctions through a boundary 
collocation method, which is discussed in Section 5. 

2.3 Complete Solution. Now the complete elasticity 
solutions for the boundary-layer field in a composite laminate 
can be written as 

ff, = ff/*>+ff/"> (/= 1,2,3,4,5,6), (17a) 

«,=«/*>-Hi/" (/= 1,2,3), (176) 

where expressions for o{
z
h) and a[p) may be obtained as 

a^ = -Sva}^/S33, (17c) 

<7<"> = (AlX+A2y+A3)-Sy aW/S33 0 = 1,2,4,5,6). 

(lid) 

3 Simplifications and Solutions for Symmetric 
Composite Laminates Under Uniform Axial Extension 

The formulation and solution method outlined previously 
are for composite laminates with arbitrary lamination under 
general loading conditions as described in [8]. In practical 
engineering structures and components, composite laminates 
are usually constructed with certain material, geometric, and 
structural symmetries. Significant simplifications of the 
formulation and solutions can be achieved due to the 
lamination symmetry conditions. To illustrate these sim­
plifications and the basic nature of the solutions, symmetric 
angle-ply and cross-ply composite laminates subjected to 
uniform axial extension along the z-axis, ez = e, are con­
sidered in this section. 

3.1 Symmetric Angle-Ply [±9]„s Composite Laminates. 
Consider an angle-ply composite laminate consisting of 
unidirectional fiber-reinforced laminae with symmetric 9 and 
- 9 fiber orientations and geometry; i.e., for each ply above 
the midplane, y = 0, of the laminate there always exists a ply 
at the corresponding position below y = 0 with the same ply 
orientation and thickness. It can be easily shown that the 
reduced stiffness matrix Sy of each ply in laminate structural 
axes has the following properties: 

Sv=Sv=Sy = S5J=0 0 = 4,6). (18a) 

The 9 and - 9 fiber orientations in the laminate lead to the 
relationships of Sy in the adjacent plies as 

Sp=5f,k+lK(i,j=l,2,3y, 5J*>=$J*+1>, (1 = 4,5,6); (186) 

£j*) = - S j * + , \ t / = 1,2,3), (18c) 

where the superscripts refer to the quantities associated with 
the kth and (k + l)th plies, respectively. 

Under the uniform axial strain, the composite laminate 
possesses the following symmetry and antisymmetry con­
ditions of deformation: 

u (x,y,z) = u(x,-y,z), v (x,y,z) = -v(x, -y,z), 

w(x,y,z) =w(x, -y,z). (19a) 

u(x,y,z) = -u(-x,y,z), v(x,y,z)=v(-x,y,z), 

w(x,y,z) = -w(-x,y,z). (196) 

Equations (19a,6) may be written in equivalent forms leading 
to the boundary conditions as follows: 

u,y(x,0,z) =v,x(x,0,z)=w,y(x,0,z) =0, (20a) 

u,y (0,y,z) = v,x (0,y,z) = w,y (Q,y,z) =0. . (206) 

The relationships given by equations (18) and (20) together 
with the imposed end conditons ez = e lead to 

y4fa> =A^ =/4ja> =0, (21a) 

A^=e/Sft\ (a = k,k+\). (216) 

Also, by using equations (9)-(13) and equations (18a-c), it can 
be easily shown that 

uik) = w\ 

aj*> = a|*+» = -«Stf>/[2Sj*>Sj*>], 

(22a) 

(226) 

and that all other unknowns are equal to zero. 
Thus, the particular solution for the symmetric angle-ply 

laminate under the loading condition takes the following 
forms: 

n(,p) —T(,p) =r(p) = T ( p ) = n 
ux 'yz 'zx 'xy "» 

<> = - , 

and 

S3 3 S 5 2 / o 3 3 

u»> = (sa-***>)« 
\ o52 / a33 

(23a) 

(236) 

(23c) 

(23d) 
K<,. = ( s 2 3 - ^ i ) f l (23e) 

\ O52 / 0 3 3 

W^ =0, (23/) 

where the superscript a (a = k,k+l) in a}p), U{p), V{p), 
Wip), and the k in S\p and S\p are dropped in proceding 
equations for convenience. 
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Thus the complete solutions for stresses and displacements 
in a symmetric angle-ply composite laminate can be written in 
explicit forms as 

°x=J}dnfin(x,y,6„), 
n 

dn fin (x,y;8n) - ^ — e -

„ ^33 ^52 

7>*= Sdfl/4n(*J';5|i)» 
n 

Tzx=T,dnf5n(X,rA), 
n 

TXy=^dnf6n(X,y,5n), 

<>* = - £ - - ^ - . 0 = 1,2,4,5,6), 
A33 033 

and 

S„ Sn \ ex 

52 ' S33 

U=T,dn gin (XJi*H > + (513 - - 4 " ^ ) 

«= I>« ^„ (x,rA) + (s23 - ^ | ^ ) 
n 52 

S53 S2 2 N _?Z_ 

•^33 

(24a) 

(24ft) 

(24c) 

(24d) 

(24e) 

(247) 

(25a) 

(25b) 

(25c) 

ponents in the formulation. Following the same procedure 
given in the preceding section, we can determine in a similar 
manner the constants in the particular solution. It can be 
shown easily that the following relationships hold for the 
cross-ply case: 

(26a) 
-S#+" Stf> J2[S|f>-S|J+,>] 

^f«> = ^ a > = ^ l a ) = 0 , (a = Ar, £ + 1), (26ft) 

X P S#> = ^ ^ + 1 > S#+1> = e, (26c) 

with all other constants a, being zero. 
The particular solutions for stress and displacement in the 

symmetric cross-ply composite may be shown in a manner 
similar to those in Section 3.1 as 

T ( P ) _ _ ( p ) . .T(p) _ T ( p ) = n 
'xz ' yz u » 

y Ur1' s#> -w-sr"] 

T<P) : 
^32 

(27o) 

(27ft) 

r5, (
3*+1) S{3*> n \ 

— — ).(27c) 

and 

t/(P) 
- ( 

rsjTM) 

[3|*>-stf+1>] Ls^+D s# ] •£)-
(27d) 

^(p) = o , 

(27c) 

(27^) 

where the unknown constants d„ are to be determined by 
matching the preceding solutions with remote boundary 
conditions. 

3.2 Symmetric Cross-Ply Composite Laminates. In the 
case of a symmetric cross-ply composite laminate, the for­
mulation and solution procedure for the boundary-layer stress 
problem can be simplified further. By virtue of the material 
and lamination symmetry, the interlaminar and in-plane shear 
stresses, ryz and TXZ, are uncoupled with other stress com-

where the superscript a (a = k,k+l) in ajp), U{p), K(p), 
W(p), Sy, and Sy is dropped in the preceding equations for 
convenience. The complete solution for the symmetric cross-
ply composite laminate can be established in a manner similar 
to equations (24) and (25). 

4 Boundary-Layer Stress Intensity Factors 

The complete solutions for the stress and displacement 

1 
w 
w 
t 

, 

«t 
- e 

y 

- e 
e 

c - U 

r h , 

, L h 2 * 

Fig. 1 Coordinates and geometry of asymmetric [0 / -6 / -6 /6 ] 
composite laminate under uniform axial strain tz 
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fields given in the previous sections are shown to possess the 
forms of equations (24) and (25) with the constants d„ to be 
determined by a proper method through matching remote 
boundary conditions. Since the boundary-layer stress field in 
a composite laminate is singular in nature, the near-field 
stresses may be written in a general form as 

3 

ot= £ [DikZp +A(Ar+3)Z|i]+0(higher-order, 
k = l 

nonsingular terms), (f= 1,2,3, . . . . 6), (28) 

where Zk and Zk have the origin located at the intersection of 
the free edge and the interface of the composite laminate (Fig. 
2). The coefficients Dik and Di{k+J) are associated with the 
eigenvalue 6, and dependent on loading geometric and 
lamination variables of a given composite laminate. The 
exponent 8t in equation (28) is the order of the boundary-
layer stress singularity defined in reference [8]. 

In the context of elasticity problems with singularities, the 
singular terms in the solution dominate local response of the 
solid. Thus the singular terms in equations (24) and (28) 
govern the boundary-layer stress field and are of major 
concern in this study. Coefficients of the Zfi and Zp. terms 
depict the intensification of the edge stresses in the boundary-
layer region. Since the interlaminar stresses are most crucial 
along the ply interface due to the discontinuities in geometry 
and material properties and become singular at the in­
terface/edge intersection, it is possible to characterize the 
amplitudes of the asymptotic boundary-layer stresses by 
introducing the near-field parameters, Kh as 

K, = lim x-siOj(x,0;8{) 0 = 1,2,3, 
x~0 

6). (29) 

The K, are dependent on geometric variables (e.g., laminar 
thickness, number of plies, etc.), lamination parameters (e.g., 
fiber orientation, ply stacking sequence, etc.), loading modes, 
and environmental conditions (e.g., temperature, moisture, 
etc.). 

It is noted that the fundamental structure of the boundary-
layer stress solution shown in equation [28] resembles that of 
an elastic crack problem except that the order of stress 
singularity 8{ and higher-order eigenvalues are different 
between the two cases. (In fact, it has been shown [10] that a 
degenerated case of the present boundary-layer stress problem 
can lead to the well-known edge-delamination problem in 
composite laminates.) The nature of the Kt defined in 
equation (29) is similar to that of the so-called crack-tip stress 
intensity factors in linear-elastic fracture mechanics. Thus, in 
this context, it may be appropriate to denote the Kt as the 
"boundary-layer stress intensity factors" or "free-edge stress 
intensity factors" in composite laminates. The sign and 
magnitude of the boundary-layer stress intensity factors are of 
significant physical importance, since they may control the 
near-field response, i.e., fracture initiation and failure modes, 
along boundaries of composite laminates. 

5 Numerical Results and Discussion 
To illustrate the solution scheme and the fundamental 

nature of boundary-layer stresses, commonly used symmetric 
angle-ply and cross-ply graphite-epoxy composites under 
uniform axial extension ez = e are examined. Ply elastic 
properties of each graphite-epoxy lamina and geometric 
variables of the composite laminates used in references [1-8] 
are employed here (i.e., EL = 20 x 106 psi, ET = Ez =2.1 
X 106 psi, GLT = GTz = GLz = 0.85 x 106 psi, vLT = vTz = 
vLz = 0.21, hx = h2 = h = 0.25 in., b = 8h). These par­
ticular material and geometric constants are selected, because 
they have been used extensively in previous approximate 

Free 
Edge dBF 

"Mr 
5 . Sll » 

^ Interface <9Bj I 

-.(21 _(2) 
5> , S i j 

.L 

Fig. 2 Free-edge geometry and the interface between 0<1) and 0 ( 2 ) 

plies 

studies of the bondary-layer problem [1-7]. Thus solutions 
obtained in this study can be readily compared with existing 
approximate numerical solutions available in the literature. 
Due to space limitation, only the results for the symmetric 
[45/ - 45/ - 45/45] graphite-epoxy composite are given in this 
paper. Solutions for symmetric cross-ply laminates and for 
composites with other ply orientations, geometric, and 
lamination variables will be reported later. 

In what follows, accuracy and convergence of the present 
solutions are established first. Comparisons with existing 
approximate solutions are made to ensure the validity of the 
current method of approach. Fundamental characteristics of 
the boundary-layer stress field are studied. Boundary-layer 
stress intensity factors and distributions of in-plane and in­
terlaminar stresses are examined in detail. The boundary-
layer width in a composite laminate is defined on the basis of 
strain-energy density consideration. 

5.1 Accuracy and Convergence of the Present Solution. 
Since the complete solutions are required to satisfy the remote 
boundary conditions and laminate symmetry conditions, it 
can be easily shown that the following relationships must be 
held along the surfaces of y = ±h and of x = b (Fig. 2) in the 
symmetric angle-ply laminate: 

Edn/2n(x,h;8„)=eS^/[S^ 
n 

J^dn/^(x,h;8„)=0, 
n 

^dnA
l)„(x,h;8„)=0, 

J^dn^(x,-h;8„)=0, 
n 

%dn$(x,-h;8„)=0, 
n 

EdJ£(x,-h;8„)=0, 
n 

EdnG(b,y;8n)=0, 
n 

E^ / 2 a „ ) (^ ;SJ=o , («=i 
n 

Edn^n(.b,y;8n)=0, 

J 3 3 l . 

.2) 

(30a) 

(306) 

(30c) 

(31a) 

(316) 

(31c) 

(32a) 

(326) 

(32c) 

where /,„ denotes differentiation of g,„ according to equations 
(20a,b), respectively. The constants d„ are then evaluated by a 
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Table 1 Maximum mismatch* in boundary collocation for [45/ - 45/ -
45/45] graphite-epoxy under uniform axial strain 

No. of 
Collocation 
Sta t ions 

38 

54 

70 

86 

No. of 
Terms 

25 

35 

45 

55 

65 

25 

35 

45 

55 

65 

25 

35 

45 

55 

65 

25 

35 

45 

55 

65 

Prescribed 
Traction-t-

-°<P > (psi) 

-8.242364 

-8.242364 

-8.242364 

-8.242364 

o<h ) (psi)+fro„ 

Eigenfunction 
Expansion 

-8.158280 

-8.177839 

-8.187168 

-8.201219 

-8.209751 

-8.159152 

-8.174614 

-8.184179 

-8.199372 

-8.209355 

-8.. 159168 

-8.174698 

-8.183901 

-8.199213 

-8.208830 

-8.159152 

-8.174781 

-8.184185 

-8.199273 

-8.208373 

Relat ive 
Mismatchtt 

4o / o ( p ) 

y y 

0.010201 

0.007828 

0.006696 

0.004992 

0.003956 

0.010095 

0.008219 

0.007059 

0.005215 

0.004004 

0.010093 

0.008209 

0.007092 

0.005235 

0.004068 

0.010095 

0.008199 

0.007058 

0.005227 

0.004123 

00 

C 

Q . 

Mi 
•0 

o 

Fig. 3 
functior 
colloca 

At point A (i.e., x = 0, y « h) in Figure 2, 

^Stress scaled by e * 10 6, 

tt 4 o - n,ax|o<P,+ 0.(h)|. 
y ' y h 

boundary collocation method. Truncated forms of the 
eigenfunction series solution are used to satisfy the foregoing 
boundary conditions in the least square sense at a given 
number of selected collocation stations. 

Using equations (30), (31), and (32) and following a 
standard boundary collocation procedure, the following 
system of M linear equations for the unknowns d„ can be 
established: 

M 

S4L , f 0 ) f(l) , f0) f 0 ) , fW , ( l ) 
\J 2mJ In -TJ 4mJ 4n +J 6mJ 6n >*+Jc 

, ,(2) .(2) 
I ' lm ' l n 

+ M + M > * + \ g c </M' +/^4a) + « ' )ds] 

«s£» 
UlL'.si1? J L / 2 m OS, (m=l,2 M; (33) 

a= 1 for y >0, and 
a = 2for;> <0) 

where the integrals in equation (33) are evaluated numerically 
by standard Gaussian quadrature. Once the constants d„ are 
obtained, the stress and displacement fields can be determined 
explicitly from equations (24) and (25). It is clear here that 
accuracy and convergence of the solutions for stresses and 
displacements are related to truncation of the eigenfunction 
series and the number of collocation stations. The term 
"convergence" refers to the condition in which relatively 
constant solutions are ensured when proper numbers of terms 
in the eigenfunction series and collocation points are used. 

The accuracy and convergence study of the solution is 
carried out by examining the mismatch between the truncated 
eigenfunction series solution and the remote traction 
boundary conditions and by comparing the present boundary-
layer stresses with existing approximate solutions for the 
finite-dimensional composite. In the [45/ - 45/ - 45/45] 

10.0 

5.0 

0.0 

- o o o— 

K, x 10 
-o—•—o o o— 

-Kj x 10' 
—O Q O O— 

50 100 

Number of Terms 

Boundary-layer stress intensity factors K/ (/ = 1, 2, 3) as a 

function of number of the terms used in eigenfunction series (86 

graphite-epoxy laminate, the maximum mismatch appears 
always to be the transverse normal stress ay at the intersection 
of the free edge and the upper lateral surface (i.e., at point A 
in Fig. 2). The interlaminar normal stress ay

p) (equations 
(236) and (246)) resulting from the uniform-axial-strain end 
condition has the value ay

p) = 8.242364 x 106 ez (psi) alongy 
= h, and is required to be cancelled by the homogeneous 
solution. The resulting ay

h) at point A (i.e., x = 0, y = h) by 
using different numbers of terms in the eigenfunction series 
and different numbers of stations in the boundary collocation 
procedure is given in Table 1. Also shown in the Table is the 
maximum relative mismatch of the transverse normal stress 
Aay/aj,p), which provides a measure of accuracy and con­
vergence of the present approach. It is clearly seen from Table 
1 that the maximum mismatch in the current solution is very 
small. The numerical results seem to be insensitive to the 
number of collocation stations used due to the relatively 
simple geometry and boundary conditions. The homogeneous 
solutions apparently converge to the prescribed boundary 
stress - ay

p) within 1 percent as the number of terms used in 
the eigenfunction series exceeds 30. 

The solution convergence is further studied by examining 
the near-field edge stresses and associated boundary-layer 
stress intensity factors for the composite laminate. The 
solutions for boundary-layer stresses and stress intensity 
factors are found to be insensitive also to the increase in 
numbers of terms in eigenfunction series and collocation 
stations. For illustrative purposes, typical solution con­
vergence of the first three boundary-layer stress intensity 
factors, K\, K2, and K3, as a function of the number of terms 
and collocation stations is shown in Figs. 3 and 4 for the 
[45/-45/-45/45] graphite-epoxy composite. It is clearly 
seen from Fig. 3 that all of the K, remain virtually the same 
when different numbers of terms of the eigenfunctions are 
used in numerical calculation (in this case, the number of 
collocation stations is 86). The influence of the number of 
collocation stations on the values of Kj is found to be 
similarly negligible (Fig. 4); all the AT, remain unchanged as 
the number of collocation stations increases from 40 to 86 
(here 56 terms are used). The excellent solution convergence 
and stability provide a solid foundation for further studying 
the detailed nature of the complex singular boundary-layer 
stresses. 
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Fig. 4 Boundary-layer stress intensity factors K( (/ = 1, 2, 3) as a 
function of the number of collocation stations in boundary collocation 
(56 terms) 
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Fig. 5 Comparison of the present laminate elasticity solution for 
interface stresses az, rxz, and ryz (along y = fi + ) with approximate 
numerical solutions 

5.2 Comparison With Existing Approximate Solutions. 
Boundary-layer stresses in a composite laminate determined 
by the present eigenfunction expansion approach are com­
pared with existing approximate numerical solutions available 
in the literature. In Figs. 5 and 6, distributions of in-plane and 
interlaminar stresses along the ply interface y = h of the 
[45/ - 45/ - 45/45] graphite-epoxy under uniform axial strain 
ez are shown by solid lines. Approximate solutions obtained 
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Fig. 6 Comparison of present laminate elasticity solutions for in­
terface stresses ay and TXy with approximate numerical solutions 

by Pipes, et al. [1] using a finite-difference analysis and by 
Wang, et al. [4] a constant-strain-using triangle finite element 
approach are shown also by dotted lines in the figures. These 
solutions are in good agreement in the region away from 
laminate edges, and converge to what is predicted with 
classical lamination theory (C.L.T.) [11]. As the laminate 
boundary is approached, discrepancies among the solutions 
become very significant due to the presence of the boundary-
layer stress singularity, which the previous approximate 
numerical solutions fail to include. (The accuracy of the 
current solution is further supported by an independent study 
based on a singular hybrid finite element approach [12]). 
Thus, near the laminate edge, the stress field is completely 
governed by the singular terms KjX^ in the solution. 
Numerical approximate solutions for the problem such as the 
finite-difference solution [1] and the conventional finite 
element results [4] approximate the singular stress field in a 
piecewise manner. As pointed out by Tong, et al. in [13], 
solution convergence in elasticity problems with singularities 
by conventional finite elements is independent of refinement 
of the mesh and increase in the order of element formulation. 
The comparison between the present laminate elasticity 
solution and the .finite-element approximation shown in Figs. 
5 and 6 and elsewhere [12] tends to support this thesis. 

It is noted further that in the evaluation of interlaminar 
stresses along the ply interface the conventional finite element 
approximation generally requires tedious and elaborate ex­
trapolation schemes, which by themselves may introduce 
numerical errors in the final results. On the contrast, the 
present laminate elasticity theory provides, in addition to the 
inclusion of the correct stress singularity, exact analytical 
solutions for all stress components along the ply interface 
without the need of any extrapolation. 

Comparison of through-thickness distributions of the 
boundary-layer stresses with the approximate solutions is also 
made. For example, distributions of the most dominant in­
terlaminar shear stress ryz along the ^-direction are shown in 
Fig. 7, as calculated by different approaches. The current 
solution for ryz is observed in good agreement with the finite 
element results [4] away from the interface in the far field, 
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Fig. 7 Comparison of the present elasticity solution for interlaminar 
stress TyZ through laminate thickness with approximate numerical 
solutions 

say, at x/b = 0.89; however, they differ appreciably as the 
interface is approached. At the free edge, x/b = 1.0, the 
difference between the present results and that of Pipes, et al. 
[1] becomes significant. The finite difference and finite 
element approximations yield finite values for ryz at the 
laminate edge, but the current eigenfunction solution becomes 
unbounded as x — b and y — h, due to the presence of the 
stress singularity. The discrepancies apparently result from 
the aforementioned approximations involved in the previous 
solutions. That is, the stresses along the ply interface are 
obtained by approximate averaging and extrapolation 
schemes without the consideration of the singular terms, 
whereas the present solution includes the stress singularity and 
satisfies exactly the interface continuity and traction boun­
dary conditions, which give an exact elasticity solution for the 
boundary-layer problem. 

5.3 Fundamental Characteristics of the Boundary-Layer 
Field. Basic characteristics of the boundary-layer response in 
a composite laminate may be best elucidated by the overall 
distributions of the edge stresses in a laminate cross section. 

, and T„, The overall distributions of in-plane stresses, a: 
over the x—y plane are shown in Figs. 8, 9, and 10, 
distributions of interlaminar stress components a} 

and 
and 

,yz are given in Figs. 12, 13, and 14 for the [45/-45/-45/45] 
graphite-epoxy system under uniform axial strain ez. These 
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Fig. 9 Distribution of in-plane shear stress TXZ(rxz/ez x 10 ~ 3 psi) in 
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figures cover a portion, of the upper left quadrant of the 
laminate cross section. Each contour line in the figures, i.e., 
the isostress contour, represents the stress component 07 of a 
constant magnitude normalized by a scaling factor 103 ez. The 
>>-axis in the figures is the laminate free-edge boundary, and 
the x-axis is actually the interface between the 45 and - 45 deg 
layers. The nonuniform distributions of the in-plane stresses 
shown in Figs. 8, 9, and 10 clearly reveal significant per­
turbation of the C.L.T. stress field in the neighborhood of a 
ply interface near the laminate boundary. More precise 
description of the variation of the in-plane stresses through 
the laminate thickness is given, for example, in Fig. 11, in 
which uniform distributions of in-plane stresses along the y-
direction are severely altered near the laminate boundary as 
the ply interface is approached. Complicated distributions 
and high magnitudes of intensification of interlaminar 
stresses in the boundary-layer region are clearly shown in 
Figs: 12, 13, and 14. Detailed information on the through-
thickness distribution of interlaminar stresses is obtained; for 
example, the interlaminar shear stress ryz is given in Fig. 7. 

Near the composite laminate edge, the singular boundary-
layer stress field may be characterized by the presently in­

troduced parameters K,-. For the composite laminate under 
consideration, the boundary-layer or free-edge stress intensity 
factors are found to have the following values: 

AT,= 0.57298 EO, 

K2= - 0.75345 El, 

K^= -0.29523 E-l, 

K4= -0.16443 E 2, 

K5= 0.14440 £ 1 , 

* 6 = 0.0, 

where the Kt have the dimension [psi-//z~5i] in accordance 
with the definition given in equation (29). The correctness of 
the boundary-layer stress intensity factors has recently been 
verified by an independent study [12] using a singular hybrid 
finite-element approach. The high negative value of K2 in­
dicates the development of significant compressive in­
terlaminar normal stress ay along the 45 and - 4 5 deg ply 
interface. This is evidenced in Fig. 6, where the compressive 
interlaminar normal stress ay is clearly shown by the solid line 
and is noted to be opposite in sign to the results obtained from 
the previous finite-element approximation [4]. 

In general, the K, associated with interlaminar stresses are 
found to be much larger than those with in-plane stresses in 
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Fig. 12 Distribution of interlaminar normal stress iy(ayUz x 10 
psi) in the upper left quadrant of a cross section in [45/ - 45/ - 45/45] 
graphite-epoxy composite laminate 

y o.oo 

Fig. 13 Distribution of interlaminar shear stress fyz(TyZ/cz x 10 
psi) in the upper left quadrant of a cross section in [45/ - 45/ - 45/45] 
graphite-epoxy composite laminate 

symmetric angle-ply composite laminates. This indicates the 
significance and dominance of the interlaminar stresses in 
controlling the local response and fracture initiation in the 
vicinity of laminate edges. In symmetric [ 9 / - 9 / —8/9] 
composite laminates K6 is found to vanish for all fiber 
orientations, whereas in symmetric cross-ply laminates such 
as the [0/90/90/0] and [90/0/0/90] systems, K4 and K$ are 
identically zero due to the material and lamination symmetry 
conditions. Details of the influences of fiber orientations, 
stacking sequence, geometric variables, and other lamination 
parameters on the magnitude and sign of K, will be reported 
later. 

Careful examination of the results obtained in the study 
leads to the establishment of the following fundamental 
characteristics of the boundary-layer stress field in a com­
posite laminate: 

1. The state of stress in the boundary-layer region is 
generally singular and inherently three-dimensional. The 
strength of the boundary-layer stress singularity 5[ depends 
on elastic properties and fiber orientations of adjacent plies, 
as discussed in reference [8]. 

2. The intensification of boundary-layer stresses near 
laminate edges is governed by the boundary-layer or free-edge 
stress intensity factors. The Kt depend on ply elastic con­

stants, lamination parameters, geometric variables, loading, 
and environmental conditions. 

3. The stress field recovers almost completely to what 
classical lamination theory (C.L.T.) predicts in the far field. 
Near the laminate edge, in-plane stress components in the 
neighborhood of a ply interface differ significantly from 
those predicted by C.L.T. inside individual lamina, due to the 
presence of the free edge. 

4. The interlaminar normal and shear stresses cannot be 
obtained by classical lamination theory, but can be deter­
mined exactly by the present laminate elasticity solution. The 
development of the interlaminar stresses is very localized near 
laminate boundaries, and the stresses become singular at 
composite edges. 

5. Failure modes and mechanics in the commonly en­
countered edge delamination or transverse cracking problems 
may be controlled by the sign and magnitude of the boundary-
layer stress intensity factors. A composite with a high 
magnitude of positive K2 may be more prone to fail in a 
delamination mode, whereas a composite with a negative K2 
may fail either in an interlaminar mode or in intralaminar (or 
transverse) cracking depending on the relative magnitudes of 
K4,K5andKuK3. 
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Fig. 14 Distribution of interlaminar shear stress rxy{rXylez x 1 0 " 3 

psi) in the upper left quadrant of a cross section in [45/- 4 5 / - 45/45] 
graphite-epoxy composite laminate 

5.4 Strain Energy Density Distribution and Boundary-
Layer Width. The rapid development of interlaminar stresses 
is found, as discussed in the previous sections, to be restricted 
to the neighborhood of laminate edges. The region in which 
severe perturbation of classical lamination theory occurs is 
often referred to in the literature as the "boundary-layer 
width (or thickness)." The complex state of high stresses in 
the boundary layer is inherently three-dimensional and cannot 
be determined by C.L.T. Since the size and nature of the 
boundary-layer stress perturbation are of vital importance in 
controlling fracture initiation and strength degradation of 
composite laminates, it is necessary to define the boundary-
layer width on a rigorous basis. 

Pipes, et al. [1] previously defined the boundary-layer 
width as the distance from a laminate edge at which the in­
terlaminar stress ryz is about 3 percent of the value calculated 
at the intersection of the ply interface and the free edge by an 
approximate finite-difference procedure. Since the theoretical 
value of ryz at the intersection is unbounded due to the 
presence of edge stress singularity, the validity of this 
definition is somewhat questionable. Furthermore, if the 
value of Tyz is used to define the boundary-layer width, it 
would lead to a significant problem in the cases of symmetric 
cross-ply laminates because both ryz and rxz are identically 
zero everywhere in the composites. Thus, in this study, an 
alternative definition of the boundary-layer width is in­
troduced on the basis of strain-energy density consideration. 

Examining the strain energy-density distribution E(x,y) 
along the interface y = h+ in the [45/-45/-45/45] 
graphite-epoxy laminate (Fig. 15), one immediately observes 
that the E(x,h + ) remains relatively constant in the far field 
and has a nominal value E obtainable from C.L.T. and that 
its value increases drastically, in fact, by an order of 
magnitude in the present case, as the free edge is approached. 
The nominal value of E(x,h + ) , i.e., E0, is used as a reference 
here for defining the boundary-layer width. In this paper, the 
boundary-layer width, B, is defined as the distance away from 
the edge, where the strain energy density along the ply in­
terface is 3 percent higher than the value of E0 obtained in the 
far field. Generally, E(x,h +) differs slightly from E(x,h ~) in 
a symmetric angle-ply composite laminate due to the 
discontinuous in-plane stresses at y = h+ and h~\ thus, an 
average value of B is designated as the width of the boundary-
layer region. Based on this definition, the boundary^layer 
width for the [45/- 4 5 / - 45/45] grahite-epoxy under 
uniform axial strain is found to be approximately 2.2 ply 
thickness. It is noted that the boundary-layer width depends 
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Fig. 15 Strain energy density distribution E(x,h +) along 45/ - 45 deg 
ply interface in [45/ - 45/ - 45/45] graphite-epoxy composite laminate 

on geometric variables, lamination parameters, loading 
modes, and environmental conditions [14]. The boundary-
layer widths for composite laminates with other stacking 
sequences, fiber orientations, and ply thickness will be 
reported in future papers. 

6 Summary and Conclusions 
The complete laminate elasticity solution for the boundary-

layer problem in a finite-dimensional composite has been 
obtained. The homogeneous solution in an eigenfunction 
series and the particular solution in a polynomial form have 
been fully determined for a given composite laminate system. 
The solution procedure has been outlined for composites with 
general lamination variables. Detailed solutions for the 
boundary-layer field have been presented for commonly used 
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symmetric angle-ply and cross-ply composites. Accuracy and 
convergence study has been conducted to ensure the validity 
of the results and the efficiency of the current approach. To 
illustrate the solution method and to elucidate fundamental 
characteristics of the boundary-layer stress and deformation, 
detailed information on a [45/-45/-45/45] graphite-epoxy 
lamiante under uniform axial strain has been presented. Based 
on the results obtained, the following conclusions may be 
reached: 

1. The states of stress and deformation in the boundary-
layer region are inherently three-dimensional. They cannot be 
determined accurately by classical lamination theory nor by 
any approximate method without including the edge stress 
singularity. The current laminate elasticity solution provides 
accurate information on the singular nature and exact 
distributions of the boundary-layer stresses. 

2. Comparing the current elasticity solution with previous 
approximate numerical solutions, we find that all solutions 
are in good agreement in the far field but significant 
discrepancies occur in the boundary-layer region, due to the 
fact that near the laminate edge the stress field is completely 
governed by the singular terms, which the previous ap­
proximate solutions fail to include. 

3. The singular boundary-layer stress field may be 
characterized by the presently introduced "boundary-layer 
stress intensity factors" or "free-edge stress intensity fac­
tors." The Kj are functions of lamination variables, 
geometric parameters, and loading conditions. The boundary-
layer stress intensity factors may be used to evaluate the 
criticality of various geometric and lamination variables in a 
composite and their influences on interlaminar (delamination) 
and intralaminar (transverse cracking) fracture at laminate 
edges. 

4. The boundary-layer width which characterizes the size 
of the domain where classical lamination theory does not hold 
is defined by considering the strain energy density distribution 
along the ply interface. The boundary-layer width depends on 
all of the lamination and geometric variables, loading modes 
and environmental conditions. In the [9/ —G/ —9/9] 
graphite-epoxy composites, the case of 9 = 45 deg possesses 
the maximum boundary-layer width, B/h — 2.2. 

5. The present formulation and the method of solution are 
also valid for asymmetric composite laminates under other 
loading conditions, since bending, twisting, and rotational 

components of deformation are included. The results of these 
more complex situations will be reported in future papers. 
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On the Logarithmic Singularity of 
Free-Edge Stress in Laminated 
Composites Under Uniform 
Extension 
The stress singularities at the free edge of an interface between adjacent layers in a 
laminated composite are studied. Each layer of the composite is assumed to be of 
the same orthotropic material with one of the principal axes being the fiber 
direction. The angle 6, however, which is the fiber orientation, varies from layer to 
layer. The composite is subjected to uniform extension in the plane of the layers. At 
the interface between adjacent layers having fiber angles (0/90), (6/-0), and a 
family of special combinations of (6/d1) shown in the paper, the singularity of the 
type k*rs (8<0), seems to be the only possibility. For an interface with other 
combinations of fiber orientations in the the adjacent layers, it is shown that an 
additional singularity of the form k(ln r) exists. Since the constant k* depends on 
the stacking sequence of the layers and the complete boundary conditions, and may 
vanish in some cases, the existence of a k*r6 singularity at a free edge is not certain 
until a complete problem is solved. In contrast, the constant k, which is called the 
logarithmic stress-intensity factor, is independent of the stacking sequence of the 
layers and the complete boundary conditions. Its value is determined once the fiber 
orientations on both sides of the interface are known. Therefore, at the interface 
between adjacent layers for which k^O, the free-edge stress is inherently singular. 
Moreover, the singularity is logarithmic. 

1 Introduction 

A free edge in a composite is the intersection of an interface 
plane (between any two layers) and the free surface of the 
composite. The unusually large and possibly infinite stress at 
the free edges is one of the factors responsible for 
delamination when the composite is subjected to external 
loading. Many investigators have analyzed the stress near the 
free edge [1-9]. An analytical solution which is valid for the 
whole composite is practically impossible to obtain. Several 
approximate numerical solutions are available which show 
good agreement between them for points away from the free 
edge. For points near the free edge, numerical solutions are 
not capable of predicting an infinite stress when it exists, and 
this is where the discrepancies between various approximate 
solutions occur. Wang and Choi [8] used an eigenfunction 
expansion technique to determine the stress at the interface. 

the 
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However, the completeness of the eigenfunction expansion is 
an open question [10]. In fact, the existence of the logarithmic 
singularity discussed in this paper implies that the eigen­
function expansion in terms of rb powers may not be com­
plete. It is doubtful that the addition of (In r) terms would 
make the eigenfunction expansion complete. As pointed out 
in [10, 11], singular terms of (In r)2 and (In r)3 etc., may also 
exist. 

While the nature of the singularity, be it k*rd or k(ln r), at a 
free edge is independent of the stacking sequence of the layers 
in the composite and the complete boundary conditions, the 
unknown constant in the singular solution is not. This 
unknown constant is k* in the case of the rs singularity and an 
arbitrary constant a\ (not k) in the case of the (In r) 
singularity. This suggests that one might use a special finite 
element at the free edge (with regular finite elements 
elsewhere) so that the exact nature of the singularity is 
prescribed in the special element while the unknown constants 
associated with the special element at each free edge are 
determined by solving the complete boundary-value problem. 
If k* so obtained happens to be zero at a particular free edge. 

For composites whose layers are isotropic elastic materials, 
use of the biharmonic function, or the Airy stress function, 
seems to be the universal approach in the analysis of the stress 
singularities. (See [10, 12, 13], for example.) There appears to 
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i 2 

Fig. 1 Geometry of an angle-ply laminated composite 

be no universal approach in analyzing the stress singularities 
in anisotropic elastic materials. Lekhnitskii [14] introduced 
two stress functions to analyze general anisotropic materials. 
His approach was used by Wang and Choi [8] to study the 
thermal stresses at the interface in a layered composite. Green 
and Zerna [15] employed a complex function representation 
for the general solution. Their approach was used by Bogy 
[16] and Kuo and Bogy [17] in conjunction with a generalized 
Mellin transform to analyze stress singularities in an 
anisotropic wedge. In this paper we use the approach that was 
originated by Stroh [18] and further developed by Barnett and 
others [19-21] for studying the surface waves in anisotropic 
elastic materials. 

2 Formulation of the Problem 

Consider a laminated composite that consists of a finite 
number of anisotropic elastic layers perfectly bonded at the 
interface, Fig. 1. Each layer of the composite lies in a plane 
parallel to the (xlt x3) plane and is a fiber-reinforced com­
posite material in which the fiber direction makes an angle 6 
with the x3-axis. The composite is subjected to an extensional 
strain e3 in the *3-direction. We assume that the composite is 
sufficiently long so that, at least in the region near the x3 = 0 
plane, the displacement «,- (except that u3 has an additional 
term €3^3) and hence the strain e,7 and the stress ay are in­
dependent of x3. The strain-displacement, stress-strain, and 
equilibrium equations of each layer are 

eu = {dUj/dXj + dUj/dXi)/! 

aiJ = cijkp ekp 

dan/dxi + doi2/dx2 =0 

where repeated indices imply summation, and 

t-ijkp ~ t-kpij ~ cjikp 

(1) 

(2) 

(3) 

(4) 

are the elasticity constants. 
For the purpose of numerical calculations later on, we may 

also use c,7 instead of cijkp and write equations (2) and (4) as 

oi=cijtj, Cij=Cji (5) 

m a t e r i a l 1 

C i j , 9 

m a t e r i a l 2 

i ] 
0 ' 

where 

Fig. 2 A free edge between two adjacent layers (0/0') 

0 " l l = 0 " l i 0 2 = 0 2 2 . 0 3 = f f 3 3 ) 

ff4 = <T23 . <*5 = °"l3 . <̂ 6 = ff12 ) 

(6fl) 

(6b) 

(7) 

°u = Tijdf(Z) IdZ+cm e3 

Dikvk=0 

6 l — « 1 1 > «2—^22> 6 3 — ^ 3 3 / 

«4=2e23, e5=2ei3» £6=2ei2 ) 

We will also write the inverse of equation (5) as 
6/ = Sjj Oj , Sy = Sjj 

where 5,7 are the elastic compliances. 

When the extensional strain e3 is applied in the x3 -direction 
a general solution for equations (l)-(3) can be obtained by 
letting 

u, = v,f(Z)+5i3e3x3 (8) 

Z = Xi +px2 (9) 

where 6,7 is the Kronecker delta, p and u, are constants, a n d / 
is an arbitrary function of Z. Substituting into equations 
(l)-(3) we have 

(10) 

(11) 
where 

Tij = (cm +pcUk2)vk (12) 

Dik = cim+p(cilk2 + ci2kl)+p2cak2 (13a) 

For a nontrivial solution of u,, it follows from equation (11) 
that the determinant of Dik must vanish. That is 

II A* H=0 (13ft) 

This results in a sextic equation for p. Since the eigenvalues p 
are all nonreal [14, 18], there are three pairs of complex 
conjugates forp and three pairs of associated eigenvectors u,. 

To analyze the singular nature of the stress at a free edge, 
the origin of the (xi, x2) coordinates is placed at one of the 
free edges, Fig. 2. The function/(Z) in equation (8) is chosen 
to be [8,11] 

/ ( Z ) = Z 1 + 5 / ( l + 5) (14) 

where 5 is a constant. Equations (8) and (10) for displacement 
and stress can then be written as 

ui = L[ALviiLZL
i^+BLDiiLZL

i + S}/(l + o) + Si3e3x3 (15) 
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<7,y = L[ALTiJiLZL
s +BLfUtLZL

s} + c,y33e3 (16) 

where an overbar denotes the complex conjugate; AL and BL 

are complex constants, and the subscript L identifies the three 
pairs of eigenvalues. Unless otherwise indicated, E in 
equations (15) and (16) and subsequently stands for sum­
mation over L from L= 1-3. Using the polar coordinates (/•, 
<j>), Fig. 2, Z may be written as [11, 22] 

where 

Z = x{ +px2=r£ 

f = cos</> +psin4> 

(17) 

(18) 

Equations (15) and (16) can then be written as 

ui = ri+sZ{ALvitL^ + s+BL0itLtL
i + i}/(l+8) + 8i3e}x3 (19) 

CT^EMiT^fi'+flif^fi5 1+^33 e3 (20) 

Similar equations may be written for the material with 
elasticity constants Cy' be adding a prime to all quantities 
except r, <j>, and 8. We see from equation (20) that if the real 
part of 8 is negative 07, is singular at r - 0. 

By applying the stress-free boundary conditions 

(T„ =ff12=ffl3=0 (21) 

at <l> = ± ir/2 and the interface continuity conditions at 4> = 0 

[«i] = [«2] = [«3l = 0 (22) 

foil = [*22l = [*»]= 0 (23) 

where [f] =f—f represents the difference in / values across 
the interface, we obtain 12 linear equations for AL, BL, AL ', 
BL ' which can be written as 

/•5Kc(5)q = e3b (24) 

where Kc is a complex valued square matrix whose elements 
depend on 8, b is a constant column matrix whose elements 
are cm and c,y33', and q is a column matrix whose elements 
are AL, BL, AL', BL' ( L = l , 2, 3). The right-hand side of 
equation (24) is constant while the left-hand side depends on r. 
Therefore, to satisfy equation (24) we let 6 = 0: 

Kc(0)q = e3b (25) 

and obtain a particular solution for q. However, this is not the 
only solution for q in equation (24). If 8 is a root of the 
determinant 

IIKC(5)II=0 (26) 

we see that q has the following arbitrary additional solution 

Kc(o)q = 0 (27) 

Since the problem is linear, a linear superposition of solutions 
associated with different q's is also a solution. 

Notice that the elements of Kc(5) are the coefficients of AL, 
BL in equations (19) and (20). Therefore, if 8 is a complex root 
of equation (26), so is the conjugate <5. To obtain a real value 
for «, and ay from equations (19) and (20), we simply 
superimpose the solutions associated with 5 and 8. However, 
when the root of equation (26) is real we may choose 

BL=AL=(aL+iaL)/2 (28) 

where aL and aL are real. Equations (19) and (20) then have 
the real expressions 

M/=/-1+*£(aLJRe(u,-LrL
1 + 6) 

+ aLIm(v,,L h»+6)) /( l + 8) + 5,3€3*3 (29) 

<7,y = /-5E(a/./?e(Tj/-ifz.
5) + aL//w(T,y,z,f/)) +cme3 (30) 

where Re and Im stand for real imaginary, respectively. 
Equations (25) and (27) are then replaced by 

K(0)a = e3b (31) 

K(5)a = 0 (32) 

where K is now a real valued square matrix and a is a real 
column matrix whose elements are aL, aL, aL ', and aL' 
(L = 1, 2, 3). The real root 8 is then obtained from 

IIK(5)II=0 (33) 

We will next discusss equation (26) or (33) and equation 
(31) separately. Notice that equation (26) or (33) has nothing 
to do with €3. Indeed, if e3 = 0 the formulation here reduces to 
that of the plane strain problems considered in [22], and 
equation (26) or (33) is identical to the one obtained in [22]. 
As we will see in this paper, the seemingly innocent ap­
pearance of the e3 terms in the preceding formulation makes 
the stress at the free edge inherently singular for certain 
composites. Moreover, the singularity is logarithmic. 

It should be pointed out that the formulation here tacitly 
assumed that the eigenvalues pL of the elasticity constants, 
equation (136), are distinct. For degenerate cases in which pL 

is a multiple root, equations (15) and (16) have different 
expressions. The correct expressions for equations (15) and 
(16) when/?L is a multiple root were given in [11] when/(Z) 
assumes the special form of equation (14) and in [23] when 
f(Z) is arbitrary. 

3 The Roots 6 

Two different illustrative composite materials are used for 
the numerical calculations. Each layer of the composite2 is 
assumed to be made of the same orthotropic material.3 The 
orientation of the axes of symmetry (*,, x2, x}), however, 
differs from layer to layer. Referring to the ( i , , x2, x3) axes, 
the following engineering constants for the layers in the two 
composites are taken from [6] and [24], respectively. 

Composite W 

(Typical high modulus graphite/epoxy, [6]) 

Ei=E1 = 14.48 x 106kPa(2.1 x 106 psi) 

£3 = 137.9 x 106 kPa(20 x 106 psi) 
\ 04) 

GI2 = G2 3=G3 1 =4.98 x 106kPa(.85 X 106 psi) 

P21 = p31 = p 3 2 = . 2 1 

Composite T 

(T300/5208 graphite/epoxy, [24]) 

Ei = E2 = 10.62 X 106 kPa (1.54 x 106 psi) 

£ 3 = 151.7 x 106 kPa(22 X 106 psi) 

G12 = G23=G3 1=5.58 x 106kPa(.81 x 106 psi) 

H\ = "31 = vii = .28 

(35) 

In equations (34) and (35), E, are the Young's moduli, G-,j the 
shear moduli, and vtj are the Poisson's ratios [25]. Using 

The present analysis is concerned with the interface between any two ad­
jacent layers in a laminated composite. For simplicity, the terminology 
"laminated composite," "composite," etc., is used in this paper to refer to 
these adjacent layers. 

The theory presented here applies to composites in which each layer is an 
anisotropic material. For numerical examples, however, we assume the layers to 
be of the same orthotropic material. 
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Table 1 Roots" S for rb terms in composite W 

(0/6') 

15/ —15 
0/15 
90/15 
6 0 / - 6 0 
0/60 
90/60 

Si 
- .001 
- .000 
- .033 
- .023 
- .020 
- .011 

h 
.997 + .042 / 
.999 + .023 /' 

1.411 + .387/ 
.831 + .271 i 

1.009 + .1081 
.942 + .201i 

53 

1.974 + .187/ 
1.995 + .085/ 
1.660 + .688/ 
1.482 + .773/ 
1.747 + .659/ 
1.917 + .681/ 

a4 
2.961 + .261 / 
2.991 + .134/ 
2.835 + 1.758/ 
2.149 + 1.246/ 

2.769 + 1.243/ 

6s 

2.942 + 1.755/ 

"zero and positive integers are also roots for S 

Table 2 Roots" 5 for rl terms in composite T 

(0/0') 
15/ — 15 
0/15 
90/15 
6 0 / - 6 0 
0/60 
90/60 

- .003 
- .001 
- .052 
- .031 
- .034 
- .015 

.990 + .079 / 

.997 + .044 /' 
.853 

.787 + .314/ 
1.023 
1.781 

1.944 + 
1.989 + 
1.405 + 
1.450 + 
1.716 + 
.921 + 

.294 /' 

.135/ 

.572 /' 

.817/ 

.703 / 

.243 / 

2.933 + 
2.984 + 
1.650 + 
2.093 + 

1.940 + 

.382 / 

.194/ 

.665/ 
1.336/ 

.738 / 

2.846 + 1.819/ 
2.940 + 1.806/ 

2.728 + 1.243/ 

"zero and positive integers are also roots for & 

equation (34) or (35), the elastic compliance Sy referred to the 
(xux2, x-i) axes can be computed [25, 26]. Its inverse, c-y is 
obtained by using the relations derived in [25]. Sy, Cy, sy', 
and Cy' associated with various 6 and 6' are then determined 
from equations derived in [22, 27]. Equations (136) and (11) 
provide the eigenvalues pL, {L=\, 2, 3) and the associated 
eigenvectors vuL. For Composite W all three eigenvalues pL 

are purely imaginary for any ply angle 6 [22], while for 
Composite 7* two of the three eigenvalues are complex for 101 
less than 71.5377 deg. The roots of equation (26) for some 
(6/6') combinations are listed in Table 1 for composite W 
given by equation (34) and in Table 2 for composite T given 
by equation (35). Double precision was used in the 
calculations but we have rounded the roots in Tables 1 and 2 
to four digits. Both complex and real roots were found. Since 
complex conjugates of these values are also roots of IIKfl, we 
list only complex roots with positive imaginary parts in Tables 
1 and 2. Detailed information on locating the complex roots 
can be found in [27]. 

Most interesting of these roots are the positive integer 
values of 8, which seem to consistently appear for all (6/6') 
combinations for both composites. There appears to be a 
negative real root for 8, but there are no other complex roots 
with a negative real part. Since the negative 8 is the one 
contributing to the singular stress, we present in Figs. 3 and 4 
the negative 5 for all possible combinations of (6/6') angles. 
Curves of constant 5 are given only in one quarter of the 
(6/6') plane since the curves in the remaining three quarters 
are a repetition of the curves shown. We see that the (0/90) 
composite, which has the same 8 value as the (90/0) com­
posite, has the largest negative value of 5. The negative 8 
values appear to be simple roots of equation (33), and hence a 
of equation (32) is unique up to a multiplicative constant, say 
k*. By substituting a of (32) into (30), we may write equation 
(30) as 

aij = k*r!>aif*(<t>) (36) 

where ay depends on <f>. The analysis presented here provides 
the order of singularity 5 and ay*, k*, which may be identified 
with the stress-intensity factor if elements of ay* are nor­
malized, can be determined only by solving the global 
boundary-value problem. For instance, one may use a finite 
element scheme in which a special element, whose stress is 
given by equation (36), is introduced at the free edge. If k* 
associated with a free-edge point happens to be zero after 
solving the global boundary-value problem, there is no 
singularity of r6 at that particular free-edge point. Therefore, 
a singularity of the form given by equation (36) at a free edge 
is not certain until the global problem is solved. 
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Fig. 3 8 of the r singularity for composite W 

4 Uniform Stress Solution (e3 ^ 0) 

The solution of equation (31) for a would have been 
straightforward were it not for the fact that 8 = 0 is a root of 
equation (33), and hence K(0) is singular. Therefore, a 
solution for a in equation (31) exists if and only if [28] 

Tb = 0 (37) 

where T denotes the transpose and 1 is a left eigenvector of 
K(0): 

lrK(0) = 0 (38) 

It turns out that there are two left eigenvectors of K(0). 
Equation (37) then must be satisfied for both 1. For (0/90), 
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Fig. 4 5 of the r!' singularity for composite T 

(ft/ - 0), and a special family of (0/0')4 composites, numerical 
solutions indicate that equation (37) holds, and equation (31) 
has a particular solution e3a<p) and two arbitrary solutions 
a(1>anda(2): 

a = € 3 a ( / "+aia ( 1 ) +a 2 a < 2 ) (39) 

where a! and a2 are arbitrary constants. Substitution of 
equation (39) into equations (29) and (30) with 5 = 0 yields 

Uj = e3w, (p)+a1w, (1) + a2M,<2) (40) 

<rv = e j V ' + t W (41) 

where 

!/,-<"> =LlaL0'>Re(viiLZL) + aLwim(vliLZL))+6Bx3 (42a) 

ulM=E[aLWRe(viaiZL) + aLMlm(vIJ.ZL)), (/i=l,2) 

(426) 

.(/» •Z{aL^ Re(TUtL) + aLW Im(TiJtL)} +cb i/33 (42c) 

a,/1' = E{«L<I)JRe(r,y,L) + aL("/w(r(/-,L)) (42d) 

Equation (17) has been used in reducing equations (42a, 42b). 
The reason <7,y(2> is absent in equation (41) is because we have 
chosen a(1) and a(2) such that u,(2) is a rigid body rotation and 
hence a,-/2' associated with w,(2) vanishes. Notice that (7,y(1) and 
o,j (p) are constants. By equation (41), a,-, is constant and we 
have a uniform stress solution. For composites other than 
(0/90), (6/-6), and the special family of (0/0'),which has 
already been mentioned, it was found that equation (37) does 
not hold and hence no uniform stress solutions exist. 

Numerical calculations for the composites given by (34) and 

(35) for (0/90), (0/ - 0), and the special family of (0/0') show 
that <jy(1) of equation (42rf) have the expression 

..(') = 

0 0 0 

0 0 1 

0 1 0 

(43) 

when a(1) of equation (39) is properly normalized while au
 ip) 

has the form 

.(/» 

0 0 0 

0 522 0 

0 0 ff33 

(44) 

The values of a22 ( = o 2 2 ' ) and a33 (=o 3 3 ' ) for (0 / -0 ) 
composites are given in Table 3. It is interesting to notice that 
for (15/ - 15) of composite W, a22 is more than five times the 
value of &33. In other words, the interlaminar normal stress at 
the free edge of the interface is more than five times the 
applied extensional stress. This interpretation, of course, is 
based on the assumption that no singularity of rs is present. 

We also calculate a22 and o33 for (0/90) composites. 
However, the results will be presented in a later section when 
we discuss the solution for composites other than (0/90), 
(0/ - 0), and the special family of (0/0'). 

5 Uniform Stress Solution (e3 ^ 0) - Alternate Method 

In this section we reconsider the uniform stress solution 
obtained in the preceding section by using an alternate ap­
proach. With this approach, we not only obtain explicit ex­
pressions for <j22 and a33 of equation (44), but we also see 
clearly why a uniform stress solution fails to exist for com­
posites other than (0/90), ( 0 / -0 ) , and the special family of 
(0/0'). 

For the composites considered here, the material in each 
layer is symmetric with respect to the (X[, x3) plane and hence 
[25,26], 

514 = *16 = s 2 4 = 5 2 6 =^34 = 5 3 6 =SS4 = S56 = 0 (45) 

By applying these material symmetry properties along with 
the stress-free boundary conditions, equation (21), equation 
(7) can be written for /= 1, 3, 5 as 

e, = sl2o2 +5,30-3 (46) 

e3=s32a2+s33a3 (47) 

£5=^5202+.55303 (48) 

Solving for a3 from equation (47), and eliminating a3 in (46) 
and (48) we have 

O3 = e3/S33 - C S 3 2 / * 3 3 ) 0 2 ( 4 9 ) 

e, = JJ,e3+/?12ffj (50) 

e5 = R5e3+Rs2a2 (51) 

where 

* i 

Rn 

R5 

R52 

= 

= 

= 

= 

5 13/ 5 33 

s\2 ~Si3S32/S33 

5 53/ 5 33 

552 ""553532/533 

(52) 

4This special family of (e/e') composites is shown in Figs. 5 and 6 by the The interface continuity conditions of equation (22) are 
curve k=0 which begins at (0/0) and ends at (90/0). e q u i v a l e n t t o 
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Composite 

W 

Composite 

T 

Table 3 

e 
522 = 5 2 2 ' 

533 = 533' 

522 = 522' 

533 = 533 ' 

ff22 and ai3 

15deg 

191.14 

35.231 

71.464 

23.032 

of equation (44) for (0/ - 0) composites 

30deg 

29.887 

7.2214 

16.660 

6.5434 

45deg 

8.2424 

3.4618 

5.9075 

3.3082 

60deg 

1.4187 

2.2766 

2.2697 

2.2137 

75deg 

-1.2079 

1.8203 

0.8352 

1.7821 

The unit for ay is 6.894757 x 106 kPa (106 psi) 

[£l] = [e3] = [e5]=0 (53) 

Applying equations (23) and (53) to equations (50) and (51), 
we obtain, 

[Rl2]a2 + [*i]e3=0 

[R52}a2 + [Rs]e3=0 

(54) 

(55) 

For cross ply composites, i.e., (0/90) composites, 
R5=RS' =Rsl=Rn' =0. Hence equations (55) is au­
tomatically satisfied and equation (54) yields 

a2=-t,[R,V[Rn\ (56) 

For (6/-0) composites, Rn=Rl2' and R1=RI'. Equation 
(54) is automatically satisfied and equation (55) provides a2: 

°2=-*3lRsVlRn] (57) 

Equations (54) and (55) are also compatible if they are linearly 
dependent. This, as we will determine later, occurs for the 
previously mentioned special family of (0/0'). For other 
(6/6') combinations, equations (54) and (55) contradict each 
other. This indicates that a uniform stress solution due to the 
prescribed e3 extension does not exist. It also explains why 
equation (37) does not hold for composites other than (0/90), 
(6/ - 0), and the special family of (6/6'). 

When a uniform stress solution exists, a2 is obtained from 
equation (56) or (57), a3 is obtained from equation (49), while 
CT4 is arbitrary. Thus the stress can be expressed in the form of 
equation (41) with <jyw and aiJ

ip) given by equations (43) and 
(44). £f22 in equation (44) is the coefficient of e3 in equation 
(56) or (57). With CT22 so obtained, a33 is determined from 
equation (49). 

6 Logarithmic Singularity 

If equation (37) does not hold, a uniform stress due to a 
uniform extension e3 does not exist. In such a case, instead of 
using equations (15) and (16) we use the following solution: 

55 
[E(ALvuZL

l + t+BLvliLZL
i+*)/(l + 8)}+eJ6Bxi 

°iJ = 35 ( £ C*4 L TiJ,L ZL
6+BL fy,L ZL «)] + Cij33 e3 

(58) 

(59) 

where AL, BL are now functions of 5. It can be shown that 
equations (58) and (59) satisfy equations (l)-(3) with p, vit 

and Ty given by equations (13ft), (11), and (12). If 5 is real, 
then using equation (28), we may write equations (58) and (59) 
as, 

+ ajm (vu fL' +6))/(l + 5)] + e3 5/3x3 (60) 

[ ' " 6 I ) («^e(r ,y , i f i
6 ) + a i /w(r , y , L f i

i ) ) ] + ciJi3e3 (61) 

where aL, aL are real functions of 5. Performing the dif­
ferentiation, we obtain 

d 
^ 9 5 

M/ = r1 + 6 ( / « r + d / d 6 ) £ i « L , R e K i f L
1 + 6) 

+ a L / m ( i v f L
1 + 6 ) ] / ( l + 5 ) + e35;3x3 

a0 =rs(ln r+d/d8)*£ [aLRe(TijyL{L
5) 

(62) 

+ aLIm(Ty,LtL
s)}+Cy3iei (63) 

Equations (62) and (63) differ from equations (29) and (30) by 
a factor of (In r+d/dS). If we substitute equations (62) and 
(63) into the free-surface conditions, equation (21), and the 
interface continuity conditions, equations (22) and (23), we 
obtain 12 equations which can be written as (cf. equation (24)) 

r\ln r+d/d8)K(S)a(8) = eib (64) 

K(0)a(0) = 0 

{K(5)a(5)}l5=0 = e3b 

where a, whose components are aL,aL, aL', aL', is now a 
function of 5. This equation holds for arbitrary r if we let 
5 = 0, and 

(65) 

a g < " v / — . " / » • «=o - - j " ( 6 6 ) 

For simplicity, we write equations (65) and (66) as 

Ka = 0 (67) 

(dK/d8)a + K(da/d8) = e3b (68) 

where it is understood that all quantities on the left-hand side 
of (67) and (68) are evaluated at 5 = 0. Equations (67) and (68) 
consist of 24 equations for a and da/d8. If a solution exists, 
substitution of a and da/d8 back into equations (62) and (63) 
with 5 = 0 provides the desired solution. 

Before we discuss the solution of (67) and (68) in the next 
section, we write equations (62) and (63) in full with 5 = 0: 

Ui = (In r) L{aLRe(vuZL) + ajm (vKLZL)} 

+ LlaLRe(vitLZL(lntL-l)) + aLIm(viiLZL(ln{L-l)) 

+ (daL/d8)Re(vhLZL)+(ddL/d8)Im(vhLZL)}+ei8i3x} (69) 

av = (In r)E [ aLRe(TiJ:L) + dLIm( TUIL) ] 

+ Z{aLRe(TUyL)ln{L) + aLIm(TilLln{L) 

+ (daL/d8)Re(TijiL) + (daL/d8)Im(Ty,L)} +ciJ33e3 (70) 

We see that ay has a logarithmic singularity. Again, equation 
(17) has been used in deducing equation (69). 

7 The Logarithmic Stress-Intensity Factor 

The system of equations, equations (67) and (68), has a 
unique solution for a if (see [10]) 

c^IlK W/d8N*0, N=n-m, (71) 

where n and m are, respectively, the order and rank of K. For 
the composites considered here N=2. However, it is rather 
difficult to prove or disprove equation (71) analytically or 
numerically in view of the fact that K is a 12 x 12 matrix. 
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Table 4 ay of equation (79) for composite W, (0/0 ') 

0' 15deg 30deg 45 deg 60deg 75 deg 90deg 
~lc 0.0022 0.0033 O0042 0.0040 0.0025 0 

5n(0) 0.0221 0.0145 0.0102 0.0056 0.0016 0 
5n'(0) -0.0222 -0.0149 -0.0112 -0.0067 -0.0021 0 
522(90) 190.43 29.599 8.0106 1.2162 -1.3911 -2.1000 
522(0) 190.45 29.613 8.0208 1.2218 -1.3895 -2.1000 
522'(-90) 190.47 29.628 8.0310 1.2274 -1.3880 -2.1000 
533(90) 59.990 26.216 21.682 20.256 19.708 19.559 
533(0) 60.000 26.222 21.687 20.258 19.708 19.559 
533'(0) 35.132 7.1872 3.4312 2.2440 1.7848 1.6590 
533'(-90) 35.137 7.1903 3.4340 2.2461 1.7856 1.6590 
523(90) 0 0 0 6 0 0 
523(0) 0 0 0 0 0 0 
523 '(-90) 0.0003 0.0006 0.0007 0.0004 0 0 
513(0) -0.0035 -0.0052 -0.0065 -0.0063 -0.0040 0 
513'(0) 0.0034 0.0048 0.0059 0.0059 0.0039 0 
5 n(0) 0.0140 0.0092 0.0065 0.0035 O0010 0~ 

The unit for k and ay is 6.894757 x 106kPa(106psi) 

Table 5 ay of equation (79) for composite T, (0/0') 

6^ 15 deg 30 deg 45 deg 60 deg 75 deg 90 deg 
k 0.0349 0.0610 0.0729 0.0658 0.0394 0 

5n(0) 0.2203 0.1919 0.1335 0.0695 0.0192 0 
Sn'(0) -0.2218 -0.1990 -0.1467 -0.0817 -0.0238 0 
522(90) 62.232 13.729 3.3929 0.0314 -1.2148 -1.5400 
522(0) 67.452 13.921 3.5264 0.1009 -1.1956 -1.5400 
522 '(-90) 67.672 14.115 3.6623 0.1729 -1.1753 -1.5400 
533(90) 40.825 25.844 22.950 22.009 21.660 21.569 
533(0) 40.948 25.952 23.025 22.048 21.671 21.569 
533'(0) 22.241 6.0686 2.8463 1.7151 1.2441 1.1088 
533 '(-90) 22.260 6.0653 2.8494 1.7218 1.2474 1.1088 
523(90) 6 0 0 0 0 0 
523(0) 0 0 0 0 0 0 
523'(-90) 0.0036 0.0115 0.0118 0.0062 0.0011 0 
&i3(0) -0.0549 -0.0959 ^0.1145 -0.1034 -0.0619 0 
5,3'(0) 0.0498 0.0893 0.1076 0.0997 0.0612 0 
512(0) 0.1444 0.1258 0.0875 0.0455 0.0126 0 

The unit for k and ay is 6.894757 x 106 kPa (106 psi) 

Instead, we regard equations (67) and (68) as a system of 24 
equations for a and da/db, and solve the system numerically. 
We find that a is unique while da/db has a particular solution 
and two arbitrary solutions. 

Noting that N=2, one can see that K has two right 
eigenvectors a(1) and a(2) such that 

Ka<">=0, (« = 1,2) (72) 

If a is the unique solution of equations (67) and (68), it must 
also be a solution of equation (67), and hence a is propor­
tional to a right eigenvector. Without loss of generality, let 
a(1) be the eigenvector to which a is proportional, i.e., 

a = Are3aW (73) 

Since a is unique, k is uniquely determined if a(1) is properly 
normalized. The fact that da/db has two arbitrary solutions is 
obvious from equation (68) because the coefficient of da/db is 
K which is singular of order two. If e3(da/db){p) is a par­
ticular solution of da/db, we have 

da/db = e3 (da/db){p) + a, a<" + a2 a
(2) (74) 

where a , , a2 are arbitrary constants. With equations (73) and 
(74), equations (69) and (70) can be rewritten as 

«,• = ke3 {(In r)Uim + «,-<*>) + e3u, <"> + a, u,m + a2w,<2) (75) 

att = kei I ! In r)au
m + *„<•>} + e3au

{p) + a, <r,y(1) (76) 

where «,-(1), «,(2), and aym are defined in equations (426) and 

(42d), while 

u,^ =-L[{.daI./dS)^Re(vlj.ZL) 

+ (daL /db) w Im (vhLZL)} + bi3x3 (11a) 

«,<•> = ZiaLVRe(Vi,LZL(lnSL-\)) 

+ aL^Im(vhLZL(ln^L-\))} (lib) 

<jy^=i:\daL/db)^Re(TytL) 

+ (daL/db)^Im(TytL)} +c W 3 (77c) 

V*» = L[aL^Re(ry,LlHL) + aL^Im(TiMln^)} (lid) 

Again the reason ay(T} is missing in equation (76) is due to the 
fact that M,-(2) is a rigid body rotation. 

Although the solution obtained here is for composites other 
than (0/90), (6/-0), and the special family of (0/0'), ap­
plication of the present solution to these three cases yields 
k = 0. Hence a = 0 by equation (73), and the solution for da/db 
from equation (68) is identical to the solution for a in 
equation (31). It follows that (da/db)(p) of equation (74) is 
identical to a*' of equation (39), and that «,<p), oy{p) in 
equations (77a) and (77c) and equations (42«) and (42c) are 
also identical. Thus, the solution obtained in equations (75) 
and (76) reduces to that given in equations (40) and (41) when 
the composite is (0/90), (0 / -0 ) , or the special family of 
(6/9'). 
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Q 

Fig. 5 ft of the k(ln r) singularity for composite W. The unit for k is 
6.89457 x 10ekPa(106psi). 

When k^O, we see from equation (76) that ay has a 
logarithmic singularity unless e3 = 0. Therefore, unless e3 = 0, 
the stress is inherently singular for composites for which k^O. 
Moreover, the singularity is logarithmic. Since the larger the 
value of k the stronger the logarithmic singularity, k may be 
regarded as the "logarithmic stress-intensity factor." It 
should be pointed out that the singularity of k*rs, (<5<0), as 
analyzed in Section 3, may still exist for ail composites. 
However, the determination of the intensity factor k* requires 
a global solution while kin equation (76) does not. 

For the purpose of presenting numerical results, we write 
equation (76) as 

«r„ = {/fce3 {In r) + a,) <j/> + e ^ ( 0 ) (78) 
where 

»„(*) = *a<,<«+ *„<"> (79) 

For the composites considered here, a,/1' has the form given 
in equation (43) if a()) of equation (73) is properly normalized. 
Although <Tylp) is constant, a^* is not. Hence ay (0) and oy' 
(0) depend on 0. In Tables 4 and 5 we list the value k and 
Ojj{<t>) and 5y '(0) on the interface (0 = 0) and on the free-edge 
surface (0= ±90 deg) for the (0/6') composites. Notice that 
^li = ~°M = ^ 1 3 = 0 a t 0 = 90 deg. Similarly 
an ' = CT12 ' = &i3' = 0 at 0 = - 9 0 deg. Hence these com­
ponents are not listed in the tables. Also, since a22' = ^22. 
&21' = ^21. and 523 ' = cr23 = at 0 = 0, only 522(0), 521(0), <r23(0) 
are listed. Similar tables for other (6/6') combinations can be 
found in [27]. 

For (0/90), (<?/-<?), or the special family of (6/6') com­
posites, k = 0, and equations (78) and (79) reduce to 

ay = ajCyW + eiOy (80) 

~°ij = ou
W (81) 

0 15 30 45 60 75 90 

Fig. 6 k of the k(ln r) singularity for composite T. The unit for k is 
6.894757 x 106 kPa(106 psi). 

dy is now independent of 0. This agrees with the result ob­
tained in equation (41). The numerical calculations of oy for 
(0/90) composites are included in Tables 4 and 5, while those 
for (6/ - 6) composites were given in Table 3. 

Again notice that 522 for the (0/15) composite in Table 4 is 
many times larger than 533 and a33'. In other words, the 
interlaminar normal stress at the interface is many times 
larger than the applied axial extensional stress. This may not 
be important here since the logarithmic singularity is present 
for a23. 

Finally, the values of k for all possible combinations of 
(6/6') are presented in Figs. 5 and 6. Again, curves of con­
stant k are given only in one quarter of the (6/6') plane 
because the curves in the rest of the plane are a repetition of 
the curves shown. We see that there are three contour lines 
along which k = 0. The first line is along 6' =6. This is a trivial 
case because 6' = 6 implies that the layer on both sides of the 
interface have the same fiber orientation, and hence there 
exists no real interface and no logarithmic singularity. The 
second line is along 6' = -6. This is the (6/ - 6) composite and 
the analysis presented earlier predicted that A: = 0 for this 
composite. The third line along which k = Q starts at (0/0), 
runs slightly above the horizontal line 6' =0, and ends at 
(90/0). This is the special family of (6/6') composites referred 
to earlier. For this family of composites, equation (37) holds 
and equations (54) and (55) are compatible. Notice that (0/90) 
is a member of this family because the singularity of (0/90) 
and (90/0) are identical. Figures 5 and 6 show that the largest 
absolute value of k occurs at (90/6') where 6' is near ±15 
deg. Thus for the composites considered here, the logarithmic 
stress singularity is the strongest for the (90/15) and (90/ - 15) 
composites. 

8 Concluding Remarks 

The analysis presented here shows that the stress near the 
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free edge of the interface in a (6/9') composite subjected to an 
extensional strain of e3 is given by 

oy=k*r*o*+ike3(lnr)+al)ouw+e35u (82) 

where 5<0, k*, k, a, and a,-/1' are constants while <r,y* and dy 
depend on 4>. Knowing the fiber orientations 6 and 6', the 
analysis presented here provides all quantities in equation (82) 
except k* and a^ which have to be determined by solving the 
complete boundary-value probelm. Therefore, the existence 
of the r6 singularity depends on the stacking sequence and the 
complete boundary conditions while the existence of the (In r) 
singularity does not. For composites other than (0/90), (6/ -
6), and the special family of (6/6') shown in the paper, it was 
shown that k^O, and hence the free-edge stress is inherently 
singular. 

It should be pointed out that if 8 < 0 is a double root of 
equation (33) one would have, besides the rh singularity, a 
singularity of the form rh (Inr), [11], For the composites 
considered here, <5<0 appears to be a simple root of equation 
(33). It should also be noted that even though the layers are 
assumed to be of the same orthotropic material for the 
numerical illustrations, the theory presented here applies to 
any anisotropic layered composite. 
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On the Stability of Waves in a 
Thin Orthotopic Spinning Disk 
A system of two ordinary coupled differential equations with periodic coefficients 
of the Mathieu type for two temporal perturbation parameters is derived. A closed-
form solution of the system in terms of elementary functions is found and 
discussed. A condition for the wave stability involving the coefficients of anisotropy 
is established. Illustration involves a specific range of these coefficients. 

Introduction 

The last two decades have seen a revived interest in the 
nonlinear phenomenon involving transverse vibrations and 
circumferential waves occurring in thin membrane-like 
spinning disks [1-5]. Most of the earlier work concerned the 
isotropic materials, but the development of composites en­
dowed with certain types of anisotropic structure made it 
useful to reconsider the problem in a more general, i.e., 
anisotropic, setting. The conclusion of the studies was rather 
encouraging: it appeared that the anisotropy of the material, 
through an appropriate choice of elastic moduli, influences 
strongly the induced motions and stresses in the spinning disk. 
This involves, in particular, the circumferential transverse 
waves whose stability with respect to a specific perturbation is 
the topic of the present paper. 

As is well known, the waves induced by the rotation of the 
disk propagate both forward, in the direction of rotation, and 
backward. The latter are primarily responsible for failures of 
the disks, and their sustenance is chiefly attributed to the 
presence of the atmosphere, thus far ignored in theoretical 
studies. 

In [6], we discussed the stability of circumferential waves in 
a disk of orthotropic material with respect to a temporal 
perturbation of motion. We arrived at a system of two or­
dinary differential equations for two perturbation 
parameters. The equations were of the second order, coupled, 
with periodic coefficients, and were examined in two of their 
simpler alternatives. In the present paper, we wish to discuss 
the solution of the equations in a complete form. It turns out 
that, despite the complexity of the equations, their solution 
can be put into a closed form in terms of elementary, prin­
cipally trigonometric and hyperbolic functions. 

We first record the main equations governing motions of an 
anisotropic membrane-like spinning disk free from external 
tractions. By confining the investigation to the mode with two 
nodal diameters and no nodal circles, we impose small per­
turbations on the time functions appearing in the expression 
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for the deflection. An analysis of the solution of the so-called 
"variational" equations for the perturbation parameters, 
gained by an appropriate trigonometric transformation, leads 
to a condition for the stability of motions dependent on the 
coefficients of anisotropy of the material of the disk. 

General Equations 

To make this study relatively self-contained, it is helpful to 
recall that the transverse deflections of a spinning orthotropic 
disk are governed by two equations [2], one of which is the 
equation of motion and the other one of compatibility of 
deformations. The equations are: 

(I 17 + • 
1 d2<j> \ d2w / 1 dw 1 d2w \ d2<j> 

de2 
\ dlw ( 

dr + r2 dd2 ) dr2 

dr\ r dd / dr\ r dd J 2P w 

-pQ2r 
dw 

~dr~ 

d2w 

dt2 (1) 

and 

d4<t> 

~drT 

d4<jy k2 d4<t> 2 3 3 0 

dr2dd2 
de" 

k2 32<£ p + lk2 d4</> 

dr2 de" 

r dr3 

k^_ dj>_ 

P dr 

33<ft 
drdd2 

_ [" 1 / dw 1 32w \ 32w 1 / 3 2 w \ : 

l / dw \21 

(2) 

2 dw d2w 1 
• + -

30 drde 

respectively, where w = w(r,6;t) is the transverse deflection 
of the membrane-like disk, V2 is the plane Laplacian, 
k2 = Ee/Er, p2 = {Ee/Gre)-2Vl), and 5 = k2+2ve-3. 
Furthermore, Er and E9 designate Young's moduli in the 
radial and hoop directions, respectively, GrS is the shear 
modulus, p is the mass density of the material of the disk, and 
ve is Poisson's ratio associated with the radial tension, fi and 
4> are the constant angular velocity of the disk and the stress 
function, respectively. Finally, we have the known relation, 
Erv„ = Eevr. 
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Fig. 1 Parameter y versus the coefficient of orthotropy k 

As the boundary conditions, we take 

Trr(b,0;t)=0, Tre(b,6;t)=0, (3) 

which express the absence of external radial and hoop trac­
tions at the edge r = b of the disk. Our investigation involves 
the mode of propagation of circumferential waves with no 
nodal circles and two nodal diameters. This mode is of special 
importance, inasmuch as it corresponds to the gravest mode 
of vibration in the linear case; it is represented in the ex­
panded form by 

w(r,6;t) =A( — j [cos20cos2ct=Fsin20sin2ct], (4) 

where the upper (lower) sign refers to the backward (forward) 
traveling wave, and A denotes the amplitude of the wave. 
Following [5], we impose on the deflection w(r,6;t) of the 
disk two slight temporal perturbations, 6^(0 and 52(0> of the 
time functions cos 2ct and sin 2ct obtaining 

w{r,6;t,d)=A ay ( cos 20 [cos 2ct + 5, (/)] 
(5) 

+ sin 20[ =F sin 2ct + <52 (01) • 

We say that the wave motion is stable with respect to the given 
perturbations if the solutions of the "variational" equations 
satisfied by the perturbations 6] ( 0 and 82(t) are bounded 
functions of time. On the contrary, we say that the motion is 
unstable if the solutions of the equations are unbounded 
functions of time1. We restate that in equation (5), as well as 

More precisely, it is required that the perturbations remain small at all 
times. This guarantees smallness of the deviations of the perturbed deflections 
from the original ones, and roughly corresponds to the Liapounov criterion of 
stability (cf., e.g., [8], p. 133). 

everywhere throughout this text, the upper (lower) sign is 
associated with a backward (forward) traveling wave. 

A lengthy computation using an orthogonalization 
procedure (see [6]) results in the following equations, central 
to our subsequent discussion, and obtained from equation (1): 

8"+[d+y(l +COS2T) ]5 ! = T 7 s i n 2 r - 5 2 + ( l -d) COST, 
(6) 

62 +[tf+7(l-cos2T)]o2 = T7Sin2T-51 =F(l-tf) sin T. 

Here, 

EeA
2(5k-3) 

c2(9-k2)pb'ik' 
d=y + 

= 2ct, 

( 5 - " « ) 0 2 

8c2 

(6a) 

and the prime superscripts denote differentiation with respect 
to T. 

We note that in the isotropic case in which k = 1, there is d 
= 1 and 

„ EA2 

Apb* 
+ • 

5 - c . 
- f l 2 (6b) 

(see [6], equation (20)). 
The left-hand members of equations (6) are clearly of the 

Mathieu type. Although linear, they exhibit two unwelcome 
features: variable coefficients and coupling. For those who 
recall the intricacies involved in the analysis of the seemingly 
innocent looking standard Mathieu equation (cf., e.g., [7]), it 
comes rather as a surprise that the system (6) admits a closed-
form solution in terms of elementary functions. To 
demonstrate this, it is more convenient to discuss the system 
(6) in its homogeneous form. This follows from the ob­
servation that the particular integrals of the system are 

5? = /3 cos r, 8°2 = =F /3 sin r, (7) 
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where fi = (1 — d)/(d+2y- 1). Inasmuch as the foregoing 
expressions constitute bounded functions of T, they do not 
influence the stability of the solution of the system (6), and 
may, therefore, be put out of mind. We are thus left with the 
system, or more exactly with two systems: 

Table 1 Three alternatives of the solution 

5{'+(a + ycos2T)8l = ±7sin2T«82 , 

81 +(a — 7 C O S 2 T ) 8 2 = ±7sin2T"S,, 
(8±) 

where a = d+y. Now, it is easy to see that if the solution of 
(8 +) is 5j1" and 82

+ , say, then the solution of (8 - ) is 5f = 8 + 
and 82~ = - <52

+ . In terms of stability, it therefore suffices to 
consider but one of the two systems, say (8 +) , associated with 
the backward traveling wave. Thus, all conclusions reached 
with regard to the stability of the last named wave also 
characterize the behavior of the forward traveling wave (with 
accuracy to the appropriate sign). 

Since this result holds for the orthotropic materials, all the 
more it holds for the isotropic one. Consequently, the 
isotropic case solution, in the otherwise brilliant paper [5], 
implying simultaneous stability of the backward traveling 
wave and instability of the forward traveling wave cannot be 
correct. Actually, the equations (19) in [5] for 8j+ and 8f (de­
noted there be e, and e2) are free from error, while the 
equations (23) for 8f and 82~ (denoted there by e3 and e4) are 
not. This may be verified by observing that expressions (23) in 
[5] do not satisfy the governing equations (22) in [5] (at least 
the present author was unsuccessful in demonstrating such 
satisfaction). Likewise incorrect becomes, based on the in­
correct result in [5], that portion of the sentence in [6] 
(following equations (32b) in [6]) that concerns the stability of 
the forward traveling wave. 

We now apply the "rotational" transformation 

« = 8,sin T+82COS 7, v = 8]cos T — 82sin T, (9) 

and by simple manipulations cast equations (8 +) in the form 

ulv+2(a+ \)u" + [ ( a - l)2 - 7 2 ] « = 0, (10) 

vlv+2(a+l)v" + [(a-l)2-y2]v = 0, (ID 
in which the functions involved become separated and the 
coefficients constant. In the isotropic case, we have a = 1 + 7, 
and one recovers the solution (19) derived in [5], 

For the sake of argument and to avoid too many 
technicalities, let us confine our discussion to the case in 
which the orthotropy of the material is not too excessive. We 
thus assume that the coefficient of orthotropy k2 = Es/Er is 
contained in the half-open interval [0.36, 9], say. This in­
cludes such materials of rather different mechanical 
properties as plywood (k2 = 0.5 or A:2 = 2, respectively) and 
borsic-aluminum composite {k2 = 0.4 or k2 = 2.5, respec­
tively). 

As seen in Fig. 1, in the corresponding interval, in which 0.6 
< k < 3, the coefficient 7 is positive. Consequently, a > 0, 
and the discriminant A of the characteristic equation 
associated with equations (10) and (11) is positive, A = 
4a + y2 > 0. With these data in mind, the roots of the 
characteristic equation become 

(12) = - a 2 - 0 , = [ - ( « + l) + (4a + 72)'/'] 2\ ' / i l ' / i 

a3 = -a4=W2=i[(a+l) + (4a + y2yA]]A. (13) 

As a consequence, one arrives at three alternatives of the 
solution characterized in Table 1. 
It is immediately seen (without recourse to the explicit 
solution) that the alternative (I) represents an unstable 

Roots 

<*i 
Oil 
Qf3 

a 4 

7 (D , 
7 2 > ( a - l ) 2 

real pos. 
real neg. 
imag. pos. 
imag. neg. 

, (ID , 
7

2 = ( a - l ) 2 

0 
0 

imag. pos. 
imag. neg. 

, (HI) , 
7 2 < ( a - l ) 2 

imag. pos. 
imag. neg. 
imag. pos. 
imag. neg. 

(14) 

motion, as follows from the existence of the real positive root 
a , . The same concerns the isotropic case (alternative (II)) on 
account of the presence of the double root a, = a2 = 0 that 
implies a term proportional to T. On the contrary, alternative 
(III) characterizes a motion that is stable. Alternative (I) being 
the most diversified, it is of interest to record the associated 
solution explicitly as follows: 

8, = Cx [sinh /3,7-sin r + X, cosh /3, T «COS T] 

+ C2[cosh /3,T «sin T + X, sinh /3,T «COS T] 

+ C3[sin /32T -sin T + X2 cos /327 -COS T] 

+ C4[cos j32r»sin r — X2 sin/32T«cos r], 

52 = C, [sinh /3, r »cos T — X, cosh /3[ T »sin T] 

+ C2[cosh PXT «cos T —\, sinh J3,T -sin T] 

+ C3 [sin (32T »cos T — X2 cos |32T «sin T] 

+ C4 [cos j82 T • cos T + X2 sin /32 r • sin T]) 

where 

Pt + a-y-l 2/3, 

(15) 

X,= 

X,= 

20, 

ffl-a+7+1 

2/32 

- / 3 2 - a - 7 + l ' 

2/?2 

Pl-a-y+1 ' 

(16) 

Conclusions 

It is shown that, in the orthotropic case, the stability 
conditions for forward and backward traveling waves are the 
same. Consequently, the isotropic case solution derived in [5], 
and implying the opposite, is partially incorrect. Also in­
correct is the respective inference in [6] based on [5]. 
Illustration given involves limited values of the elastic 
parameters, but the study may be extended to a more 
exhaustive analysis of the related characteristic equations. 
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Efficient Pulse Shapes to Deform 
Beams With Axial Constraints 
The transient motion of a simply supported, rigid-plastic beam in response to a 
uniformly distributed pressure pulse of arbitrary shape is determined. The beam is 
subject to an axial force in addition to the transverse pressure. This axial force is a 
parameter that can approximate constraint forces resulting from deformation of 
beams with fixed or elastically restrained ends. The pulse shape that maximizes 
deflection at the center of the beam is determined for a specified applied impulse. 
When a transverse pressure applies a limited amount of impulse to the beam, an 
impulsive load causes the largest deformation. Axial force decreases the defor­
mation but has no effect on the most efficient pulse shape. 

Introduction 
In some dynamic loading systems, the pressure applied to a 

workpiece can be a controllable function of time although the 
total impulse applied is fixed. In these systems, what pressure 
pulse shape, p(t), results in the largest central deflection of 
plastically deforming beams? 

For small deformation of rigid-plastic beams, an impulsive 
pressure has been shown to be most effective in causing 
deflection [1, 2]. This same pulse shape will be shown to be 
most effective also when the beam is subjected to constant 
axial force in addition to the transverse pressure. By setting 
the axial force equal to the yield force, this analysis can ap­
proximate the deformation-dependent constraint force 
resulting from ends fixed against axial displacement. This 
approximation is consistent with approximating the hyper­
bolic yield condition of a rigid-plastic beam by a rectangular 
yield condition. The technique used to determine the most 
effective pulse shape is based on the calculus of variations and 
is more direct and generally useful than an earlier proof [1]. 

The effect of pulse shape on the response of rigid-plastic 
structures was previously investigated by Symonds [3] and 
Youngdahl [2, 4]. Youngdahl showed that two variables, 
impulse and an effective pressure are sufficient to determine 
the dynamic plastic deformation of four structural elements 
subjected to time-dependent pressures. Krajcinovic [5] proved 
this correlation to be exact for time-independent deformation 
modes and a good approximation for higher pressure loadings 
where time-dependent deformation modes exist. Hence, when 
a specified impulse is applied, deformation is a monotonically 
increasing function of effective pressure. This is only true 
with axial forces if appropriate parameterization of the axial 
force is used. 
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Cambridge CB2 lPz, England. 
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The beam with an axial force is significantly different from 
Youngdahl's examples in having an internal-energy 
dissipation rate term that depends on deflection. The element 
stiffens with increasing deflection. This term becomes in­
creasingly important with larger deformations, irrespective of 
whether the axial force is imposed or develops from fixed-end 
conditions. 

This investigation does not address the coupling between 
axial force and bending moments in plastically deforming 
sections. Those interactions are eliminated by an ap­
proximation to the yield condition that is used for analytic 
simplification. 

Analytical Model 
The simply supported beam shown in Fig. 1 is subject to a 

suddenly applied, uniformly distributed pressure, p(t). This 
beam is of unit width and has a mass, p, per unit length. It is 
initially straight and at rest. 

Consider a beam composed of a rigid perfectly-plastic 

(a) pL 2 -6M Q -oo 2 J [L I -4M t]cosu>(ta-t)dt«0 

J " f " " ' 

rta 
b) pL2-6l^-u?J [LI -4MQt]cos UJ (tQ-t)dt > 0 

Fig. 1 Low and high pressure deformation modes 
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Fig. 2 Beam segment being analyzed 

material so that the moment curvature relation is a step 
located at the origin.2 The static collapse mode for this rigid-
plastic beam with uniform loading is a single "plastic hinge" 
located at the center of the beam. The hinge separates two 
rigid segments that rotate about the end supports. 

Let the yield moment be My
 3 . As long as the pressure is less 

than the static collapse pressure, py = 2My/L
2, the bending 

moment throughout the beam is less than yield and no motion 
occurs. Whenp > py, motion begins. For convenience, time 
is measured from the instant this inequality is first satisfied. 
At t = 0, depending on the pressure, either one or two plastic 
hinges are formed. If the initial pressure 1 < p(0)/py S 3 
there will be a hinge at the center of the beam as shown in Fig. 
1(a). Up(0)/py > 3 the single hinge deformation mode results 
in a moment M(x) > My for some 0 < x < L. Consequently, 
to satisfy the moment-curvature relation, two symmetrically 
located hinges shown in Fig. 1(b) will occur. Between the 
hinges, M{x) is constant. The double hinges move along the 
beam as a function of both applied impulse and time. As 
deformation proceeds, the axial force, N, remains constant 
along the length. (It is assumed there is only transverse motion 
of the beam.) Toward the end of the loading pulse, as pressure 
and beam momentum decrease, the hinges move toward the 
center and coalesce. When the motion remains flexural, the 
final stage is always the single hinge mode. 

To analyze the motion of the beam, assume a kinematically 
admissible velocity field. 

u(x,t) = U{t) 

ii(x,t) = U(t)[(L-x)/(L-s)] 

x<s 

x>s 
(1) 

where u is the transverse velocity and U(t) = u(0,t) is the 
center velocity. Symonds [3] has shown this velocity field is 
exact for monotonically decreasing pressures but only ap­
proximate otherwise. (With increasing pressures and outward 
moving hinges, u varies for x < s although u is constant in 
this region.) Using the assumed velocity field, the law of 
momentum for half the beam about the end results in 

pU[L2-(L-s)2/3]=LI/2-2[ (M+NU)dt 
Jo 

(2) 

where / = \'fiLp (r)dr is the total impulse applied since t = 0, 
Mis the bending moment at a plastic hinge, and Nis the axial 
force. 

For an axially loaded beam, hinge moment and axial force 
are related through the yield function. In a rigid-plastic beam 
with rectangular cross section, the yield condition is 

l=IMI/M 0 +(7WVo) 2 (3) 

Conditions for real structures wherein the rigid-plastic material idealization 
is useful have been discussed by Symonds [61. 

In a rigid-plastic beam, the axial force, N, reduces the yield moment, My = 
Mo(l - f(N/No)) where Mo is yield moment (with no axial force), No is yield 
force (with no moment), and/is a function of cross-section shape. 

Fig. 3 Yield surface of rigid-plastic beam 

The fully plastic hinge moment or axial force in a beam of 
rectangular cross section and unit width would be 

MQ = ff0J*V4, N0 = a0H (4) 

where a0 is the yield stress and His the beam depth. 
Hence, the yield condition is the pair of parabolas shown in 

Fig. 3. Axial force reduces the moment at a plastic hinge. This 
model of beam response is limited by the yield condition and 
"flow rule" to displacements U/H ^- Vi for a fixed-end 
constraint. For larger displacements with this boundary 
condition, the hinge moment is zero and a "plastic string" 
deformation mode prevails [7]. 

The hyperbolic yield condition is shown as a solid line in 
Fig. 3. Jones has shown that a square approximation to this 
yield condition (the dashed line) results in considerable 
analytic simplification [8]. This approximation generally has 
the effect of decoupling bending and axial forces in the 
yielding segments and makes these forces independent of 
deformation. With the prescribed loads, forces at a plastic 
hinge will be 

M = M 0 , N<N0 (5) 

The associated axial strain rate field will have e = 0 for N < 
N0 corresponding to an imposed axial force at beam ends that 
can move axially. When N = N0, e > 0 for — L < x < L 
corresponding to beam ends fixed against axial displacement. 
In the case of N = N0, Jones has demonstrated that cir­
cumscribing squares overestimate the forces and result in 
smaller beam displacements than the parabolic yield condition 
predicts. Likewise, inscribing squares underestimate the 
forces and result in larger beam displacements than the 
parabolic yield condition predicts. The difference between 
these bounds on the solution would be less for N < N0. The 
square yield condition approximation has been used 
throughout the following analysis. 

Evolution of Deformation 
A solution for the initial low pressure, single hinge mode of 

deformation will be 

U(t): • s : <j>cosu(t—T)dT 

•i: U(t)=<t>-w\ <l>sinw(t-r)dT, tSt, 

(6a) 

(66) 

where <j>(t) = 3(LI(t) - AM0t)/ApL2 is the velocity 
resulting from impulse in excess of the minimum required to 
maintain static collapse with N = 0 and a>2 = 3N/pL2 is a 
measure of the axial force. This single hinge mode of 
deformation continues until the applied pressure increases to 
an extent that the condition for a rigid segment M(x) < M0 
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can only be satisfied with hinges located outward from the 
center. The time, ta that double hinges first occur with any 
pressure pulse can be calculated from the condition 
d1M{0,t)/dx1 = 0 while M(0,t) = M0, 

3d)2 C'a 
0=L2p(ta)-6M0--—\ lLI(T)-4M0T]cosw(ta-T)dT 

(7) 

At the end of this initial, single hinge deformation mode, for 
Ua = U(ta),Pa = p(ta), the transition conditions are 

Ua={paL
2-6M0)/6N for N>0 (8a) 

C/„ = 0 a — OJ j <t>sin o>(ta — r)dT (8b) 

For t > ta, motion proceeds in the double hinge mode until 
a time, tb, after the pressure has dropped when the hinges 
coalesce. During the double hinge phase of motion 

1/(0 = Ua+Ua(t-ta) + [ (I-Ia)/2pLdr (9a) 

U(t) = Ua+(I-Ia)/2pL, ta£t£tb (9b) 

With the rigid-plastic material and the assumed velocity field, 
all deformation occurs at the plastic hinges although M(x) = 
M0,N(x) = Nfor x < s [7]. The hinge position during ta < t 
< tb can be calculated from equation (2). 

sAL = l - [ ( 3 t / -2 ( t / „ -<£ + </>„+co2 UdT))/U]U2 (10) 
J ta 

By setting s = 0, the time, tb, of hinge coalescence at the 
center is determined. 

0 = (Ub-Ua)-(4>b-4>a)+u2\ " Udr (11) 

The final stage of deformation, tb ^ t ^ tf is again in the 
single hinge deformation mode. Center velocity will be 

U=-u2\ Udr+^-y, tb^t^tf (12a) 

7=-«> 2 j 0 ' * UdT+<j>b-Ub (\2b) 

Recalling the expression for Ua, 

y=ub-ua 

is the change in central velocity during the double hinge 
deformation mode. Solving for the center displacement, 

U=\ (4>-7)cosco(f-7)aV, tbSt^-tf 
J 0 

(13) 

The time when motion stops, tf, is obtained from the con­
dition that beam velocity goes to zero. 

f'/ 
0 = 0 — y — col (0 — y)sm (t>(tf-T)dr (14) 

This final time depends on the entire history of loading 
whereas, without an axial force, it is only dependent on the 
total applied impulse. 

The final center displacement given by equation (13) with t 
= tf applies to general pulse shapes resulting from positive 
applied pressures. The only restriction on shape is to pulses 
that result in only a single period of time in the double hinge 
deformation mode. Pulse shapes that maximize this center 
displacement when a specified impulse is imparted to the 
beam can now be found. 

Best Pulse Shape for Specified Impulse 
An impulsive pressure causes the largest deformation of 

rigid-plastic beams from a specified applied impulse. 
This statement follows from determining the impulse 

P/PQ ~*°°, u> = 0 

0.08 

0.06 

0.04 

0.02 

8 10 

Fig. 4 Maximum beam deflection from rectangular and exponentially 
decaying pulses 

p(t)/P 

0.08 

0.06 

0.04 

0.02 

Fig. 5 Maximum beam deflection from triangular pressure pulses 

function that results in an extremal for the final center 
displacement U(tf) = S. 

S=\ (<t>-y)cosw(tf-t)dt (15) 

Since the pressure applied to the beam is restricted to 
positive values, the applied impulse is a monotonically in­
creasing function of time. 

o^nnsif (i6) 
This inequality constraint augments the relation for the final 
beam center displacement. A technique for solving con­
strained optimization problems of this type, called the slack-
variable method, was suggested by Valentine [9]. Defining a 
new constraint variable, V, where 

V2 =I(If-I)^0 (17) 
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an augmented functional can be formed from (15) and (17). 
The integrand of this functional is 
F= (LI-4M0t-4pL2y/3)cos w(tf-t) +\[I(If-I) -V2] 

(18) 
where \(t) is a Lagrange multiplier. In this formulation, 
dependence of the limit of integration, tj, on the control 
function, I(t), can be eliminated by a transformation on 
time, t = fitf, so that the time variable has values in a fixed 
range 0 S ^ = 1 [10]. After this transformation, the range, 
tf, can be regarded as a parameter with the result 

o=joF(/(/3), V)d0 (19) 

where 
F= [LI-4Motf0-4pL2y/3]tfcos[<J>tf{ 1 - 0)} 

+ X(0) [ /< / / - / ) -P 2 ] (20) 
Euler equations for variables / and V (which are necessary 
conditions for an extremal) are 

0=Ltfcosutf(\-$)+\{If-2I) (21) 
0 = 2XF (22) 

To satisfy the second equation, either X or Vis zero. Since X 
= 0 results in no admissible solutions for equation (21), these 
equations imply that the optimal solution is the equality 
constraint associated with equation (17); I(t) = If for t > 0. 
Hence, a pressure applied to a Dirac delta function in time 
results in the largest deformation for a specified impulse. 

Beam Response to Specific Pulse Shapes 
To illustrate dependence of final deformation on pulse 

shape, beam response to rectangular, triangular, and ex­
ponentially decaying pressures pulses has been obtained. In 
these pulses, both maximum pressure, P, and characteristic 
pulse duration, T, are variable. (Since the impulse is specified, 
higher pressure corresponds to shorter pulse duration.) 
Figures 4 and 5 show the final displacement non-
dimensionalized by total applied impulse, /, = \™2Lpdt, to be 
a monotonically increasing function of maximum pressure4'5. 
Thus, in agreement with the preceding proof, short high-
pressure pulses are more effective than longer low-pressure 
pulses. 

Pulses of equal duration and maximum pressure but dif­
fering shape still result in differing final deformation. Be­
tween two triangular pulses shown in Fig. 5, the more 
compact around t = 0 results in more permanent defor­
mation. (In the terms of Youngdahl, the effective pressure pe 
= P/fy'dftpdt) is larger.) The difference in effect between 
the two pulse shapes is greatest for low pressures because 
then, most deformation occurs while the pulse is acting 

This nondimensionalized displacement is not a monotonic function of 
pressure for all load parameters, e.g., ur. 

P is the maximum transverse pressure and P0 = 2M0/L
2 is the static 

collapse pressure. 

whereas with higher pressures, sufficient beam momentum is 
developed so deformation continues after pressure is 
removed. 

The effect of axial force on the deformation enters through 
the parameter u>. Since deformation with axial force dissipates 
more energy than without, axial force reduces the defor­
mation from a specified impulse. 

Conclusions 
An optimization technique based on the calculus of 

variations has been used to determine most effective pressure 
pulse shapes for deforming beams. Results from small 
deformation theory for optimal pulse shape to plastically 
deform a rigid-plastic beam have been extended to include 
axial forces that can arise from end restraint. Addition of a 
linear function of displacement to the energy dissipation 
during deformation represents addition of a constant axial 
force acting on the beam. This additional load does not 
change the pulse shape that maximizes deformation. With a 
specified impulse, an impulsive pressure causes the largest 
deformation. 

The effect of the axial force is to initiate a double hinge 
deformation mode at a lower pressure and, for any pressure, 
to locate yield hinges closer to the ends than would occur 
without the axial force. The cumulative effect is to decrease 
both the total time of deformation and the final beam 
displacement in comparison with an unrestrained beam. 
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The Compressible Elastica on an 
Elastic Foundation 
The nonlinear two-point boundary-value problem describing the compressible 
elastica on an elastic foundation is formulated exactly within the context of the 
technical theory of bending as a set of eight first-order differential equations plus 
appropriate initial-point conditions and terminal-point conditions. The problem is 
then solved by a shooting method that determines two missing quantities. Graphs of 
load versus displacements and load versus the missing quantities are presented for 
various combinations of the system parameters. These results show that the 
presence of the elastic foundation enables the member to sustain unsymmetric (as 
opposed to antisymmetric) shapes in its postbuckled state, and that bifurcations 
from the straight configuration to symmetric buckled modes and bifurcations from 
symmetric buckled modes to unsymmetric ones depend on two system 
parameters—a compressibility measure and the foundation modulus. For a given 
compressibility and foundation stiffness, equilibrium paths are plotted globally, 
enabling unsymmetric paths to be extended from one bifurcation point to another, 
with the result that the complete postbuckling process can be traced. Finally, a 
discussion of path shapes as a function of foundation stiffness is given. 

Introduction 

The classical theory of buckling of a bar on an elastic 
foundation assumes small rotations of the cross sections and 
neglects axial strain (compressibility) at the axis of centroids 
(also called the "center line") of the bar. For a prismatic bar, 
it consists of a linear fourth-order differential equation, the 
eigenvalues of which are the buckling loads corresponding to 
the number of half waves into which the bar buckles. An 
energy solution of the problem with this same level of ap­
proximation is given by Timoshenko and Gere [1]. A recent 
paper by Kuznetsov and Johns [2] utilizes the classical fourth-
order differential equation to study the initial postbuckling 
behavior of an incompressible beam-column on an elastic 
foundation. 

Although the linear theory is adequate in many practical 
problems, it is incapable of dealing with the postbuckling 
range, where interesting events such as bifurcations can occur. 
In certain geophysical applications, where plates constrained 
by a surrounding matrix are subjected to large compressive 
forces, the compressibility may have a significant effect, and 
the postbuckling behavior may determine the final outcome 
of events. 

A study of the effect of compressibility on the elastica 
without any transverse forces acting was published by 
Huddleston [3]. Two related papers by the same author 
followed—one on an incompressible prebuckled arch with 
transverse (vertical) loads acting [4], and one on a com-
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pressible prebuckled arch also with transverse loads acting [5]. 
The present paper, an extension of those investigations, 
contains a formulation of the theory for a compressible 
elastica with transverse forces acting, and deals specifically 
with the problem of the elastic foundation. The theory im­
poses no restrictions on the size of the displacements and 
hence makes possible an analysis of the entire postbuckling 
range. It combines a corrected moment-curvature relation 
with unrestricted equilibrium equations and furthermore 
accounts for the effect of center line stretching on distributed 
force intensities. 

The Boundary-Value Problem 

Figure 1(a) shows a highly buckled member that is assumed 
to be constrained by a reactive foundation (symbolized by a 
spring). The *-axis is taken along the undeformed center line 
(axis of centroids) of the member, the coordinate x being used 
to locate a generic cross section at D that displaces to D' (with 
coordinate £) during the deformation. In some applications, 
the force P is an applied force producing a displacement 5. In 
others, 8 is an impressed displacement causing a reactive P. 
The displacements at D' are ux and uy, the inclination is d, 
and the distance along the center line is s. Figure 1(b) shows 
an elemental length ds (originally dx) located at D'. It carries 
a normal force N, a transverse shear Q, and a bending couple 
M, as well as distributed forces px and py per unit of original 
length. 

The exact differential equations (exact within the technical 
theory of bending) are obtained by modifying the classical 
Bernoulli-Euler formula for axial strain, expressing the exact 
geometric relationships for the displaced element, and 
utilizing the differential equations of equilibrium derived for 
the deformed and displaced element, as was done in [4]. The 
complete system of equations is as follows: 
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(a) 

M+dM 

(b) 

Fig. 1 The compressible elastica constrained by a reactive foun­
dation, (a) Entire strut, (b) Elemental length ds at point D ' . 
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where E is Young's modulus, A is the cross-sectional area, 
and / is the moment of inertia (all three of these parameters 
may vary with x). 

The foregoing is a general formulation which includes 
distributed forces with both x and ^-components and allows 
for any type of foundation medium. In the problem con­
sidered in this paper, however, it is assumed that during 
deformation the foundation springs shift freely in the x-
direction so as to remain vertical and exert only .y-forces, but 

that they remain attached to the member at fixed points along 
the center line. In symbols, 

P*=0 

' Ky VIy 

RUA —P 

(B) 

where ky is the foundation modulus in units of force per unit 
of displacement per unit of original length {ky may still vary 
with x). It is obvious from equations (B) that the foundation is 
now assumed to be of continuously reacting type and not like 
a set of discrete springs. It is also assumed to be a linear 
foundation, although any other type of elastic response could 
be easily incorporated into the solution procedure. Finally, 
the foundation is assumed to be of the Winkler type (i.e., the 
reactive forces at adjacent points are not coupled as in a 
continuous medium). 

The boundary conditions at A and B' can be stated as 
follows: 

(1) 0(0) B(L)=1 

(2) 

(3) 

(4) 

(5) 

(6) 
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«,(0) 

«(0) 
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= 0 

= 0 

= 0 

= -
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P sinfl^ 
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s in^ 

cosdA 

uy(L)=0 

£ ( £ ) = ? 

s(L)=? 

M L ) = ? 

N(L)=1 

Q(L)=1 

M(L)=0 _ 

(C) 

Method of Solution 

The boundary-value problem formulated in the preceding 
section can be solved using a shooting method by noting that 
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Fig. 2 P-A curves for C = 0.001 and various values of Kf 
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Fig. 3 P-6 curves for C = 0.001 and various values of Kf 

1.6 

there are two missing input quantities, $A and RVA needed to 
create a complete set of initial conditions, and that there are 
two terminal conditions, on uy (L) and M{L), which supply 
target values. All solutions in this paper have been obtained 
by using a two-level regula falsi to systematically adjust the 
two input quantities until the two output quantities are within 
prescribed tolerances of their target values, and the errors in 
the computed points have been made so small as to be totally 
indiscernible on the resulting graphs. 

Results 

The example chosen in this paper takes /, A, and ky as 
constants in x (say I0, A0, and kj, respectively). All variables 
are nondimensionalized in appropriate ways, and, in the 
process, two-dimensionless system parameters emerge: a 
compressibility measure defined by 

C-- h 
A0L

2 ' 
and a foundation modulus defined by 

(D) 

K, 
_ kfL

A 

E/0 
(E) 

To nondimensionalize the load P, the Euler load defined by 
^ E / 0 
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Fig. 4 PS curves for K, = 100.0 and two values of C 

PF = (F) 
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Fig. 5 P-(lA curves for C = 0.001 and three values of Kf 

is used. Finally, all displacement quantities with dimensions 
of length, such as the .y-deflection A of the midpoint of the 
strut, are nondimensionalized by dividing by the original 
length L. 
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Fig. 6 P-RVA curves for C = 0.001 and three values of Kf 

Fig. 7 Global P-6A curves forC = 0.001 and Kf = 100.0 

Figure 2 shows curves of load versus midpoint displacement 
for C = 0.001 and various values of Kf. All of these curves 
represent buckled shapes with symmetry about the midspan. 
Figure 3 shows curves of load versus axial displacement for 
the same cases as Fig. 2. On it appear the bifurcation points 
where the deflected position leaves the straight position and 
where unsymmetric modes branch off from the symmetric 
modes for the cases Kf = 100.0 and Kf = 400.0. 

The stability or instability of the various equilibrium states 
can be determined from Fig. 3, which shows the applied force 
plotted against its own displacement. Thus, the area under the 
curves represents the total energy added to and stored in the 
system (consisting of strut and foundation springs). The 
system will follow the path that minimizes this energy unless 
prevented from doing so by external constraints. 

For example, under "testing machine" conditions, in which 
8 is impressed and P is measured, the straight member 
(identified by the straight line in Fig. 3) is a stable equilibrium 
state until the first bifurcation is reached, after which the 

straight configuration (corresponding to the continuation of 
the straight line) becomes unstable. Similarly, the symmetric 
deflected shape is a stable state until the next bifurcation point 
is reached, after which it also becomes unstable and the 
unsymmetric shape becomes the stable configuration. 

Figure 4 shows curves of load versus axial displacement in 
the case of symmetric configurations for Kf = 100.0 and two 
values of C. 

Figure 5 shows curves of load versus end rotation for C = 
0.001 and three values of Kf, while Fig. 6 shows curves of 
load versus dimensionless end reaction for the same three 
cases. Values of dA and RyA determined from these figures 
allow one to assemble a full set of initial conditions for an 
initial-value problem, which, when solved, produces a 
complete description of the member in its deformed state. 
From this solution, all quantities of interest can be deter­
mined. 

The bifurcations mentioned previously appear again in 
Figs. 5 and 6, first from the straight configuration (vertical 
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Fig. 10 Global P-RVA curves forC = 0.001 and K, = 100.0 

axis) to a symmetric deflected shape (curves intersecting the 
vertical axis) and then from the path of symmetric shapes to a 
path of unsymmetric shapes. The curves for the unsymmetric 
mode are plotted to the point where the strut reaches a self-
equilibrating configuration (force P zero) that is symmetric 
with respect to the x-axis in Fig. 1. 

To understand how the member arrives at that state, and 
what happens subsequently, it is necessary to recognize that at 

each bifurcation point there are two alternative branches on 
the bifurcated curve that the system may follow. Fur­
thermore, there are many possible configurations cor­
responding to reflections and inversions of the buckled strut 
about the horizontal and vertical axes, as well as to multiple 
values of dA obtained by adding and subtracting multiples of 
2TT. All of this is best illustrated by plotting the P-6A curves in 
a global fashion, as is done for the case of C = 0.001 and Kf 
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= 100.0 in Fig. 7. First consider a symmetric shape produced 
by a force P/PE with absolute value 1.61 just before the 
system bifurcates to an unsymmetric path. Figure 8 shows 
four possible configurations corresponding to four regions 
correspondingly labeled in Fig. 7. Now suppose that the 
system is in Region I of Fig. 7 and reaches the bifurcation 
point C. Figures 9(a) and («') show two possible shapes after 
bifurcation, when the force has decreased to 1.60 along either 
of the unsymmetric paths CBA and CDE in Fig. 7. Thus, if 
the system follows path CBA, it will successively achieve the 
shapes illustrated in Figs. 9(b)-(g), all occurring while the 
force P is decreasing. The case in Fig. 9(d) is the self-
equilibrating, symmetric configuration mentioned previously. 
After that, the force required for equilibrium becomes 
negative (i.e., acts toward the right on the moving end). If the 
force decreases still further, while the moving end continues 
toward the left, the system will achieve the shape of Fig. 8(c) 
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Fig. 11 Global PS curves for C = 0.001 and Kf = 100.0 

when P/PE is at - 1.61. As in the classical treatment of the 
elastica, it is assumed here that the moving end of the member 
can pass the fixed end. 

Figure 10 shows global curves for load versus end reaction 
for the same combination of parameters as the previous three 
figures, with the unsymmetric path discussed before again 
labeled CBA. Figure 11 shows global curves for P/PE versus 
8/L, where 5 is the displacement of the moving end. Path 
CBA is also labeled in this figure. Under testing-machine 
conditions, in which 5 is impressed and P measured, one can 
trace the entire buckling process from Fig. 11. The system 
starts at the origin. From there, the force builds up to just 
over 2.0 while the member remains straight, and then drops 
back to about 1.61 as the member buckles into a symmetric 
shape. It drops still further to zero and then becomes negative 
after the member has bifurcated to an unsymmetric shape. At 
about -1.61, the member again becomes symmetric and 
remains so while the force drops to just under -2.0. At that 
point, the member becomes straight again as the force in­
creases rapidly to zero, leaving the member unstressed and 
with hIL at exactly 2.0. The path segments followed in this 
sequence represent stable equilibrium states. 

It is apparent from Figs. 5 and 6 that the curves for Kf = 
100.0 cross the horizontal axis only once, while the curves for 
the other two cases cross it twice. This means that the other 
two experience a self-equilibrating configuration that is not 
symmeric about the x-axis before going through a negative-
force phase and returning to zero force with a shape that is 
symmetric about the x-axis. Subsequently, they go through a 
positive loop before continuing on to the bifurcation point in 
the negative-force region. 

To illuminate the differences in behavior, Figs. 12 and 13 
show graphs of end angle and end reaction, respectively, 
plotted against Kf, for the condition P = 0 (C again = 0.001). 
For Kf below about 136, there is only one intersection with the 
zero-force axis. At about 136, there is a "bifurcation" to two 
intersections. At Kf = 349.80, the two intersection points 
with the 6A -axis coincide. 

A final comment about Figs. 12 and 13 is that at Kf = Q 
there is no reactive foundation at all. In that case the self-
equilibrating shape is the same as the closed-loop elastica 
without foundation rotated 90 deg. 
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Cable Kink Analysis; Cable Loop 
Stability Under Tension 

Submarine cable kinking is a continuing design problem. Cable kink occurs when a 
cable loop forms due to torsion and tension action, and then tightens under sub­
sequent tension increase. This paper describes cable loop stability under the sub­
sequent tension and clarifies the kinking mechanism. Results show that kinking 
occurrence mainly depends on residual twist in the cable loop. 

1 Introduction 
Cable kinking is well recognized as a significant problem in 

the use of cables for oceanic applications. In oceanic ap­
plications, a cable loop occurs because of torsional stress due 
to the helical strength member when tension on the cable is 
temporarily reduced. When the cable is retensioned, the loop 
will decrease in diameter, will kink, and may cause the cable 
to be damaged. 

Little investigation has been reported on this cable kinking 
phenomenon, and the relation between cable mechanical 
properties and cable kinking has never been clarified com­
pletely. Previous analyses [1-4] using force equilibrium were 
reported from a viewpoint that the cable loop would kink or 
reopen. These results only show the tendency that cable 
kinking seldom occurs when the cable is easy to twist and hard 
to bend. However, these analyses could not clarify the un­
stable phenomenon of cable kinking completely. Ross [5] 
investigated cable loop formation due to torsional stress from 
the energy transfer viewpoint and clarifies the condition of 
cable loop formation. 

The present paper shows that the cable loop formed due to 
torsional stress could then tighten or reopen under the sub­
sequent energy transfer. Results are obtained by a principle of 
minimum potential energy to determine cable loop stability. 
Results show that kinking occurrence mainly depends on 
residual twist in the cable loop. 

2 Cable Kinking Phenomenon 

Figure 1 shows a kinking phenomenon diagram. As the 
submarine cable strength member employs helical stranded 
wires, torsional strain is induced under tension. Then, if the 
tensile load is decreased, perhaps due to wave motion, a 
reversed torsional load is induced which also can cause a loop, 

(a) 
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Twisted 

(b) 

(cl ""p "= M= 3—•» 
P 

Fig. 1 Kinking phenomenon diagram 

as shown in Fig. 1(b). This phenomenon is instability from 
transfer of torsional strain energy to bending strain energy, 
because a cable loop absorbs one twist of the torsion during 
formation. After cable loop formation, as shown in Fig. 1(b), 
the loop will decrease in diameter and kink, shown in Fig. 
1(c), if the loop is a stable loop when the cable is retensioned. 
However, when bending strain energy increase and the cable 
loop becomes unstable in the process of decreasing in 
diameter, the cable loop will reopen and strain energy 
transfers back from bending strain energy to torsional strain 
energy. 

This paper investigates cable loop stability in the process of 
decreasing in diameter, going from Fig. 1(b) to Fig. 1(c), and 
clarifies the cable reopening condition that the cable loop is 
unstable in the process of decreasing in diameter. 

3 Cable Kink Analysis 

To simplify the problem, cable kink analysis uses the 
following assumptions: 

(1) Cable weight is neglected. 

(2) Cable elongation under tension is neglected. 
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(3) Cable deformation is exactly elastic. 

The coordinates used for the analysis are shown in Fig. 2. 
Tension P applies parallel to the x axis (0 = 0). The cable loop 
crossing point is at x = 0, 6= —ir/2. It is assumed that the 
cable loop transfers from the condition, shown in Fig. 2(a), 
which only stores bending strain energy to the condition, 
shown in Fig. 2(b), whose part of bending strain energy 
transfers to torsional strain energy when the crossing point of 
the cable loop shifts a little in the z direction. 

Cable loop shape is assumed to be as follows. 

X= (x,y,z) = (r cosO, r sin0, z) (1) 

Curvature K and torsion 4> are obtained using (1) as follows 
[6]. 

K2 = [{r2 +(r')2 + (z')2}{(r")2 + 4(r')2 + r2 

-2rr" +(z")2\-(r'r" +rr' +z'z")2}'{r2+(r')2 

+ (z')2}~3 (2) 

<t> = [z'{r2-4rr" + 3(r")2 -2r'r" + 6 ( r ' ) 2 ) 

+ z"(4rr' +rr'" -3rr")+z'" {r2 +rr" +2(r')2}] 

•[r4+4r2(r')2-2r3r" +r2(r')2 +r2( (z")2 + (z')2}]~[ (3) 

where ( ) ' and ( )" indicate d/dd ( ) and d2/d62( ), 
respectively. Twist of the cable loop is obtained as follows [7]. 

T=T0+<t> (4) 

where T0 indicates residual twist which the cable loop cannot 
absorb when it forms from the twisted cable straight con­
dition shown in Fig. 1(a) in the fixed end condition. 

Strain energy in the cable loop can be calculated using 
equations (2) and (4). Banding strain energy VB and torsional 
strain energy VT in the cable loop are defined as follows. 

'L 1 
VB=V ^EIK2 ds 

p ^ r . 

p — t 

—-' i — - p 

3-~P 

(a) No cable loop reopening 

P — c S ] 

D — P 

(b) A little cable loop reopening 

Fig. 2 Analysis model 

Equilibrium stability (X=X0) determined from (11) is in­
vestigated by second differential calculus for potential energy 
under the criterion 

/ X=X0 is in stable equilibrium, if Fx==x > 0 
ii X=Xa is in neutral equilibrium, if Fx=x = 0 

(5) 

Hi X=X0 is in unstable equilibrium, if Fx=x 

where F is the determinant 
d2E 

F= 

<0 

ba,dbi 
(12) 

Mo 
M 

• GJT2 ds (6) 

where EI is bending rigidity and GJ is torsion rigidity. 
Displacement AL of the cable end from the condition 

shown in Fig. 1(a) to the condition shown in Fig. 1(b) is 
defined as follows, if dsx is the x-direction vector of the 
segment vector ds of the line: 

' L 

AL=L0-L, L0 = dsr (7) 

Work W^done by the external force P is obtained as follows, 
assuming cable tension P is constant during the loop for­
mation: 

W=PAL (8) 

Potential energy E of the cable loop, shown in Fig. 2(b), 
due to general deformation by both bending and torsion, is 
given by 

E=VB + VT-W (9) 

Cable loop stability is investigated using this potential energy 
E. 

Cable loop curves are assumed to have the following forms: 
n m 

r=L*SiM Z=Y,bjgj(d) (10) 
/ = i j=\ 

where / , (0) , gj(&) are functions to be specified. Cable loop 
equilibrium is obtained by the following simultaneous 
equations using (9). 

dE_ 

da, 
=0, 

dE 
• = 0 (H) 

where /'= 1,2, ." 7=1,1 m. 

Results Using Helix 4 Approximate Numerical 
Assumption 

Although equation (10) is considered as the general 
deformation of the cable loop, only the first term in (10) is 
considered in order to simplify the problem for the cable 
shape shown in Fig. 2. Therefore, the following displacement 
is assumed: 

r=R 

~z=R58, 

z = 0, 

z=R6ir, 

O<0<7T 

<0<O (13) 

i r<0< - I T 
2 

where displacement in the z direction is assumed to be very 
small for simplicity, which is 0<<5«1. This assumption 
applies just when the cable loop begins to reopen. Outside this 
cable loop region, the cable shape is assumed to be straight for 
simplicity. 

The curvature K is obtained from equations (2) and (13) as 

O<0<7T 
1 1 

R2 (1 + S2)2 

1 * „ „ 
—r , - - < 0 < O , 7T< 

. 3 
? < - 7 T 

2 R2' 2^ ^ 2 " ° 4 ) 

The torsion <j>, which is induced by cable loop reopening, is 
obtained from (3) and (13) as 

0 = 0, 0<O, 7T<0 

The differential is length ds, obtained as follows: 

(15) 
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*-Ms)] -
R(l+82yAdd,0<e<ir 

Rdd,6<0,TC<6 
(16) 

Using equations (5), (6), and (14)-(16) the bending strain 
energy VB and torsional strain energy VT are obtained as 
follows, considering that curvature in the straight cable (0< — 
TT/2, 3 / 2 T < 0 ) is zero and that cable torsion of the region 
(0<O, 7r<0) is only T0: 

„ 1 irF/ ,2x V 2 1 TTF/ 
' B-

VT=X- irGJR^- j^r+ro) * (1 +52)1 / 2 + \GJT0
2LX 

(17) 

(18) 

where 

L, =L •i: (l+52),/2Rd8 

The work W is considered to be divided into Wx and W2. 
Wx indicates the work during cable loop formation from the 
condition shown in Fig. 1(a) to the condition shown in Fig. 
1(b). W2 indicates the work during a small cable reopening 
from the condition shown in Fig. 2(a) to the condition shown 
in Fig. 2(b). Wx is obtained as follows: 

Wx=p(-\ TRdd\ = -2IIRP (19) 

The angle § of segment motion in the z direction during a 
small loop reopening is given as follows, assuming fi to be 
very small: 

rdd 

W2 is obtained as follows from (20), considering segment 
displacement in the x direction: 

W2 = p\ ' '(cos/?- l ) c o s ( | + 6\ ds 

=p[*-(-^) smeds = PR52(l+82)'/ 
Jo 2 \rd6/ 

(21) 

The potential energy E is defined as follows, using (17)-(19) 
and (21), and considering small terms up to the third order: 

E= 
•KEI 

R ( - * « • ) 
+ ^-82+1-rGJr08(l-82) 

+ - GJT0
2L + 2-KPR -PR82 (22) 

From (19), equilibrium of the cable loop is obtained from the 
following simultaneous equation: 

dE 3wEI. TrGJm . TCGJT„ / _ 3 \ 3ir£7 irGJrn irG/r0 

d5 2R R 2 
-2PR5 

= 0 (23) 

dE dE _ _ irEI / 3 
dR R2 \ 

•wGJ 

'2R2 82+2TTP = 0 (24) 

Stability of the equilibrium determined by (23) and (24) is 
investigated using (12). 

F = 

d2E d2E 

d88R 

d2E d2E 
(25) 

dRdd dR2 

Equilibrium stability depends on the sign of Fas noted at (12). 

4.1 Results When T 0 = 0 . In this case, the cable loop 

does not have residual twist. Equilibrium is determined as 
follows, using (23) and (24). 

5 = 0 R = slEI/2P (26) 

Then, at equilibrium, Fis given by 

n2GJR2 ( / 3 1 \ Er 
F= 

2EI ( - ( • ) £ } <2" 
and we have the following cases: 

. , ~ n • EI 2-K 
i if F > 0 , that is — < 

GJ 3TT + 2 
then 8 = 0 is a stable equilibrium. Therefore, the cable loop 
shown in Fig. 2(a) is stable and a kink will occur. 

EI 2-K 
ii if F = 0 , that is — = 

GJ 3TT + 2 

then 5 = 0 is a neutral equilibrium. 

. , - , „ , EI 2ir 
in if F < 0 , that is — > 

GJ 3TT + 2 
then 5 = 0 is an unstable equilibrium and the cable loop is not 
stable. The cable loop deformation transfers to another stable 
equilibrium, which is determined by solving the problem 
exactly without the assumptions of equation (22). In this case, 
the loop will not kink and reopen, since the stable equilibrium 
may be 5>0, because equilibrium does not exist (5<0). 
Equation (27) indicates that kinking is difficult when bending 
rigidity (FT) is large and torsion rigidity (GJ) is small. This 
result agrees with results in references [1-4]. 

The following relation is obtained [8] when the cable is a 
homogeneous elastic body: 

E 
G= (28) 

2(1 +p) v ' 

For a circular cable of diameter d, / and / a r e defined as: 

I=wd4 /64 J = Trd4/32 (29) 

Introducing (28) and (29) into (27), F < 0 is obtained when 
Poisson's ratio v is assumed to be 0.3. This result indicates 
that a homogeneous elastic cable will not kink without initial 
twist. 

4.2 Results When T0 >0 . In this case, the cable loop has 
residual twist T0. Equilibrium is determined by solving the 
simultaneous equations defined by (23) and (24). However, if 
the second small terms (52) is neglected in (23) and (24) to 
simplify the problem, then 

R0=yjEli2P ,50 = 

I GJr0 

•KGJ 3ir£7 /wGJ 
\~RT~ 2Rn 

-2PR 0 
(30) 

Using (28) and (29), the following relation is obtained is cable 
is a homogeneous elastic body: 

irGJ 3irEI „ 
2PR0<0 (31) 

R0 2R0 

Equation (31) indicates that the equilibrium 5 = 50 determined 
by (30) has 50 positive. Equilibrium stability at 5 = 50 is in­
vestigated using (25) rewritten as follows, considering (30) 
and neglecting the second small term (5Q): 

(F)8 = 8 0 = - - ^ [ - - - ^ + ^ - - l WGJT080-2PR0) 
_ 2TTEI / lirEI TtGJ 

R=R0
 R3o ^ 2R0 R0 

<0 (32) 

This result indicates that equilibrium at 5 = 50 is unstable. 
Therefore, there is no stable equilibrium in S>0 in the 
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neighborhood of 5 = 0, when the cable loop has residual twist. 
However, experiments show that a cable loop has stable 
equilibrium in the neighborhood of 5 = 0 when accompanied 
by cable loop rotation as shown in Fig. 3. 

Cable loop rotation is investigated using potential energy. 
When the rotation is *, work W2 done by external force is 
defined by 

W2=-Pd$ (33) 

It is assumed that cable torsion <f> caused by rotation angle * 
occurs equally throughout the cable loop, i.e., 

<t>= (34) 
2irR 

Using (34), torsional strain energy VT is obtained as follows. 

VT =\2J I GJ( T0 - <t>)2Rdd+ i GJrlL2 (35) 
where 

L7=L- i2n 

0 

Rd6 

Vn = (36) 

Bending strain energy VB is defined by equation (14) as 

TTEI 

Potential energy E is determined as follows, using (19), (33), 
(35), and (36): 

E=VB+VT-Wl-W1 

•KEI G/*2 1 
= — + G / * T 0 + - GJT2

0L + 2irRP+Pd$ (37) 
R 4irR 2 

Equilibrium is obtained as follows, using equations (11) and 
(37): 

2irR0 
*n 

GJ 

Ro = [ 

(GJT0-Pd) 

EI 

(38) 

2P-(GJTo-Pd)2/GJ\ 
(39) 

Stability of this equilibrium was investigated, using (12) 

GJ'EI 
* = * 0 <R = R0 Rt >o (40) 

Equation (40) indicates that the equilibrium determined by 
equations (38) and (39) is stable. Figure 4 shows an outline of 
the potential energy change when GJr0>Pd. In this case, 
when the cable loop has initial twist, Fig. 4 shows that stable 
equilibrium exists where the cable loop rotates at angle $ 0 . 
Figure 4 also shows that the equilibrium at 5 = 5 0 >0 is un­
stable and the cable loop would not reopen from 5 = 0. 
Equation (38) indicates that the rotation 3>0 decreases with 
increasing external force P. As a result, the sign of rotation * 
becomes minus, when GTr0<Pd. In this case, the potential 
energy change outline is shown in Fig. 5. This figure shows 
that stable equilibrium exists at 6 = 0 between the cable loop 
rotating region and the cable loop reopening region. These 
results indicate that cable loop would kink when the cable 
loop has residual twist since there is no stable equilibrium for 
5 > 0 in the neighborhood of 6 = 0. 

4.3 Initial Displacement Effect. Numerical results show 
that the cable loop reopens and would not kink if the cable 
loop completely absorbs the cable twist, which indicates that 
the cable loop has no residual twist, if the cable is a 
homogeneous elastic body. However, if the cable loop cannot 
absorb the cable twist completely, which indicates that cable 
loop has residual twist, then the equilibrium shown in Fig. 
3(a) is stable and the cable would kink. However, some ex­
periments, which are shown in Fig. 7, show that cable loop 

P— j — p 

~ P 

t(b) 
(a) Rotating phenomenon (b) Rotating phenomenon 

magnification from the 
bottom side 

Fig. 3 Cable loop rotation 

- * 

Rotating region 
of cable loop 

Stable 
equilibrium } 

J 
-*o 

Reopening region 
of cable loop 

__~- Unstable 
/ " i \ equilibriu 

i , 

So 

Fig. 4 Schematic figure of potential energy change 

Rotating region 
of cable loop 

Reopening region 
of cable loop 

Fig. 5 Schematic figure of potential energy change 

reopens, even if cable loop has residual twist, when the cable 
loop diameter decreases due to external force. This is opposed 
to numerical results. The reason can be explained by the 
following analysis. 

Even if cable loop does not reopen, initial displacement in 
the z direction exists due to cable diameter d. This initial 
deformation 5! is determined by (13) as 

8i=d/irR (41) 

Therefore, when the cable loop forms as shown in Fig. 1(b), 
there exists a 8 value, determined by (41), which is not actually 
5 = 0. Equation (41) shows that 5] increases and approaches 
unstable equilibrium at 5 = 50, when the cable loop radius 
decreases due to external force. When 5i becomes larger than 
50, the equilibrium transfers to another equilibrium state, 
which exists in the 5>5 0 region, and the cable loop would 
reopen, which is shown in Fig. 5. The condition that the cable 
loop reopens is obtained by the condition 50 < 6t. 
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_JCL-
p p

l(a), is stable. The cable loop diameter decreases according to
the increase in external force.

c When P> aPo, the cable loop reopens.

These displacement modes are shown in Fig. 6(a).
Cable loop stability is divided into two regions, when a < 1.

a When P< aPo, cable loop rotating deformation is stable.

b When P> aPo, cable loop reopens.

These displacement modes are shown in Fig. 6(b). If the cable
is a homogeneous elastic body, then a < 1 is obtained by (28)
and (29) and results in the second case apply.

This investigation shows that the cable loop reopens if it has
residual twist. However, this result does not mean that the
cable loop will not kink. Kinking depends on the cable loop
reopening radius determined by (43). The cable receives
damage because of kinking only when the cable reopening
radius decreases and the cable loop deformation falls into the
plastic range. Then, bending rigidity (El) decreases suddenly
and it becomes more difficult to reopen the cable loop.

p

'-p

Reopening region

aGJTo
d

a;:: 1
,
I

: Reopening region
I
I
I

1_, a
I p
I
I
I

Rotating region

-~-p p

Rotating reg ion : Dec.reo~ing
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I_A_
i p p
I
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I
I

GJTo

_£L-
p p

Fig.7 Experimental results for displacement modes

aGJTo P
-d-

(b) When a <
Fig.6 Cable loop displacement modes

5 Discussion and Conclusion

Figure 7 shows experimental results for cable reopening
displacement modes. Test samples were jacketed optical fibers
of very small diameter which are easy to investigate. Ex­
perimental reopening modes agree with calculated
displacements shown in Fig. 6. In these displacements, the
cable loop reopening radius is an important factor in cable
kink phenomenon. When the cable loop reopens in elastic
deformation, the cable loop does not receive damage.
However, when the cable loop reopening phenomenon gives
rise to plastic deformation, the cable is easy to kink and
receives damage. Here the bending rigidity (El) of the cable
decreases suddenly and cable kink occurs easily. Calculated
results show that the cable reopening radius decreases ac­
cording to the increase of residual twist. This result means
that cable kink occurs easily when cable has residual twist.

Since this paper reports investigations on kinking
mechanism using several assumptions to simplify the
problem, it is necessary to compare the theoretical results with
experimental results in detail and to correct the kinking model
in order to clarify the kinking mechanism completely. It is
also necessary to investigate cable loop formation, because
residual twist on the cable loop is related to cable loop for­
mation, which is the most important factor in cable kink
occurrence.
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(42)

(43)

R€OPENING REGION

11'
-2"0ho

DECREASING REGION
I N DIAMETER

d
-- ~ ----------
1I'Ro

ROTATING REGION

(
1I'OJ hEI )
----2PR
Ro 2Ro 0

Equation (42) is rewritten, using (30), as follows.

[ 2[(1 3)EI ]dJII2R o< - - + - - - 1 -
11' 11' 2 OJ TO

These result shows that the cable loop reopens when the cable
loop radius satisfies the condition determined by (43) under
the tension if the cable loop has residual twist.

New parameters are defined by the following equation:

11'

b When Po <P<aPo, the condition (<1>=0), shown in Fig.

-
4

a When P<Po, the cable loop rotating deformation, as
shown in Fig. 3(a), is stable. In this case, the rotation angle <I>

decreases, according to the increase in external force.
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An Improwed Semi-Implicit Method 
for Structural Dynamics Analysis1 

A semi-implicit algorithm is presented for direct time integration of the structural 
dynamics equations. The algorithm avoids the factoring of the implicit difference 
solution matrix and mitigates the unacceptable accuracy losses which plagued 
previous semi-implicit algorithms. This substantial accuracy improvement is 
achieved by augmenting the solution matrix with two simple diagonal matrices of 
the order of the integration truncation error. 

1 Introduction 
The direct time integration of large structural dynamics 

equations is a challenging problem because the task requires 
the extensive use of both computer resources and engineering 
manpower. There are basically three approaches: implicit, 
explicit, and semi-implicit methods. In implicit methods, the 
new state vector is obtained by solving the coupled difference 
equations, which involves the factoring of the solution matrix 
and back and forward substitutions. It is hoped that the price 
paid for such extensive calculations per each time increment is 
unconditional stability without the restriction of the time 
increments. In explicit methods, the new state vector is 
computed by using the known state vector sets plus the forcing 
function vector. Hence, the calculation sequence is con­
siderably simpler than for the case of implicit methods. 
However, the maximum time increment for all the explicit 
methods is restricted due to the inherent stability limits. 

Recently, implicit-explicit methods have been proposed by 
several investigators [1-7], to exploit the different spatial 
distributions of low and high-frequency response patterns in 
the structure. Here the high-frequency domains (elements, 
degrees of freedom) are treated by implicit methods while the 
dominant low-frequency domains are treated by explicit 
methods. Implicit-explicit methods have thus significantly 
reduced computations especially for large-scale structural 
dynamics problems. However, the attendant solution matrix 
pertaining to the implicitly partitioned domains still has to be 
assembled and factored whenever a new step size is chosen or 
a new stiffness matrix is required in nonlinear analysis. 

In semi-implicit methods, the new state vector is obtained 
by invoking a Jacobi-like solution procedure, thus avoiding 
the matrix factoring. In that sense the semi-implicit methods 
can be likened to explicit methods. The idea is then to 
maintain the unconditional stability of implicit methods while 
simplifying calculations as in explicit methods. 
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It was shown by Trujillo [8] that his semi-implicit algorithm 
is unconditionally stable provided the stiffness matrix is split 
symmetrically into the lower and the upper triangular 
matrices for the Jacobi-like approximation. However, the 
symmetrically split semi-implicit algorithm showed an 
unacceptable accuracy for practical time-increment ranges. 
He then tried to split the stiffness matrix unsymmetrically, 
which improved the accuracy but with the loss of un­
conditional stability of the symmetrical splitting. Park and 
Housner presented an alternative semi-implicit algorithm [9], 
which shed light on why unsymmetrical splittings give rise to 
restricted stability limits and why the accuracy can be im­
proved by unsymmetrical splittings. They identified the cause 
of accuracy degradation of the symmetrical splitting due to 
the violation of rigid-body preservation requirements and 
proposed a guideline on how to split the stiffness matrix in 
order to preserve key rigid-body motions by unsymmetrical 
splittings. 

In this paper an improved semi-implicit method is 
presented, which adopts symmetrical splittings of stiffness 
matrix by adding two diagonal matrices which are in the order 
of the truncation error of the integration algorithm. The 
essential feature of the proposed algorithm hinges on the 
approximate factorization utilizing the concept of penalty 
matrix. Suppose one wants to solve the coupled difference 
equation which is dependent on parameter 6, viz., 

(l + &2A)u = g (1.1) 

A Jacobi-like solution for (1.1) can be devised as 

(I + 82L)(I+82V)u=g (1.2) 
where L and U are lower and upper triangular matrices, 
respectively. Equation (1.2) can be rearranged in the form 

(I + 52A + 54C)w=g (1.3) 
Hence, the factored difference equation (1.2) gives 

u-0 as 6-oo (1.4) 
unless C is singular. On the other hand if L and U are chosen 
such that 

Cu = 0 for all 8 (1.5) 

then one obtains 
w ^ I + o^Ar'g (1.6) 

for considerably wider ranges of the parameter 5. This is the 
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essence of the proposed algorithm. In this paper this is ac­
complished by augmenting the solution matrix by two simple 
diagonal matrices, which are easy to construct. 

2 Precursors of the Proposed Semi-Implicit Method 

The linear undamped structural dynamic equations can be 
written in the form 

M u „ + K u „ = f „ (2.1) 

where M and K are the diagonal mass, and stiffness matrices, 
f is the applied force vector, u„ is displacement vector, and the 
superscript dot ( ) denotes time differentiation. Equation 
(2.1) can be integrated by a pair of one-step formulas 

u„ + 1 =u„+h(au„ + 1 + ( l - a ) i i ; , ) (2.2) 

u„ + 1 = u„+/!03u„ + 1 +( l - / 3 )u„ ) (2.3) 

where a and (3 are real coefficients, and h is the time step size. 
Time discretizing (2.1) by (2.2) and (2.3) yields 

Eu„ + 1 = g „ + 1 (2.4) 

where 

E = M + 52k 82 = a/3h2 (2.5) 

g„ + , = (M - h2a(l - ®K)u„ + fiMii,, + a/!2(j3f„ + ) + (1 -/3)f„) 

(2.6) 

In general, the solution matrix E as given by (2.4) is fully 
coupled and consequently the implicit solution (0 ^ 0) of the 
difference equation (2.4) require the factoring of E. To 
alleviate the effort required for factoring the solution matrix 
E and at the same time to preserve the unconditional stability 
of the implicit integration formula, Jacobi-like solution 
procedures have been proposed [8, 9]. The essence of these 
procedures may perhaps be best explained from the viewpoint 
of approximate factoring of the solution matrix E as 
illustrated in the following. 
Let us split E as 

E = M + 82KL+52KU (2.7) 

and rearrange (2.4) as 

(M + S2KL)u„=g„-S2KyuS (2.8) 

where KL and Ku are lower and upper triangular matrices so 
that 

K = K L + K U (2.9) 

Note that if Ku u£ term in the right-hand side of (2.8) is 
predicted, the solution for u„ by (2.8) requires no fac­
torization. At this point Trujillo's method and the Park and 
Housner method diverge in that the former [8] updates the 
velocity and the right-hand side vectors, and alternates the 
next step solution 

(M + 82Ku)u„ + i=g„ + l-8
2Klu?+] (2.10) 

In the Park and Housner method [2], instead, an additional 
iteration is performed for u„, viz., 

(M + S2Kc /)u„(1)=g„-52KLu„ (2.11) 

then the velocity ii„ is updated. For comparison of the two 
methods, the Park and Housner method should use twice the 
step size of the Trujillo method. 
It can be shown that the Park and Housner method can be 
rearranged as 

[M + 52K + 5 4 K z -M- I K t / ]u„< 1 >^g„+5 4 K i M- 1 KV (2.12) 

where the velocity is updated by (2.2) and 

u£ = u„_, (2.13) 

and a similar expression can be derived for the Trujillo 
method. 

From the viewpoint of approximate factorization (2.12) can 
be written in the form 

(E + 5 4 C)w, ; =g„+5 4 C< (2.14) 

where 

C = K L M - ' K U (2.15) 

Note that unless C is singular one obtains from (2.15) 

u„— u£as<5~ oo (2.16) 

since 54 C dominates over E. Experience has shown that even 
for intermediate stepsize ranges, 64C often dominates over or 
becomes of the same order of magnitude as E and con­
sequently unacceptable error makes the solution meaningless. 
This dominance can be abated by employing a penalty con­
cept: 

Cu = 0 (2.17) 

This is the essense of the proposed semi-implicit method. 

3 New Semi-Implicit Method 

Let us rearrange (2.14) using (2.13) and modify it to the 
form with a = 0 = Vi 

[E + S4C„]Au„=g„ (3.1) 

where 

62 

g„=5Mu„_ l -8 2 Ku„_ 1 + y ( f „ + f „ ^ 1 ) (3.2) 

Au„ = — (u„ -u„_ , ) (3.3) 

and the velocity is updated by (2.3). In the selection of C„ the 
following three conditions are imposed for stability, accuracy, 
and simplicity. They are: 

1 C„ is symmetric. 

2 The singularity requirement of C„ is compromised for 
computational simplicity by 

C „ u „ _ , = 0 (3.4) 

3 C„ is obtained from C„ by adding two diagonal 
matrices in the order of C„. 

The first condition implies 

KL=(KU)' (3.5) 

The second and the third conditions are realized by in­
troducing two diagonal matrices m and k to yield 

r s2 

C„u„_1 = [m + k + ( K L + y k ) ( M 

+ S4m)-'(K [ / + y k ) ] u , H = 0 (3.6) 

Equation (3.1) can now be expressed in factored form 

(I + 52KL)M(I + S2K")Au„=g„ (3.7) 

where 

M = M + 5"m (3.8) 

K L = ( K i + —k)M~' (3.9) 

- , 82 

K " = M - ' ( K " + — k) 

It is noted that the symmetricity of C„ is necessary for 
stability as detailed in Section 4. The second condition C„ 
u„_i = O achieves a similar effect on the accuracy of the 
semi-implicit solution as the singularity of C„ with simplicity. 
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Fig. 1 

The addition of two diagonal matrices m and k is the simplest 
modification to ensure that C„ u„_i = O holds (see Appendix 
A for details). This completes the description of the proposed 
semi-implicit method. 

4 Stability Analysis 

The stability of the new semi-implicit method (3.1-3.9) can 
be examined by seeking a nontrivial solution in the form 

/ 1 +z \ k 

U"+* = VT^T/ u" (4-1) 

where Re (z) < 0 for stability. To this end let us rewrite (3.7) in 
an expanded form with f = O 

(M + 52K + 54C„„1)(un-u„_1) = 25Mu„„ 1-25Ku„„ 1 (4.2) 

The appropriate formula for updating ii„ is: 

u„ = u„_,+S(w„ + «„_i) (4.3) 

or, 

l i ^ i i ^ - S M - ' K K + u , , . , ) (4.4) 

by substituting the accelerations from the equations of motion 
(2.1). The velocity term ii„_] from (4.2) can be eliminated by 
using (4.4) so that one obtains 

M(u„ + , - 2 u „ + w „ „ 1 ) + 52K(u„ + 1 +2u„+u„_ 1 ) 

+ <54C„(u„ + 1 - u„ ) -5 4 C„(u„ - u „ ,) = 0 (4.5) 

Now, it is noted that by virtue of (3.6) one can express 

C „ u „ = C „ „ i U „ ^ = 0 (4.6) 

Furthermore, the third and fourth terms in (4.5), when 
combined with (4.1) become, respectively, 

C„(u„ + 1 - u „ ) = ( | ^ - - l ) c „ u „ (4.7) 

and 

C ^ 1 ( u „ - u ^ , ) = ( 4 r f - l ) c n - i " n - , (4.8) 

both of which become zero vectors from (4.6). This implies 
that the effect of introducing the penalty matrix C does not 
propagate to the subsequent integration steps. By invoking 
(4.6-4.8) in (4.5) and introducing (4.1) one finally obtains 

J (z )u„_ ,=0 (4.9) 

where 

J(z) = Mz2+52K (4.10) 

since the stiffness matrix K is semi-positive definite for stable 
structures and the diagonal mass matrix M is positive matrix, 
J(z) is a positive polynomial. Therefore, the algorithm is 
unconditionally stable for linear (or linearized) structural 
dynamics systems. It is also important to point out that the 
conditions (3.4) not only enhances the accuracy but also 
guarantees unconditional stability. 

5 Implementation and Numerical Experiments 

Even though the determination of the fictitious diagonal 
matrices m and k appears to be a horrendous task, it is 
relatively simple requiring about one matrix-vector 
multiplication. For each z'th row of (3.6) one has (see Ap­
pendix A for details) 

am}+bmi+c + (d+aml)ki+ — kj =0 (5.1) 

It is a simple exercise to show that there exist real w, and kj 
that satisfy (5.1). In practice, three simple sets of (mh k,) have 
been considered: 

if c = 0 then W ,=A:,=0 (5.2) 

if a = 0 then bmi + dki+c = 0 (5.3) 

and 

if a^c^O then m, +A:, =0 (5.4) 

or m,-+ —- kj=Q (5.5) 

with constraints 

M, + 54w, > 0, Mi + <52\Ku/2 + <52(w,- + k,/2)\ >0 (5.6) 

The present semi-implicit method was applied to solve the two 
example problems in [8] and they are shown in Figs. 1 and 2, 
respectively. 

For the first example problem the time increment up to h = 
0.20 gives almost no discernible error to the converged 
solution. Also, the time increment h = 1.0 gives an identical 
result as could be obtained by a fully implicit method, which 
turns out to give about 8 percent phase error after three 
periods. In addition, a normalized cantilever beam with three 
equal beam elements was tested by the present algorithm. The 
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maximum time increment by the central difference method is 
0.32 and Fig. 3 shows two solutions for h = 0.25 and h = 1.0. 
Both of the results are quite satisfactory and it is expected that 
the time increment margin between the explicit and the semi-
implicit methods will become wider if more elements are used. 

6 Applications to Static Equilibrium Problems 

The present method can be easily modified to solve the 
static equilibrium equation 

r(p,u)=f-S(u) (6.1) 
by augmenting appropriate a damping matrix in the form 

D = oM + /3K (6.2) 
where S(u) is the internal force vector. 
A preliminary benchmark experiment indicates that the 
method has potential as an effective dynamic relaxation 
method since the iteration steps sizes are easy to change and 
the only factor for stepsize restriction is its overshoot 
possibility due to large relaxation step sizes. 

7 Concluding Remarks 

An improved semi-implicit method is presented for the 
solution of both the dynamic and static equilibrium 

equations. The method does not require matrix factorization 
and hence the adjustment of the time-step increments can be 
made at any step-advancing and/or iteration cycle. This is not 
the case with fully implicit or implicit-explicit methods 
without reforming the solution matrix and refactoring. 

The unacceptable poor accuracy associated with previous 
semi-implicit methods has been successfully abated without 
loss of stability and without regard to matrix profile 
variations. This is accomplished by augmenting the solution 
matrix by two simple diagonal matrices, which are easy to 
compute and are in the order of the truncation error. The net 
effect is analogous to introducing singular penalty matrix in 
other physics and engineering problems such as constrained 
optimization, incompressibility effect in solid, under in­
tegration in finite-element formulation. 

So far the results from the simple problems are promising 
and the applications of the method to nonlinear static and 
dynamic problems are presently being carried out. It is hoped 
that a stand-alone module based on the present method will 
lead to programming simplicity and the desired reliability in 
that one method is used to solve both static and dynamic 
structural mechanics problems. 

One potential area of the applications of the method is in 
the finite element-based fluid mechanics problems. Here, the 
widely known alternating direction methods are not ap­
plicable because it is not possible, in finite-element for­
mulations of fluid mechanics problems, to partition the 
matrix in terms of the usual direction-sensitive derivatives. It 
appears, therefore, that the present method may provide 
potential computational pay-off by providing simple 
triangular splittings. This and other possibilities are now 
under active considerations. 
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A P P E N D I X A 

Proof of the Existence of Real Matrices m and k 

The ith row of (3.6) can be written as 

miui + kiui+ LtKij[TiKjlul)/Mj+ JL ( X > , , M / ) M , 

82 t-J 82 82 N 

+ y 2J (Kukjuj/Mj)+-K„ulkl/Ml + — ^Kuu^/Mi 

(AA) 

J = I 

+ —kjui/Mi=0 

Equation (A.I) can be simplified as 

am2 + bmi + c + (d+ami)ki + — kj =0 (A.2) 

where 

a = 54w, 
b = Mj(Ui + 54b<l>) 
c = c<f> + Mjb<t> 

(A3) 
(A A) 
(A.5) 

82 82 A 
d = Miui + —K„ul + — X, K„u, (A.6) 

b* = l^{Kij'(^Kjlul/Mj+-KjUj/Mj) (A.I) 

c<f> 
K 

L 1 = 1 
(A.*) 

There are three cases for which the existence of real /w, and k, 
must be examined. 

Casel c = 0. 
For this case (A.2) reduces to 

/ a 
(ami + b)m, + ( — A:,- + a/w, + d)kt =0 (A .9) 

Certainly, m, = d, = 0, which is the simplest, satisfies (3.6). 

Case 2 a = 0. 
This case reduces (A.2) to linear for both w, and Ar,. 

As long as b and d are not concurrently zero (,4.10) has a 
solution, b = d = 0 can occur when (ut• = 0, i: -1, . . . , N}. 
For this particular case one finds from (A 5), c - 0. 
Otherwise, either b or d can be made nonzero by adjusting 8. 
In practice, this situation has rarely occurred. 

Case 3 a ^ O a n d c ^ O . 

For this case there exist real m-, and k, if 

Q = (d+arrij)2 - (am2 + bm, + c) 

is non-negative. This requirement is simplified to 

(2ad-b)mi + (d2-c)>0 

which can always be satisfied unless 

(2ad-b) = 0andd2-c<0 
Again this indefinite case can be avoided by varying 
parameters if necessary. This proves the existence or real 
augmenting matrices m and k. 

(A. 11) 

(A. 12) 

(A. 13) 
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Finite Element Analysis of 
Vibration of Toroidal Field Coils 
Coupled With Laplace Transform 
A numerical analysis of a vibration of toroidal field coils in a magnetic fusion 
reactor is shown here on the basis of the finite element method coupled with Laplace 
transform. Lagrangian consisting of kinetic, elastic strain, and magnetic energies 
was utilized to deduce equations of motion of the coils. The equations were solved 
numerically by applying the Laplace transform to a formulation with respect to 
time and the finite element method to one with respect to space. The Fast Fourier 
Transform algorithm was utilized for a calculation of the inverse Laplace transform 
to obtain a nodal vector of the coil's displacement in the original domain. 
Numerical results reasonably explain a dependency of the coil current on a 
frequency of the coil. 

Introduction 

The Laplace transform is well known as an effective way to 
obtain a solution of ordinary or partial differential equations 
by converting them into algebraic equations. Tables may be 
available for the inverse Laplace transform when analytic 
computations are applied to comparatively easy differential 
equations. However, cases may occur where this procedure is 
no longer applicable because of the difficulty of calculating 
residues. In other words, the inverse Laplace transform 
cannot often be solved analytically even when a solution of 
the ordinary differential equation resulting from the Laplace 
transform of a partial differential can be found. For this case 
a numerical calculation of the inverse Laplace transform must 
be applied. As far as the authors know, examples of 
numerical analysis with the Laplace transform have been very 
few. Krings and Waller [1] gave a numerical solution of linear 
partial differential equations with two independent variables x 
and t applying the method of Laplace transform coupled with 
an algorithm of the Fast Fourier Transform (FFT) developed 
in 1965 by Cooley and Tukey [2]. Manolis and Beskos [3] 
applied the Laplace transform to a solution of dynamic stress 
concentration around holes. Their method consists of ap­
plying the Laplace transform with respect to time to the 
equation of motion and solving the formulated equation 
numerically in the transformed domain by the boundary 
integral equation method. 

On the other hand, the authors have been deeply concerned 
with an instability of toroidal field coils for Tokamak-type 
fusion reactors [4], The magnetoelastic buckling of the 
toroidal field coils was first proved by Moon [5] to be closely 
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related to a vibration characteristics of the coils in a magnetic 
field. Miya and Uesaka [6] first showed a finite element 
analysis of a harmonic vibration of the toroidal field coils that 
have lateral supports. The vibration of the toroidal field coils 
in a strong magnetic field is too complicated in geometry and 
boundary conditions to solve analytically, which suggests 
application of the finite element method. The analysis of the 
harmonic vibration of the toroidal field coil gives us only a 
series of natural frequency from a solution of an eigenvalue 
equation. An extension of the work requires us to develop the 
numerical method to solve a forced vibration of the coils. To 
obtain the solution, the Laplace transform was applied for the 
discretization of the partial differential equation with respect 
to time, while the finite element method was applied for the 
discretization with respect to space. One reason for the ap­
plication of the Laplace transform is the fact that time-savings 
in the computation of the vibration can be expected with use 
of the Fast Fourier Transform algorithm. Also the Fourier 
transform cannot be successfully applied to the equation of 
motion with no damping because of singularities at natural 
frequencies of the vibration. 

A necessity for the dynamic analysis of toroidal field coils 
arises from the fact that the toroidal field coils experience 
transient electromagnetic forces due to the transient poloidal 
magnetic field generated by the Ohmic heating coils and a 
rapid change of plasma current. In addition, the structural 
response of the coils to an earthquake must be known for the 
structural design of the toroidal field coils. 

Theory of Coupled Vibration of Toroidal Field Coils 
With Toroidal Magnetic Field 

Basic Equations. Each of the toroidal field coils ex­
periences attractive forces from the rest of the coils when the 
coil currents flow in the same direction. The attractive forces 
that are common in actual toroidal field coils of a magnetic 
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fusion reactor are balanced since the coils are symmetrically 
arrayed in a torus. However, the balance of the forces could 
be broken when an external force such as an earthquake or 
electromagnetic force induced by a transient poloidal 
magnetic field acts on the coils. If a coil current exists, the 
motion of the coil is strongly affected by the coil current itself 
as experimentally shown by Moon [5]. The experimental 
result showed that the squared frequency decreases linearly 
with the squared coil current. The same relation was proved 
for a harmonic vibration of the toroidal coils by Miya and 
Uesaka [6] on the basis of the finite element analysis. Thus 
our concern in this paper is placed on showing a numerical 
solution of a forced vibration of the toroidal field coils. A 
characteristic feature of the numerical solution is such that the 
Laplace transform is applied for a discretization of equation 
of motion with regard to time while the finite element method 
is applied for the discretization with regard to space. 

The energy method is easier for the finite element for­
mulation of the motion of the toroidal field coils than the 
method of force balance. For that purpose Lagrange's 
equation can be used. To construct the Lagrangian, kinetic 
and elastic energies as well as a magnetic energy should be 
taken into consideration. The kinetic energy Tis given by 

^E^S)'*** (1) 

where w is a small deflection normal to the coil plane, p and h 
are the density and the thickness of the coil, respectively. The 
elastic strain energy U is stored in the coil when the coil 
deflects and is expressed as follows in terms of generalized 
strain (ej and stress (a) as, 

u={Lin< dxdy 

where 

[ e j ' - [ • 
d2w d2W d2MO 

~2~dxdy) 

(2) 

(3) 

lo)T = {Mx,My,Mxy} (4) 

Mx, for example, is a bending moment around the/-axis as 
usually defined in the theory of plate bending. The magnetic 
energy is expressed with a vector potential A and current 
density J as, 

W= ^HA'J h dxdy (5) 

A summation in equations (1), (2), and (5) is carried over all 
the toroidal field coils. 

The Lagrangian L is given by 

L = T-U+W (6) 

Thus the equation of motion is derived by the Lagrange's 
equation which is generally defined by 

dh)-^=r CD 
\ dw / 

dt dw 

where w = dw/dt and F is an external force acting on the coil. 
A substitution of equations (1), (2), and (5) in equation (7) 
yields 

EUpwhdxdy + E^fylUVlo) dxdy] 

-Y,?-\U\A.lhdxdy 
, dw 12 

(8) 

This is the equation of motion of the toroidal field coils which 
we aimed to obtain. The third term in the left-hand side of 
equation (8) is coupled with movements of the rest of the coils 
while the first and second terms are independent of the 

relative displacements between coils. Thus if the vector 
potential A of the third term is calculated with consideration 
of other coil's movement, we can omit the summation S, in 
equation (8). Of all the toroidal modes, the pairing mode is 
the easiest to occur as stated in reference [5], and is supposed 
to occur for the present analysis. Finite element formulation 
of equation (8) is too lengthy to show here since it is shown in 
detail in reference [6]. And the detailed calculation of the 
third term of equation (8), which is a perturbation of the 
magnetic energy stored in the coil system, is given in 
references [6], [7]. The result deduced in the paper is given by, 

[Mllg] + l[Ke]-lKm]][q) = [F) 

where 

[M)=tilN]Tp[N]hdxdy 

[Ke] = IKIH] ~' Y\P\T[D][P][H] -' dxdy 

<r , « l \ A
 d[N]T d[N]

 ^ T A
 d[N]T 

{Km 1 = i! | /xo 'Ax<l — — + JM 'A 
dx dx •-*0 "*> dy 

d[N] 

dy 
UxO'Ax2 +JyO' Ay2)[N]T[N] 11 h dxdy 

(9) 

(10) 

(11) 

(12) 

where [q] is a nodal deflection vector and [N] is a shape 
function which is given by 

w=[N]{Ql = {R]{m-,{g} (13) 

[R] = V,x,y,x2,xy,y2,x\xy(x+y),y3] (14) 

[P] = 

dx2 

~dy2 

. a2 

{R\ (15) 

dxdy 

[D] is an elastic matrix, JM and Jy0 are x and /-components of 
the current density, and AM and Ay0 are x and /-components 
of the vector potential. Ax2 and Ay2 are coefficients of the 
squared term w2 in Taylor's expansion of the vector potential. 
The matrices [M], [Ke], and [K,„] are called the mass matrix, 
the stiffness matrix, and the magnetic stiffness matrix, 
respectively. 

Numerical Solution of Vibration of Toroidal Field Coil 
With Laplace Transform 

Application of Laplace Transform. The magnetically 
coupled free vibration of a set of toroidal field coils can be 
modeled by a linear chain of masses coupled by negative 
springs and with periodic boundary conditions. Such a 
harmonic motion is well known and is discussed in reference 
[8]. 

According to the statement, the general motion of the set of 
the toroidal field coils can be represented by TV modes as, 

(<?)<= D \Q)a^
a>ei2™<N (16) 

wherey' = V - 1 , [Q)a is independent of time, and coa is a 
frequency of the ath mode. A substitution of equation (16) in 
equation (9) gives, 

[-o>2
alM] + ({Ke]-[Km])]{Q)a={F)a 07) 

The external force [F] is zero for the harmonic vibration. 
This case leads to an eigenvalue problem. The frequency of 
the ath toroidal mode, oia, is obtained as an eigenvalue of the 
following equation, 

\([Ke]-[Km])-o,2a[M)\=0 (18) 
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The effect of the toroidal mode on the value coa does not 
appear explicitly in equation (18). However, the mode must be 
considered when one calculates the perturbed vector potential 
generated on a coil. Since the smallest frequency caa is ob­
tained for a= (N- l ) /2 for N odd or a=N/2 for N even, 
numerical analyses following this section were done for this 
toroidal case. This case corresponds to a motion such that any 
two neighboring coils approaches and departs in pairs. 

The Laplace transform may be applicable to equation (9) as 
follows 

[s2[M]+[lKe)-[Km}}]lQs} 

= [Fs}+s[M]{q0)+[M]iQ0) (19) 

where 

s = P-ju (20) 

Let L be an operator of Laplace transform, and thus 

Uq) = {Qs) 
UF)=[FS] 

and [q0}, [q0] are initial deflection and velocity of the nodal 
vector. A solution of equation (19) is 

lQs} = [s2[M]+{[Ke]-[Km]}]-,[if's} 

+ s[M]{q0)+[M]iq0)] (21) 

The solution {Qs\ is obtained for discrete values of 
frequency ranging — k to k which gives significant value of 
[Q,h 

Application of the Fast Fourier Transform. The nodal 
deflection (q ] is obtained by the inverse Laplace transform of 
!QS) as follows, 

{qV)} = ~ \ , iQAs)}e" ds (22) 

Introduction of equation (20) in equation (22) results in 

{qU)) = %- f" {QsW-M}e-J"< do, (23) 
2TT J -°» 

If nontrivial change in Qs(s) does not occur beyond a 
distance greater than k, then the largest wave number of 
interest is defined by, 

X=2TT/A: (24) 

Thus the [q{t)\ can be approximately calculated by the next 
equation 

M fk 

while time t is defined as 

[qU) 
_ ep' r 
= li J-

[Q,(V-M\e-** da (25) 

or shifting the frequency from to to to +k 
eHl j-2k 

[qU)} = — iQ,(P-ju+jk) )e-''<"-*" dw (26) 
27T JO 

This integral may further be approximated by the summation, 
as 

[q(t)\ = 

where 

V*' £ 1 2k 
— • — t 
2TT N 

[QsW+Jk-to))e-J°" (27) 

U ' - ! f ( ( / - 1 + 5)} (28) 

Equation (27) can be simply rewritten as follows 

{qU))=\e®e"*-«'N»' jj\Q,W+jk-M).] 
irN rr. 

f = ^ ( / - l ) = | ( / - l ) ( / = l , 2 . . . ) (30) 

By substitution of equation (30) into equation (29) the 
following equation is obtained 

[q(t)} = - e i3( ' /*)(- ' - i ) e / ( i /JV)TU-i)-
N 

%{QsU3+Jk-M)]e- •y2(ir/N) ( / - ! ) ( / - ! ) (31) 

Equation (31) can be calculated using the algorithm of the 
Fast Fourier Transform (FFT) which makes computing time 
remarkably shorter compared with that of the direct in­
tegration method since the FFT makes use of special 
properties of harmonic functions for the evaluation of 
equation (31). The amount of computation is proportional to 
(TV)2 for the conventional calculation, while that of the FFT is 
proportional to 2N\og2N. 

Results of Numerical Analysis and Discussions 

Verification of the Computer Code. For a verification of 
a validity of the computer code made on the basis of 
equations (19)—(31) the following one-dimensional dynamic 
problem was solved. 

m0x(t)+CQx(t)+k0 x(t) 

=/o sin(u0 0 (u(t)-u(t-Ts)) (32) 

where u(t) is called the Heaviside's unit step function and, 
w0 = 1 .16xl0~ 3 , C 0 =0.08 , / c 0 =4 .49x l0 2 , /„ = 1.39, 
o)0 = 50, and Ts = 10 msec. 

A solution of equation (32) is given by, 

x(t)=Ai eal sm(A2t+A3)+A4sm(A5t+A6) 

( 0 < r < T s ) 

x(t)=Bl eat sm(A2t+B2) (33) 

(^<0 

: Exact solution 

: FEM-Fast Laplace 
Transform 

-j(2k/N)U-l)l (29) 
Fig. 1 Comparison of results by finite element method-fast Laplace 
transform with exact solution (one-dimensional problem) 
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k = 5000 

\ / Time (x 0.63msec) 

" /3= 1 0 , 2 0 , 5 0 , 1 0 0 

£ = 500 

Fig. 2 Effect of Rvalue (S-fi + iu) on a convergence of the inverse 
Laplace transform 

(a) Plasma current change 

lQi(s)| 

AA 
( b ) Amplitude - frequency plot 

q i ( t ) 

( c ) Response of nodal displacenent 
Fig. 3 Forced vibration of TF coil 

where Ax = - 2 . 1 3 9 , A2 =0.620, A3 = 1.46x 10~ 4 , 
A4=4A54, ^5=0.31416, A6 =7.52x 10"5 , a = - 3 4 . 3 7 , 
5 , = - 5 . 1 5 , a n d 5 2 = 1 .95xl0- 4 . 

Numerical solutions were obtained with a parameter of /3 
and k values in equation (31). A comparison between 
numerical result from the FEM-FLT (Fast Laplace Trans­
form) method and the exact solution is shown in Fig. 1, where 
0 = 50 and £=5000 were used. Since a time mesh is given by 
At=ir/k, At = 0.63 msec. Amplitudes of two oscillations 
shown in the figure agree with each other within a few percent 
of error while their periods agree almost completely. 

In the application of the Laplace transform a proper choice 
of the /3 and k values is crucial for obtaining a reasonable 
result when computing the inverse Laplace transform. A 
rough choice of the value is recommended by Krings and 
Waller [1] as 3,k/TrN<(3<lOk/irN. For values of N = 2 8 and 
£ = 500 the criteria is 18.7 </3< 62.2. An examination of 
convergence is shown in Fig. 2, where a convergent oscillation 
is depicted with a dotted line for (3= 10, 20, 50, 100 and an 
oscillation with a solid line is divergent for 0 = 500. Although 
cases with 0 = 10 and 100 do not satisfy the criteria given by 
Krings and Waller [1], the dynamic displacements obtained 
for the /3 of 10-100 agree completely with each other. The (3 of 
500 is too far away from the criteria to obtain a convergent 
solution. Thus the criteria given by Krings and Waller [1] may 
be a sufficient condition for a convergent solution of the 
inverse Laplace transform. 

Vibration of Toroidal Field Coils. A plasma current 
change would be one of two sources that could cause the 
vibration of the toroidal field coils. The other is a change of 
Ohmic heating coil current. In the present paper the change of 
the plasma current is utilized. The plasma current is charged 
slowly by the Ohmic heating coil current and may oc­
casionally disrupt very quickly. The major disruption could 
more rigorously cause a forced vibration of the toroidal coils 
than the Ohmic heating coil. The plasma current was assumed 
to disrupt like a sine function as shown in Fig. 3(a). It is zero 
after 10 msec. For this case the term [F] in equation (17) is 
expressed as 

( F ) = (/?,) sin(7rt/2T0) 

and the Laplace transform of equation (34) is 

7T/2T0 

(34) 

\F,\ = [F,\ 
5 2 + ( 7 T / 2 T 0 ) 2 (1+e - S J T / 2 T 0 ) (35) 
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Fig. 4 A half of a coil divided into triangular meshes 

4 X tO N/m 

Toroidal coil 

I t * 6 0 MAT 

Fig. 5 Electromagnetic force acting on toroidal field coil 

The Laplace transform [Qs\ of the nodal vector [q] is 
obtained from equation (19) for a constant (3 and variable 
frequencies u>. An example of a frequency dependence of 
\Q(S I at a nodal point "<" is shown in Fig. 3(fc). Since the 
following properties of symmetry are valid, 

Re(Qis) = Re(Q-is) 

Im(Qb) = -/m(G-i.) (36) 
I Qis I is symmetric with regard to an ordinate in Fig. 3(b). To 
obtain the nodal displacement (<?}, {Qs) must be inversely 
transformed based on equation (31). A schematic example of 
the results is shown in Fig. 3(c). 

It should be noted here that the Fourier transform cannot 
be applied to the vibration problem with no damping while 
the problem with the damping such as shown in equation (32) 
can be solved by its application. The reason is that the left-

hand side of equation (19) has singularities at the frequencies 
obtained from I - co2 [M] + {[Ke] - [K,„]} I = 0. For the 
Laplace transform the term is not zero for nonzero (3(5 = (3 — 
iw). Thus the harmonic vibration shown schematically in Fig. 
3(c) cannot be solved by the Fourier transform. 

A half of the toroidal field coil that is divided into 
triangular finite element meshes is shown in Fig. 4. Its bore is 
about 17m x 10m. Shape and dimension of the coil were 
determined to be free of bending moment using Young-
Moses's method [9], The numbers of node and element are 66 
and 80, respectively. Symbols denoted with BC1 and BC2 in 
Fig. 4 mean that a straight portion of the coil marked with an 
arrow of BC1 is completely constrained to a bucking post for 
the case of BC1 and a lateral support is set at a nodal point 
marked with BC2 as well as the straight portion for the case of 
BC2. At the boundary conditions, both the deflection and the 
rotation were constrained at those nodal points. 

In Fig. 5 a distribution of electromagnetic force acting on 
the toroidal field coil is shown, which is caused by an in­
teraction between the toroidal coil current of 60 MAT and a 
poloidal magnetic field generated by a plasma current of 7 
MA. The force acts normal to the coil surface resulting in a 
huge overturning torque since the force distribution is an­
tisymmetric with respect to the x-axis. A vibration of the 
toroidal field coils may be caused by a major plasma 
disruption which is at the present stage thought to occur 
occasionally. The maximum force per unit length of 
8.34 x 106 N/m appears at a point of the straight portion near 
x-axis. 

The electromagnetic forces at two intersecting points (A 
and B) should be zero because of antisymmetry as indicated in 
Fig. 5. The plasma current was dealt with as a line current 
when computing the magnetic flux density at portions of the 
toroidal field coil. 

Figure 6 shows some examples of the vibration of toroidal 
field coils with a parameter of a sound speed VE/p where E 
and p are equivalent Young's modulus and density of the coil, 
respectively. The coil consists of structural support, super­
conducting material, and insulation. It is very difficult to take 
into consideration a complicated detail of the coil section even 
for a numerical analysis. For brevity, a concept of equivalent 
Young's modulus and density was applied in this paper. The 
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deflection plotted as an ordinate in the figure is one at a point 
marked with BC2 in Fig. 4. In this case the boundary con­
dition denoted with BCl was applied and thus the point 
marked with BC2 is free of any mechanical constraint. Input 
values as the equivalent Young's modulus and the density 
were given as those of copper as E = 6.89xl04 MPa and 
p0 = 8.9 X 103 Kg/m3. It is shown in the figure that a period of 
the oscillation increases with a decrease of the sound speed 
while an amplitude decreases with a decrease in sound speed. 
This characteristic feature is understandable from a free 
oscillation of an undamped mass-spring system. 

Figure 7 shows frequency-current dispersion curves for an 
eight-coil full torus. The left figure is for the boundary 
condition denoted with BCl and the right one is for the BC2 
boundary condition. Blank circles show results from the 
lowest of eigenvalues of equation (18) and blank triangles 
show results from the FEM-FLT method which has been 
developed in this paper. Both results seem to agree very well in 
the figure. The frequency corresponding to zero current is a 
natural one which is not affected by the toroidal field and they 
are 1.17 Hz and 3.99 Hz for BCl and BC2 boundary con­
ditions, respectively. The natural frequency increases by its 
very nature with the number of mechanical constraint. It is 

also clear that the current corresponding to the zero frequency 
in Fig. 7 is the same as the critical current which causes the 
buckling of the toroidal field coil, as discussed in reference 
[5]. They are 11.8 MA and 23.8 MA for BCl and BC2 
boundary conditions, respectively. As is the case for the 
natural frequency, the buckling current also increases with the 
number of mechanical constraint. The figure shows an im­
portant fact that the linear relation between a frequency 
squared and a current squared exists. 

In Fig. 8 the lowest natural frequency calculated from 
solutions of equation (18) and equation (31), which are ex­
pressed with the eigenvalue algorithm and the Laplace 
transform, respectively, in the figure, is plotted versus density 
and Young's modulus of the coil. Two linear relations be­
tween the frequency squared and the inverse of density, and 
the frequency squared and Young's modulus, are implied to 
be valid from the following equation, 

or 

f=f0*-4LlP/Vp 

f = (KE-4LlI
2/V)/p (37) 

where/0 is a natural frequency when the coil current / is zero 
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Fig. 8 Relation between frequency squared (f ) and equivalent 
density G>), Young's modulus 

and its square is proportional to a ratio of E/p, Fis a volume 
of the coil, and L{ is a coefficient of a deflection squared in a 
Taylor series of a mutual inductance between the coils. 
Equation (37) was deduced by Moon applying a modal 
analysis to the toroidal field coils. Thus it could be expected 
that the frequency squared of the coil shown in Fig. 4 is 
proportional to the inverse of density and Young's modulus. 
Results shown in Fig. 8 prove the conjecture. These relations 
are very useful for a rough estimation of the natural 
frequency, which is needed for a structural design of a 
toroidal field coil. 
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The Dynamics of a Gyroscope 
Supported by a Flexible Circular 
Plate 
The dynamics of a rigid rotor supported on a flexible circular plate is investigated 
and it is shown that the arrangement is capable of operating as a tuned free rotor 
gyroscope. The performance characteristics of the gyroscope are evaluated and the 
analysis shows that the steady displacment of the rotor may be used to measure 
either the angular velocity or angular displacement of the supporting casing. For 
both modes of operation the free motion and the response to a constant rate and a 
vibratory input is determined. 

1 Introduction 

During recent years elastically supported gyroscopes such 
as the Oscillogyro and the Hooke's Joint Gyroscope have 
been developed with the aim of replacing the more expensive 
floated gyroscope. Offering simplicity of construction and 
therefore lower manufacturing costs it is felt that the next 
generation of high accuracy gyroscopes will be found amongst 
instruments of this type. The Oscillogryo, originally 
developed by Philpot and Mitchell at R.A.E. and later in­
vestigated by Walley and Maunder [1] has been the forerunner 
of this class. Its construction [1] is simply a sensing element 
usually in the form of a flat bar, elastically connected to a 
drive shaft by means of a torsional hinge. By matching the 
inertia coefficients of the sensing element with the suspension 
stiffness the oscillo-bar may be tuned at its running frequency 
to provide a direct measure of casing rotation. The Hooke's 
Joint Gyroscope [2] is a two-axis version of the Oscillogyro 
and exhibits similar characteristics. 

Despite the simplicity of these devices their performance as 
inertial instruments has been limited because of their poor 
response to harmonic inputs at twice the tuning frequency. 
Much recent research has therefore considered instruments 
that exhibit the tuning characteristic but are free from the 
drifts associated with 2co vibration. 

A suspension system based on heavy elastic beams has 
recently been proposed by Maunder and Bulman [3] and this 
has been shown in [4] to have tuning characteristics and 2co 
immunity. The purpose of this paper is to show that other 
elastic suspensions are possible by considering the case of a 
rotor supported on a heavy circular plate. 

2 Description of System and Analysis 

Figure 1 shows the form of the elastically supported 
gyroscope considered in this paper. The sensing element, in 
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this case a symmetric rotor, is connected to the drive shaft by 
means of a heavy circular plate. The inner and outer edges of 
the plate are assumed to be rigidly clamped to the drive shaft 
and the rotor, respectively. 

Consider the set of case-fixed axes OXYZ shown in Fig. 2. 
The origin 0 is fixed at the mass center of the rotor and axes 
OX, OY, and OZ are aligned with the initial directions of the 
rotor's principle axes at O. In this datum state the plate is 
arranged to lie in the OXY plane with its normal through its 
center coincident with OZ. It will be assumed that the rotor 
moves in rotation only and that its center of mass G always 
remains fixed at O. In practice it is necessary to prevent axial 
translation. This constraint is often achieved by connecting 
the rotor to the drive shaft using a light axial strut. In the 
analysis that follows, the stiffness of this strut will be 

Drive Shaft 

Rotor 

Fig. 1 Gyroscope assembly 
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neglected. This omission does not affect the results of the 
investigation. Rotor motion relative to OXYZ is given by a 
rotation nt about the spin axis OZ, to take OXYZ to 
OX{ K, Zx, followed by small rotations <f)x about OXi, to take 
OXlYlZl to OX2Y2Z2 and <j>y about OY2, and to take 
OX2 Y2Z2 to Oxyz. The axes Oxyz remain fixed to the rotor's 
principal axes. The input to the rotor is specified by an 
angular velocity fi about the case-fixed axis OX. 

3 Dynamics 

To accommodate the displacements 4>x and <j>y the plate 
deflects. To describe this deflection it is convenient to con­
sider the motion of the plate with respect to axes OXt F, Zx • 
Figure 3 shows the deflection W along OZl of a typical point 
P situated on the midplane of the plate and specified by polar 
coordinates r and 6. Because the plate is assumed clamped at 
its inner edge, the deflection must satisfy boundary conditions 

W(n) = 0 and 
dW 

~~dr 
• ( / • , ) = <> a t /• = /• , (1) 

Likewise, because of the rigid attachment to the rotor it 
follows that the deflection and radial slope of the plate at 
r = r0 are constrained by the motion of the rotor to be of the 
form 

W(r0) = r0(<t>xsin$ - <^cos0) 

dW 
r0 dr 

{r0)=W{r0) (2) 

Since the plate is assumed to have significant mass, the 
general behavior of the rotor and plate assembly will be 
determined by the modes that characterize the way the plate 
can vibrate. However, because the plate's outer edges are 
kinematically constrained by the motion of the rotor, only 
asymmetric modes with one modal diameter are permissible. 
It can be further assumed that the fundamental of this set will 
determine the behavior of the gyroscope. 

The governing equations of motion will now be established 
via Lagrange's equations by assuming a plate deflection 
compatible with the shape of this fundamental. 

Since the deflected form of the plate must satisfy the 
geometric constraints (1) and (2) an approximate solution may 
be constructed by assuming Wto be given by 

W= \j/(r). [ 4>x sine - 4>y cos0) 

where ii (r) is chosen to satisfy boundary conditions 

(3) 

ii = 0 and — =0 at r = r, 
dr 

and 

dr 
\j/ = r0 and —— =1 at r = r0 (4) 

Clearly there is more than one function i/< (r) that can be 
chosen to satisfy (4). For the purpose of the present analysis 
we shall select \j/(r) to be the function that describes the static 

Fig. 2 System axes 

Fig. 3 Plate deflection 

deflection of the nonrotating plate when the rotor is given a 
unit rotation about OX{. For this situation ^(r) can be shown 
to be given by 

Kr) = 
2(r2

0 + r})r In ( "- ) - - (r2 + rl)(r2 - r?) 

2[rHl+ln(^-)) + rUln(^)-l)] 

(5) 

If the kinetic energy T and potential energy V of the gyro 
assembly are now determined using (5), then the equations 
determining the rotor motion may be derived from 
Lagrange's equations. The total kinetic energy of the 
assembly is determined by adding the kinetic energies of the 

N o m e n c l a t u r e 

A,A,C = rotor inertias about principal axes 
E = Youngs modulus 
v = Poisson's ratio 

Eh3 

D= T^TT: — = plate flexural stiffness 12(1-c2) 

h = plate thickness 
p = density of plate material 
a = coefficient of thermal expansion 
T = temperature 
n = rotor spin rate 

CO 

W 
4>r 
<j>y 

Pr 
0v 
* 
S 

Vi 
1.2 

il 

= tuning speed 
= plate deflection 
= rotor deflection about OXx 
= rotor deflection about OY2 
= rotor deflection about OX 
= rotor deflection about OY 
= vibration amplitude 
= frequency 
= phase angle 
= natural frequency 
= casing input about OX 
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rotor and the plate. For small <fx and 4>y the kinetic energy of 
the rotor, TR, is given by 

TR = — [AUx-n<j>y + ax)
2 +A{<i,y + n<t>x + wyf 

+ C(n2-n2(j>x
2-n2<j>j-2n4>xoiy+2n4>),(j)x+2n4>yux)] (6) 

where oix = Qcos nt and wy = - Qsin nt. 
Likewise the kinetic energy of the plate, Tp, is 

1 f-ro (ZT 

Tp= —ph\ _ [(Wwy - r n sin0)2 + (W<ax-rncos0)2 

/ dW \ 2 

+ ( —-— + wxr sm6-wyr cos0) ]r dr dd (7) 

The potential energy of the assembly is associated with the 
strain energy stored in the plate and using the results given in 
[6] is given by 

2 ir=r0 ]e=o l\~drT) + V 7 r ~W + ~T "dr) 

d2W / 1 b2W 1 dW\ 
+ 2» 

dr2 • ( ^ dd2 r dr / 

\ d2W 1 dW\2' „ „ , / 1 d^W 1 dW\2l 
(8) 

d /dT\ dT dV_ 

~dt\Wi)~Wi
+Wi~° 

and may be written 

(,4 + «)& +n(C+2a)$y + [Ko-n
2(a + ki)]0x=-(A+b)Q 

(A + a)Py -n(C+2a)$ x + [K0 -n
2(a + kx)]$y = n(C+2b)Q, 

where 

f r° •> a = pAirl n//2(r)dr 

6 = P/ZTTI r2\j/(r)dr 

*.-<['(£)'4(24*): 

rf2^ / C?IA i 

(12) 

(13) 

+ 2p- "(f-T*) dr2 ' \ dr 

2(1 -v) ( dyj, 

(£- •*) ] tfr 
aET , for / eP^\ 2 1 ,,1 

The quantities arr and aM represent the inplane radial and 
circumferential stress fields due to centrifugal loading and 
any thermal prestress introduced during assembly. The 
relationships determining arr and oM are well known [5], and 
for a thin disk rotating with angular velocity n are 

aET 

\-v 

aET 

l-v 

+ C„ + -
(3 + o) 

+ Cn 

pn2r2 

0+3?) 2 2 (9) 

The constants C0 and C^ are determined by the fixing of the 
plate at the drive shaft and rotor connections. If, for example, 
the drive shaft and rotor are assumed radially rigid these 
constants follow from the conditions that the inplane 
deflections at r = r, and at r = r0 are zero. 
For this situation C and C\ are given by 

„ 1 + v , , ., 
C0=-—pn2(rj+r2

o) 

and 

-pn2ri
2r2. (10) 

Although it has been convenient to derive the kinetic and 
potential energies with respect to axes fixed to the rotor, 
interpretation of the system dynamics is greatly simplified if 
the rotor displacements are rewritten in terms of 
displacements /3X and 0y about the case fixed axes OXYZ. 
This transformation can be achieved by resolving </>x and <j>y 

along OXYZ to give 

/3X = <f>xcos nt - 4>y sin nt 

Py = <t>xsin nt+4>y cos nt (11) 

If equations (5) and (11) are now substituted into (6)-(8) the 
linearized equations defining (3X 

Lagrange's equation in the form 

* i = - Tixsr - (4n* <»> 
Equations (13) allow the rotor and the suspension to be 
treated as a single rigid body having two degrees of freedom 
connected to the drive shaft by a massless suspension. 

The parameter a represents the equivalent inertia of the 
plate about the rotor's principal axes Ox and Oy, and b is an 
inertia factor that determines the portion of the plate loading 
due to 0 which is transmitted to the rotor. The quantity (K0 — 
n2ki) represents the stiffness of the equivalent suspension 
where K0 is the stiffness of the nonrotating plate and is a 
function of preload and plate flexibility and kx represents the 
reduction in stiffness due to centrifugal loading. It should be 
appreciated that the magnitude of kv is determined by the 
inplane fixing between the drive shaft, plate, and rotor. For 
example, if the rotor and the drive shaft are assumed rigid, kt 

is positive. When rotor elasticity is considered its value 
decreases and in the limiting case - unconstrained radial 
displacement - &! is negative. It will be shown that the values 
of K0 and k\ are important and have a considerable influence 
on the value of the gyro's running speed. 

The response of the gyroscope will depend on the input Q. 
To obtain an understanding of the characteristics of the in­
strument it is necessary to evaluate the behavior of the rotor 
due to standard test inputs. The free response and responses 
to a constant rate and a vibratory input will therefore be 
determined. 

3.1 Free Motion. If Q = 0 the equations describing the 
free motion of the gyroscope follow from (13) as 

2 

fr = L <Vin(P/ + 1?./) 
y = i 

and Py follow from j3y = ^\jPOJcos(pjt + rij), (15) 
y = i 
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where pj is a natural frequency of free vibration and is given 
by the roots of 
[npj{C + 2a)]2-{{K0 -nHa + ki))-Pj2<A+a)]2 =0 

and 
X, = .[K0- n2{a + *,) -pj\A + a)]/nPj(C+ 2a). (16) 

The solutions of (16) yields two roots which are functions of 
rotor speed n. 

Pj = 
n{C+2a) 

2{A+a) 
K2a)r r 4(/t+g)(ir< )-n' i(g + * 1 ) - | " M 
+ a) L L n2(C + 2a)2 J J 

(17) 

Whenrz = 0 the roots of (17) coincide at pu2 ~ 4l(JA + a. 
As n is increased the roots separate. The highest natural 
frequency p2 increases steadily with n and at high speeds 
approaches the nutational frequency Cn/A of the free rotor. 
The lower frequency px decreases with increasing n and for 
large values of n approaches a value (K0 -n

2(a + A:1))/nC It 
is of some importance to note thatpj is zero when n = o> = 
[K0/(a + ki)]1/2. This indicates the existence of a tuning 
condition and since the natural frequencies of the tuned gyro 
correspond to those of an ideal free disk, i.e., px = 0 and p2 
= Cn/A, it may be implied that tuning produces a zero 
stiffness suspension. When run tuned, the rotor tend to 
behave as a free body decoupled from the motion of the drive 
shaft and supporting casing. 

It is shown that the tuning condition is only a function of 
the plate parameter K0, kx and a. Since the value of kx is 
influenced by the radial expansion of the rotor due to cen­
trifugal loading it can be appreciated that any preload in­
troduced by thermal stressing must be carefully calculated so 
as to ensure tuning at the correct speed. Furthermore it is also 
desirable to make (a + k^) as large as possible so that the 
tuning equation K0-n

2(.a + k{) = 0 is not ill conditioned. 
Interpretation of k{ indicates that this can only be achieved if 
the radial stiffness of the plate is less then that of the rotor. 
The greater the difference in radial stiffness the more well 
defined is the tuning speed. 

,=0 (20) 

The rotor spin axis maintains it initial offset without drift and 
a stationary nodal diameter is produced in the disk. 

3.2 Response to Constant Rate Input. When a constant 
rate input 0 is applied about the case-fixed axis OX, the 
steady-state solution of (15) shows that the rotor takes up a 
steady position about OK given by 

* ' - * 

n(C + 2b)Q 

i-n2(a + k\) 
(21) 

The magnitude of fiy is directly proportional to the applied 
rate and (21) indicates that the untuned gyroscope is capable 
of functioning as a rate measuring device. 

If the gyro is tuned, the character of the steady-state 
response changes and can be shown to be given by 

/ C + 2b \ n 

fix = - ( - r r - ^ — ) - Q ' s 

x \ C+2a / 

-flr 

= 0 (22) 

In this instance a rate input produces a steady rotation of the 
rotor about OX and in a direction that tends to maintain the 
spin axis fixed in space. Thus if the rotor inertia C is selected 
such that C > >2a and 2b, then (22) indicates that the tuned 
gyro will provide a true measure of the casing displacement, 
and thereby an inertial reference. 

3.3 Response to Vibratory Input. Let the vibratory input 
to the casing be represented by 

fi = 5*cos(5r + »j) (23) 
where it will be assumed that n > > si. 

The steady-state response of the rotor is 

fix = **2-
[(A + b)[[K0 -n

2(a + fc,)] -s2(A + a)] + n2(C+2a)(C+2b)] sinter + rj) 

[(K0-n
2(a + kl)-s

2(A + a))2-(C+2a)2n2s2] 
(24) 

[{C + 2a){C+2b)n2-{A+a){A + b)s2\ . , 
* l(A + a)2s2-(C+2a)2n2] " " ^ + "} 

If the factors \^ and X2
 a r e calculated, the shape traced by 

the extremity of the rotor spin axis may be determined for 
each mode of vibration. From (16) these ratios are given by X] 
= 1 and X2 =4= - 1. For the first mode and for rotor speeds n 
< oi the tip of the rotor axis traces approximately a circle in 
the opposite direction to that of rotor spin. When n > u> the 
direction of the orbit changes and the tip of the rotor spin axis 
moves in the same direction to that of rotor spin. In the 
limiting case, when n = oo the rotor spin axis remains 
stationary. The motion of the rotor axis associated with the 
second mode is again approximately a circle but this time the 
displacement occurs in the same direction to that of rotor spin 
for all values of n. 

If the gyro is now tuned the solution of equation (13) takes 
the form 

<3x = |301+fesin(p2r + r)2) 

/3, = /301 

p2(A+a) 
:02 ,„ , -, , COs(p2t + ri2) (19) 

w(C + 2a) 
For example, if at t = Q the rotor is displaced 9 about OX and 
then released from rest it follows from (19) that the resulting 
motion is simply 

The foregoing analysis shows that the rotor responds about 
both OX and OY and that the tip of the spin axis traces out an 
elliptical orbit with frequency 5. For the untuned gyro it 
follows that resonance occurs when 5 coincides with a natural 
frequency /?,-. 

When the gyro is tuned the expressions for the 8X and fiy 
simplify and are given by 

UC+2a)(C+2b)n2 ~(A+a) (A + b)s2] 
fix = * r / , . ,-, -, ,„ , „ o 7l sin(.sr+ 7j) 

.ins. 

[(A+a)2s2-(C+2a)2n2] 
(2A-Q(a-b) 

cos(sr + ri). (25) 
[(A+a)2s2-(C+2a)2n2] 

These expressions show that the tuned rotor will only resonate 
when 5 is equal to the highest natural frequency, 

'(C+2a)^ 
Pi 

({C+2a)\ 

and that the resonant motion occurs about OX and OY with 
equal amplitude. 

At this point it is useful to contrast the performance of this 
type of gyroscope with that of other tunable instruments - the 
Oscillogyro and the Hooke's Joint Gyroscope - particularly 
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in the case where the excitation frequency s is at twice rotor 
frequency. 

It is well known, [1], that if either the Oscillogyro or the 
Hooke's Joint Gyroscope are subjected to vibratory inputs at 
frequency s = 2co a steady drift of the rotor spin axis occurs at 
a rate proportional to the amplitude and phase of the 
vibration. This phenomenon, referred to as 2u drift, limits 
their performance. If we set s = 2u in equation (25) the 
response of the gyro described in this paper becomes 

_ $ 

= 2$-

(X4 + C + 2(a + fe)) 
(2A + C+4a) 

. sin(2nt + ij) 

(0 -6 ) 

(2A + C + 4a) 
. cos(2nt + ij) (26) 

It is seen that this design of gyroscope is insensitive to 2co 
vibrations insofar as no resultant drift of the rotor spin axis 
occurs. This result can readily by appreciated by examining 
equations (13). Because of the assumed symmetry of the rotor 
and its suspension, the forcing term associated with the input 
excitation is not modulated at twice running frequency - this 
modulation occurs in the case of the single gimbal Hooke's 
Joint gyroscope and the Oscillogyro - and therefore does not 
give rise to a steady torque that will be interpreted as a 
constant rate input. 

4 Conclusions 

The dynamics of an elastically supported gyroscope con­
sisting of a rotor mounted on a heavy circular plate has been 
considered, and approximate equations of motion have been 
established using a mode shape consistent with the first mode 
of vibration of the stationery plate. Using these equations it 
has been shown that the gyroscope possesses two natural 
frequencies, px andp2 which are functions of rotor speed n. 

The highest natural frequency p2 increases, almost linearly 
with n, whereas px decreases. It has also been shown that it is 
possible to tune the gyroscope by making p{ = 0. This 
condition is achieved by matching the dynamical charac­
teristics of the plate suspension with the rotor speed and 
enables the rotor to behave approximately as a free spinning 
body. 

When an externally applied rate of turn is applied to the 
supporting casing the steady-state displacement of the un­
tuned rotor is proportional to the applied rate and occurs 
about an axis perpendicular to the input axis. The untuned 
gyroscope therefore acts as a two-axis rate sensor. If the 
gyroscope is tuned, the displacement of the rotor is 
proportional to the applied displacement and occurs about an 
axis so as to maintain the rotor in a fixed position with respect 
to inertial space. 

The response of the rotor to harmonic inputs has been 
evaluated and it has been shown that the performance of the 
gyroscope as a rate or displacement sensor is not seriously 
affected by vibrations at twice rotor speed. 
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Bifurcations in Three-Dimensional 
Motions of Articulated Tubes, 
Part 1: Linear Systems and Symmetry 

Three-dimensional motions of a two-segment articulated tube system carrying a 
fluid and having rotational symmetry about the vertical axis are examined for 
bifurcating periodic solutions. As the flow rate through the tubes is increased past a 
critical value, the downward vertical position of equilibrium gets unstable and 
bifurcates into two qualitatively different kinds of periodic motions. The 
mathematical problem is more general than that occurring in the Hopf bifurcations 
and the method of analysis used is the method of Alternate Problems. Since 
physical systems invariably have some asymmetry, the analysis takes into account 
these symmetry-breaking perturbations. In Part 1 of this two-part paper, symmetry 
properties of the system and the linear stability are discussed. 

1 Introduction 
Recent developments in the study of flow-induced motions 

of tubes carrying a fluid started with the work of Benjamin 
[1,2] on articulated tubes. Much of the early work is con­
cerned with linear analysis of the stability of initially straight 
tubes for motions in a plane. Among the references, the works 
of Gregory and Paidoussis [3,4], Paidoussis and Issid [5], 
and Herrmann and Nemat-Nasser [6] may be mentioned. For 
linear analysis of three-dimensional motions of continuous 
tubes there is the work of Lundgren, Sethna, and Bajaj [7], 
Nonlinear analysis for linearly unstable planar motions has 
been done by Holmes [8], Rousselet and Herrmann [9], and 
Bajaj, Sethna, and Lundgren [10]. 

In this paper we study three-dimensional nonlinear motions 
of articulated tubes. The analysis is made as simple as possible 
by treating the case of only two tubes. Furthermore, we 
restrict the study to only those cases where the static solution 
breaks up into periodic motions. Even under these restrictions 
the system exhibits a wide variety of behavior. 

The mathematical problem is a problem in bifurcation 
theory in systems with rotational symmetry. It will be shown 
that as the flow velocity is increased beyond a critical value, 
the straight position of the tube becomes unstable and 
depending on the remaining system parameters, develops into 
two qualitatively different types of nonlinear periodic 
motions. The equilibrium position loses stability because a 
double pair of complex eigenvalues of the linearized system 
crosses the pure imaginary axis from the left to the right half 
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of the complex plane. The nonlinear phenomena exhibited are 
more complicated than those associated with Hopf bifur­
cations [11]. For example supercritical bifurcations [11] may 
not be stable in contrast to the case of Hopf bifurcations. 

This problem in addition to its intrinsic physical and 
mathematical interest has the potential for secondary and 
higher order bifurcations, perhaps, eventually leading to 
chaotic motions reminiscent of the Bernard problem. Fur­
thermore, we here have the advantage of having to treat a 
mathematical problem that is only finite dimensional. In this 
context the present work can be viewed as a study of the 
simplest bifurcation in this system. 

The mathematical analysis given here is based on the work 
of Bajaj [12, 13] on general discrete dynamical systems with 
rotational symmetry. In the interest of, brevity we give only a 
few of the mathematical details and rely heavily on these 
references. 

In this first part of this work, the equations of motion of 
the articulated tubes system are presented along with a 
discussion of their symmetry properties. We also discuss the 
stability of the downward vertical equilibrium position of the 
tubes system. The nonlinear analysis for bifurcating solutions 
is carried out in the second part of this paper. 

2 Equations of Motion 
In the following, we derive the equations of motion for 

three-dimensional motions of a two-segment articulated tube 
system. The system consists of a vertically hanging articulated 
tube made of two segments. The fluid enters the tube at the 
top and after its passage through the tube, it is discharged, 
tangentially to the end of the tube, to the atmosphere. A 
Cartesian coordinate system is fixed at the top of the tube 
where the fluid enters with the Z-axis coinciding with the 
downward vertical position. X and F-axes then define the 
position coordinates in the plane normal to the Z-axis. 

The basic assumptions are as follows: 
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d ( d£\ d£ . dR 
( ^ ) - 1 r - = -MU(R+UT)- — , /=1,2,3,4 (1) 
V aa. / da. da: 

1. The fluid is incompressible. The velocity profile of the 
fluid at any cross section is uniform and the velocity of fluid 
relative to the tubes is constant. 

2. Both tubes have the same circular cross section and the 
diameters of the tubes is small compared to their lengths. 

3. The bending stiffnesses of the joints have radial sym­
metry and the elastic restoring forces are linearly dependent 
on the angles between the center lines of adjacent tubes. 

4. The joints have no torsional stiffness. 

Following Benjamin [1], the equations of motion of the 
articulated tubes system are given by 

dR 

dt\dq,J dq; ' ' ~'' dq, 

where qh i= 1,2,3,4 are the generalized coordinates, £ = T, 
+ T2 - V\ - V2, Tx and Vx are, respectively, kinetic and 
potential energies associated with the tube system itself, T2 

and V2 are the corresponding quantities for the contained 
fluid, R and R are, respectively, the position and velocity 
vectors of the free end, T is the unit vector tangent to the free 
end, and M and U are, respectively, the mass per unit length 
and the velocity of the fluid relative to the tubes. 

As mentioned in the Introduction, we will see that motions 
of the system are of two qualitatively different kinds. One 
kind occurs in a vertical plane passing through the Z-axis and 
the other can be viewed as circular motion around the vertical 
axis. These motions cannot be analyzed in a unified manner 
with any form of polar coordinates since equations in these 
coordinates become singular for motions passing through the 
vertical axis. Therefore, a reference frame consisting of two 
orthogonal vertical planes OXZ and OYZ has been used. If, 
however, the motions passing through the vertical axis are 
excluded, an alternate simpler procedure utilizing polar 
coordinates can be used. 

For the two-segment system, let us choose un,ul2,u21, and 
w22 as the generalized coordinates. Here un and un + w12 

are, respectively, the position coordinates along the X-axis of 
the end points of the upper and lower tube segments. 
Similarly w21 and u21 + u22 are, respectively, the position 
coordinates along the F-axis. The system kinetic and potential 
energies can then be shown to be 

r , + T2 = \ (m+M) (/, + 3 / 2 ) ( M , 1
2 + M 2 1

2 + Z 1
2 ) 

o 

+ l-(m+M)l2{un
2 + u22

2+z2
2)+-MU2(lx+l1) 

o z 

R = (un+ul2)i + (t/21 + w22)j + U, +z2)k (4) 

and 
T = - (ui2i + u22j + z2k) 

<2 

where i, j , and k are the unit vectors along the three coor­
dinate axes. 

We study small nonlinear motions of the system close to its 
vertical equilibrium position; that is, when un, ul2, u2i, and 
u22 are small and therefore retain only linear and cubic terms 
in the equations of motion. We now introduce non-
dimensional variables and parameters: 

Y _ " H v _ M21 „ _ M12 v _ M 2 2 
•* 11 — ~, ) x21 — —. > •* 12 — ~, > -*22 — ~. > 

n 'l '2 h 

/, *, 3M 

l2 k2 m + M { 
{m+M)l2 

p=u\y"'::'"2]' • (5) 3k, 

3k-, l v> (m + M) r 3k2 1 
G = - ^ r " . g / 2 and 1=tl(m+M)i2>\ 

Taking into account (2)-(4), the equations of motion (1) 
then take the form: 

3 
a2(a + 3)xn+ -ax\2+a2l3Pxn+2aPpxl2+aPp2(xl2-xn) 

+ a(a + 2)Gxn +KXU +(xn -xn)= -a2(a + 3)xn(xn
2 +x2l

2 

.. 3 . . 
+ xnxu+x2ix2[)— -axn(Xi2 +x22 +xnX\2+x22x22) 

-2appxu(x2ix2l +x22x22) + xu(xn
2+x21

2)[- -a(a + 2)G 

2 1 «/3p2~) f l pap2-* 

• g (^n -xn) {(xn -xl2)
2+(x2l -x22)

2}-l3pa2xn(xuxn 

+ A:21i2l) + 0(lxl5 + lxl5), 
3 

a2(a + 3)x2l + -ax22 + ffpa2x2l + 2aj3x22 + afip2(pc22 -x2l) 

(6) 

+ a(a + 2)Gx2i + KX2I +(X2, -x22)= -a2(a + 3)x2l(xu
2 +x2l

2 

.. 3 . . 
+ xuxn+x2lx2l)— -ax2l(xl2 +x22 +xl2Xi2+x22x22) 

-2afipx2x(xi2xn+x22x22) + x2X(xu
2 +x2x

2)Y~ ^a(a + 2)G 

+ - (m+M)I2(unul2 + u2iu22+ziZ2) 

+ MU(iinu12 + u21u22 + z1z2) 

2 1 aVp1 , , ., • 

3 K~ 2 + ~2~ ' +X2l(-Xn +Xl2' ]+x21(,12
2

+ ,22
2)[i-^] 

(2) 

and 

K, + K2 = (m+A/)g[(^/, +/2) (/, -« , )+ ^/2(/2-z2)] 

.2 2 

• g (̂ 21 ~x22) {(X|, - x 1 2 ) 2 +(x21 -x 2 2 ) 2 } -pPa2x2l(xnxn 

+ *2.*2i) + 0 ( l x l 5 + l x l 5 ) , (7) 

+ -(kl<t>l
2+k2<t>22) (3) 

where 

Z 1
2 = / 1

2 - ( I / „ 2 + M2 1
2) and z 2

2 = / 2
2 - ( « 1 2

2 + w22
2) 

In (2) and (3), lx and l2 are the lengths of the upper and lower 
segments, m is the mass per unit length for each tube, kx and 
k2 are the bending stiffnesses of the upper and lower joints, 
4>i is the acute angle between the upper tube and the Z-axis, 
and <j>2 is the acute angle between the two tube segments. 

The position vector R and the unit tangent vector T defining 
the generalized forces in (1) are 

-axn +xn + Ppxl2 + Gxl2+(xl2 -xn)= -xl2[(x12
2 +x22 

+ xi2xl2 +x22x22)+ -a(xu +x2l +xuX[i+x2[x2l)] 

- -(l + G)xl2(x12
2+x22

2)+ -xl2(xn
2+x2i

2)+ -(xn-x12) 

I (*ii -*i2>2 +(*2i -^2 2 ) 2 ) -Ppxn(.xl2xi2 +x22x22) 

+ 0 ( l x l 5 + I x l 5 ) , (8) 

and 
3 
-ax2X+ x22 + $px22 + Gx22 +(x22-x2l)=- x22 l(xl2

2 + x22
 2 
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+ *12*12 + *22*22>+ ^a(Xn
2+X2i

2+XnXn +X21X2i)] 

-X22(Xl2
2+X22

2)-(l+G) + -X22(Xn
2+X2l

2)+-(X21-X22) 

( ( ^ l l - ^ 1 2 ) 2 + ( ^ 2 1 - ^ 2 2 ) 2 ] 

+ 0 ( l x l 5 + l x l 5 ) , 

-$px22{xnxn+x22x22) 

(9) 

Here xn and xn are the nondimensional coordinates along 
the vV-axis, x2l and x22 are the coordinates along the F-axis, t 
is the nondimensional time, and x = (xu, xl2, x2i, x22)

T. 
The system depends on five dimensionless parameters, a, K, 

(3, p, and G. The parameter "a" is the "length ratio" and " K " 
is the "stiffness ratio." It is the ratio of stiffness of the upper 
joint to the lower joint. The "mass ratio" (3 is zero for the 
solid tube and takes the maximum value three when the tube 
thickness is zero. The "flow velocity" in dimensionless form 
is denoted by p, and G is the dimensionless gravitation 
parameter. 

We now convert equations (6)-(9) into a first-order vector 
form. 

Let, 

Z = ( Z i , Z 2 ) = ( * n , Xi2, X\\, Xl2, X2l, X22, X2i, X22) (10) 

with z, e IR4, /=1,2 . The system equations then take the 
form 

z = A(p)z + h(z,p), <") 
where 

*-[.* A] 
is a 8 x 8 constant matrix dependent on the parameters with 

A = 

0 

0 
A 

0 

0 
B 

(4a + 3) 

C 

(4a+ 3) 

(4a + 3) 

D 

1 

0 
4/3p 

(4a + 3) 

6«/3p 

0 

1 
WP 

(4a+ 3) (4a+ 3) 

a (4a + 3) 

4affp 

(4a+ 3) 

(13) 

and where 

A = 
4(1 + K) 1 

+ — (6-4/3p2) + — (a + 2)G, 

and 

5=l(W-6)-l-6^, 

C=6fto 2 -4(a + 3 ) - 6 ( 1 + " ) - 6 G ( a + 2) 

D= — + (4a+12-6/3p2) + 4G(« + 3). 
a 

For the nonlinear function h in (11), we note that its com­
ponents hu h2, hs, and h6 are zero. The remaining and 
nonzero components are given in Appendix A. 

Equations (6)-(9) have some symmetry properties that play 
a crucial role in the analysis. 

3 Symmetry Properties of the System 

From the assumptions 2 and 3 it is clear that the system 
is invariant to rotations about the Z-axis. This is exhibited 

mathematically by the following conditions, which are 
satisfied by the matrix A and the vector h. 

and 

S ( 0 ) A ( p ) = A ( p ) §(6), 

1(0) h(z,p)=h(§(0)z,p) 

(14) 

where S(0) is the one-parameter rotation matrix defined by 

§- T cos0I4 sin0I4 I 0 £ [ O 2 T ) ( 1 5 ) 

L - sin I4 cos I4 J 

and where I4 is the 4 x 4 identity matrix. 
Equations (14) express the fact that the system equations 

remain invariant if the OXY system is rotated by angle 6 
about the Z-axis. 

There is an additional symmetry in the equations which can 
be expressed mathematically as follows. 

Let 

and 

g(z,p)=A(p)z + h(z,p), 

g(z.p) 3g(zi>Z2>P) = (g i .ga ) 7 

where g, and g2 are four-vector functions. Then, from 
equations (6)-(9) and the definition of vector z in (10), it is 
evident that 

and 

g,(z1,z2,p)=g,(z1,~z2,p) 

g2(Zl>Z2.P)=g2(-Zl.Z2>P) 

(16) 

and therefore g,(0,z2,p) =g2(z1 ,0 ,p) = 0 f o r a l l p . 
The conditions (16) can be interpreted physically if we 

observe that the components zl and z2 of the vector z 
represent motions in two orthogonal planes, the two planes 
intersecting at the axis of rotational symmetry. These con­
ditions then express the fact that the motion in one plane is 
coupled to the motion in the orthogonal plane only through 
even terms. 

We are interested in bifurcation phenomena. A bifurcation 
is said to occur when a system exhibits more than one, and 
usually qualitatively different states as some system 
parameter goes through a critical value. For most values of 
the system parameters the system eigenvalues are away from 
the pure imaginary axis and the linearized equations deter­
mine the system behavior. Bifurcation phenomena therefore 
usually occur when some eigenvalue(s) of the linearized 
system cross the pure imaginary axis. In view of this we study 
the behavior of the linearized system as a function of the 
system parameters. It will be seen that because of the system 
symmetry the eigenvalue behavior is more complicated than 
that for a simple divergence or flutter instability. 

4 Analysis of the Linear System 

The linearized system is given by 

z = A(p)z. (17) 

Because of the structure of A it is important to observe that 
each eigenvalue of A has multiplicity of at least two and, in 
fact, one need only study the system 

y = Ay (18) 

where A is the 4 x 4 matrix given in (13). This system has 
been studied in great detail by Benjamin [1] and most of the 
discussion in this section follows his work closely. 

The stability of the zero solution y = 0 is determined by the 
eigenvalues of the matrix A which are the roots of the 
characteristic equation 
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a2 (a+ -j X4 + «2(a + l)/3pX3 + [(a+1)3 + K+ (a3 +4a2+2a)G 

- (1 a2 + a - a2£\ /3p2] X2 + [{a +1)2 + K + 2{a2 + a) G 

-a/3p2]|8pX + K+ ( ( a + 1 ) 2 + K+ (a2 + 2a)G-afip2}G = 0.(19) 

In this equation it is reasonable to consider a, /3, K, and G as 
fixed parameters that characterize a particular physical 
system. The stability problem may be regarded as a study of 
the changes in character of the four roots of (19) as the flow 
rate p is varied. 

For small values of p, all the four roots of (19) are in the left 
half of the complex plane and therefore the vertical 
equilibrium position is stable. As p is increased, it reaches a 
value, p = p c r , where some eigenvalue(s) of (19) cross the 
imaginary axis from left to right rendering the equilibrium 
position unstable. Depending on the other system parameters, 
a single real eigenvalue of (19) can become positive or a 
complex conjugate pair can cross the imaginary axis, which in 
turn means that the solution z = 0 becomes unstable when a 
double eigenvalue goes through zero or a double pair of 
complex eigenvalues crosses the imaginary axis. 

As already indicated in the Introduction, we are only in-
trested in those cases in which the loss of stability generates 
periodic motions. This is when complex conjugate pairs of 
eigenvalues cross the imaginary axis. By using Routh-Hurwitz 
criterion and arguments in [1] and [12] it can be shown that 
the minimum value of the flow rate required to produce this 
type of instability is given by the smaller of the roots of the 
following quadratic equation in («/3p2): 

[6a2 +6a+ 1 -40/3(1 +a)](afip2)2 -2[(a + l)2(5a2 +5a+ 1 

-2a(a+l)P}+K[3a2+3a+l-2a(a+l)0}+2a(a+l)2 

•{3a+l-2at3}G](at3p2) + [(a+l)2(2a+l) 

+ ic+2a(a+l)2G]2 = 0 (20) 

Let pa denote the least of the real positive roots of this 
equation. Then z = 0 is stable for p < pa. At this critical flow 
rate, if the pure-imaginary pair of eigenvalues of (19) is ± (co0> 

it is readily obtained by substituting X = /co0 in (19) to give 

Ka+l)2 + K+2(.a+l)aG-aPp2] 
co0

2 = 
a2(a+\) 

We are now interested in finding the nonlinear bifurcating 
periodic solutions of the system (11) for flow rates near pc r . 
At p = pct, two coincident pairs of complex conjugate 
eigenvalues of the matrix A are on the imaginary axis while 
the rest of the eigenvalues are in the left half of the complex 
plane. This is precisely the situation treated in [12, 13] where 
bifurcations in general, discrete, dynamical systems with 
symmetries of the type defined in (14) and (16) have been 
discussed. 

Let us next introduce Jordan canonical variables 
corresponding to the linearized system. 

5 System in Jo rdan Canonical Variables 

As is very well known, there exists a transformation z = Cy 
such that the system (11) transforms into a form in which the 
matrix A is in Jordan canonical form. The 8 x 8 real matrix 
C is given by 

C = [2c1,2d ',2c2,2d2, ], 

and it consists of column vectors that are the real and 
imaginary parts of the eigenvectors a', i = 1,2 8 of the 
eigenvalue problem 

for the matrix A. We assume, for convenience, that the 
eigenvalues have been ordered such that the first four 
eigenvalues correspond to the critical eigenvalues. These 
eigenvalues at critically (p = pcr) are given by the coincident 
pairs :fcico0, ±/'co0. 

The system adjoint to the eigenvalue problem (22) is given 
b y ATb' = X,b' (23) 

e> + iiJ,j= 1,2 8 for any eigenvalues X, of A. Let b7 = 
and define the matrix D as 

D ^ e ' . - f ' . e 2 , - * 2 , ] 

b' have been normalized so that a''b> = 5,y; here 
i,j= 1,2 8. Then, using z = Cy, the system (11) is 
transformed into the form 

y = A(p)y + k(y,p) (24) 

where 

A ( p ) s D r A ( p ) C and k(y,p) =D rh(Cy,p) 

Consider the system (24). At p = pc r , A(pc r) has two pairs 
of coincident pure imaginary eigenvalues ± r'co0. To study the 
nonlinear behavior for small deviations from pc r , let 

p = pCI + H 

so that the system (24) can now be written as 

y = AQy + f*At0i)y + k(ylft) 

where 

(25) 

A0 = A(pc r), J IA,( /J) = A ( p c r + / i ) - A 0 

and 

k(y,/i)=k(y,pcr+ju.). 

In (25) A0 has the structure 

A0=diag(D10 ,D20), 

D,n = 

0 co0 

- o ) 0 0 

0 

0 

0 co0 

- o ) 0 0 

(26) 

and D20 is the 4 x 4 matrix with all four eigenvalues in the left 
half of the complex plane. 

The matrix A^jt) is also in block diagonal form with two 
blocks of 4 x 4 matrices each. In the limit as n — 0 the upper 
nonzero block determines the rate of change of critical 
eigenvalues and is given by 

D, 

f 
CO 

0 

CO 

f 

s 
0) 

0 

CO 

0 

(27) 

where 

£= — (ReXO 
dp p=pQr 

and co= — (ImX^ 
dp P = Pa 

The rates £ and co can be easily shown to be determined by the 
relations [12], 

• dA(p) ,") 

Aa' = X,a' (22) 
£ = Refb 

dp 
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and dj = l m [ b i r ^ ^ - a ' ] (28) 
C dp ->p=pa 

which are arrived at by differentiating (22) and (23) with 
respect to p and then using the biorthogonality conditions. 

The nonlinear function k(y,/i) in (25) can be obtained with 
some lengthy calculations from the nonlinear function h 
whose components are given in Appendix A, Since these 
expressions are very long, they shall not be presented here 
explicitly. 

Now, for a real system any kind of symmetry is a 
mathematical idealization. For example, the stiffnesses kx 
and k2 of the joints will, in general, not be radially symmetric. 
We thus wish to account for small asymmetries in the ar­
ticulated tube system and therefore we will analyze the more 
general system 

y^Aoy + fiAMy + aAzy + kiy^). (29) 

The parameter a is an additional parameter that determines 
the size of the asymmetry in the system whereas the structure 
of matrix A2 determines the manner in which the rotational 
symmetry of the system is destroyed. Since the latter can take 
many forms, we shall not specify A2 at present. In the second 
part of this work, we shall study some particular cases for 
their effect on the nature of the bifurcating periodic solutions 
of the symmetric system. 

The system (25) or the more general system (29) with a = 0 
satisfies conditions similar to (14) with respect to a new matrix 
S*(0) defined by S*(0) s D r §(0)C which can be shown to be 
of the form 

S* (0) =diag(S( * (0), S2 * (0)), 0e[O,27r) 

where 

S,*(0)=cos0I4+sin0J4) 

and where 

J4 is the 4 x 4 matrix given by J4 =
 2 . 

The nonlinear function k in (29) is not completely arbitrary 
and its form is determined by its invariance with respect to the 
matrix S*(0). It is clearly odd in y. As will be seen in the 
bifurcation analysis, the first approximation to periodic 
solutions is determined by the cubic terms in kh ( = 1,2,3,4 in 
the critical variables yit i= 1,2,3,4. Using symmetry 
arguments it can be shown [13] that there are at most 12 
arbitrary constants Bh i=l,2, . . . ,12 in these cubic terms. 
These arguments, along with the resulting general form of the 
functions kh ( = 1,2,3,4, are given in Appendix B. Clearly, the 
constants Bf are functions of the critical eigenfunctions of the 
matrix A as well as the coefficients of the cubic terms in the 
nonlinear function h. 

We are now ready to analyze the nonlinear system (29) for 
bifurcating periodic solutions for small values of parameters 
fi and a. This analysis is carried out in the second part of this 
work. 
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A P P E N D I X A 

The nonzero components of the nonlinear function h in (11) 
up to the cubic terms are as follows: 

fc3 = tZi(Zi+Z5)(4.4(« + 3)/(4tf + 3)-8(/c+l)/3tf2 

+ (20p2-l)/a\+zdzl+z2
6){6D/a(4a + 3) + 4/3a2 

-(2pp2 + \)/a}+zdziz2+ziZ6){4B(a+3)/{4a + 3) 

+ 6C/a(4a + 3) + 4/3a2 + 2/a) - 4(a + 3)z, (zf + z2) 

-6zi(zl+zl)/a+z[(zlZi+z5z1){16Pp(a + 3)/(4a + 3) 

-4M+%Pp(a + 3)zdZiZ4+zszs)/a(4a + 3) 

-36(3pzdz2Z3+z6z1)/(.4a + 3)+ [24(3p/ (4a + 3) 

-8j3p/a}zi(z2Z4+z6Zs) + z2(z
2 +z2

5){2/3a2 -9A/ 

(4a + 3)-2/a)+z2(z
2
2+zl){2/3a2-6D/a(4a + 3) 

+ 4/a)+z2(z1Z2+z5z6)i -4/3a2-6C/a{4a + 3) 

- 9B/ (4a + 3) - 2/a} + 6z2(z! + z\)/a + 36/3pz2(z2z3 

+ z6z1)/(4a + 3) + z2(z2Z4 + z6zs) {6/3p/a 

-24(3p/(4a + 4))+9z2(z2+z2)-360pz2(z1z3 

+ z5z1)/(4a + 3)-l8l3pz2(zlZ4+z5Zs)/ 

a(3a + 3)]/(4a + 3), (Al) 

h4=lzl(z}+zl)[4(K+\)/a-3Pp2-6Aa(a + 3)/(4a + 3) 

+ 2(e + 3)/3) + z, (z2. + z|) { - 9D/ (4a + 3) - 2/a + 3/3p2 

+ 2(a + 3)/3) +z1(z,z2+z5Z6)( -65a(a + 3)/(4a + 3) 

-9C/(4« + 3) -2 /a-4(a + 3)/3)+6a(a + 3)z,(z|+z2) 

9zi(z2.+z2) + z)(ziZ3+z5Z7)[6afto-24aMa + 3)/ 

(4fl+3)J-12/Sp(a + 3)z1(z1z4+z5z8)/(4a + 3) 

+ 54a/3pZi (z2z} + z6z7)/(4a + 3) + zr (z2z4 

+ z6zs) {12/3p - 36afto/ (4a + 3)) + z2(z\ + z2) [ 6aA (a + 3)/ 

(4a + 3 ) - l / a + 4(a + 3)/3)+z2(zi+zi)(4Z)(a + 3)/ 

(4a + 3) - l /a~8(a + 3)/3)+z2(z,z2+Z5Z6)l2/a 

+ 4C(a + 3)/(4a + 3) + 6aB(a + 3)/(4a + 3) + 4(a + 3)/3) 

- 4(a + 3)z2(z
2 + z2) - 24fr,a(a + 3)z2(z2z3 + z6ZiV 
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(4a + 3) + z2(z1z4+Z(,zi){l6aPp(a + 3)/(4a + 3) 

-(4a + 3)Pp}-6a(a + 3)z2{z2
3+z2

1+24aPp(a + 3)z2{z1z3 

+ z5z1)/(4a + 3)+12t3p(a + 3)z2(zlz4+z5zs)/ 

(4a + 3)]/(4a + 3). (A2) 

The remaining components h1, and hs are obtained, 
respectively, from h3 and h4 by replacing zf, /= 1,2,3,4 by 
z/+4 andzy, y' = 5,6,7,8 by z,_4. Also, the constants A, B, C, 
and D in the preceding expressions are as defined in (13). 

A P P E N D I X B 

The components kh i= 1,2,3,4 of the nonlinear function 
k satisfy the condition 

S,*(0)k(y» = k(S '(0)y», 0«[O,27r) (Bl) 

where 

y=(yi,y2,y3,y*)T, My»=£,-(y.A0, /= 1,2,3,4, 

y = (y,0) r 

and where St *(0) is the symmetry matrix defined by 

S,*(0)=cos014+sin0J4, 0e[O,2T). (52) 

Given (51), our objective is to determine the most general 
form of k(y,/x). This is accomplished in the following using 
ideas from Sattinger [14]. 

To find the most general form of k satisfying (51),_ it is 
more convenient to work with the complex forms of k and 
S,*(0). Therefore, we first transform (Bl) into a complex 
form. 

We first note that S,*(0) can be written as S,*(0) = eJ4e. 
Also, the matrix J4 can be diagonalized by the similarity 
transformation P" ' J 4 P = A where A = diag(/, — /,/', — /') and 
P is composed of the eigenvectors of J4. Thus, Si *(0) = e3*0 

_ ePAP-f« = PeAep-i and (Bl) takes the form 

eMG(vr,n) = G(eMw,lj.) (53) 

wherew = P" 'y and G(«,^) = P~1k(P(»),/t). Here w and G 
are complex four-vectors. 

Since A and, therefore, eAe are diagonal, it is easy to express 
the conditions (53). Let 

00 

Gi(w.J*)= E AwMw|wfM^ (54) 
r+s+p + tj=3 

where Arspq are complex coefficients dependent on /t, wherep, 
q, r, and s are non-negative integers, and were we have set w 
= (Wj, W], w2,w2)

T. With this form of Gx, the first of the 
equations (63) gives that r, s, p, and q must satisfy 

r-s+p-q + l=Q, V r,s,p,q>0, r+s+p + q>3, (55) 

Therefore, at the lowest order, the functions k~{ and k3 are 
given by 

k\ ( y » = (y\ +y\) ( E Qy) + (y{y2 +y3y4) ( E AJ'/) 
V / = I ' N / = i ' 

+ (^+^)(E^/)> (*6> 
v / = i ' 

and 

£ ( y » = Of +A)(E (C^/+J -C,+iV/)) 
v /= i 

+ O ^ +^3^4)( E (A-V/+2 - A+2^/)) 

+ (A +A)(E (E,yi+2 -Ei+2y;)) (57) 

where the real coefficients Cit Dh and £;, i' = 1,2,3,4 depend 
on/*. 

Expressions similar to (56) and (57) are obtained for k2 
and£4 with C,, Dh and Et replaced by Fit G,, and //,, 
respectively, when the second of equations (53) is considered. 
Thus, at the lowest order there are 24 arbitrary constants in 
k(y,jt). We have, however, not yet accounted for the ad­
ditional conditions (16). Taking these into account and noting 
that the two linearly independent eigenvectors corresponding 
to any coincident eigenvalues of A can be taken of the form a1 

= (a, ,0)^ and a2 = (O^)7-, it can be easily shown that 
coefficients C, ,DitEh Fs , G,, and Hh i = 3,4 are zero. The 
nonlinear functions kh i= 1,2,3,4 are, therefore, given by 

* i ( y » = (y\ +yl)(Biyi +B2y2) + {yly2 +y3y4)(B3yl 

+ B4y2) + (y2
2 +y1

4)(B5yi +B6y2), 

£>(y» = (y\ +y\)(B1yx + Bsy2) + (y1y2 +y3y4)(B9y1 

+ B{ay2) + (y2+yl)(Buyi + Bny2), 

*3(y» = (y\ +y\)(Plyi +B2yi) + (yiy2 +y3y4)(B3y3 

+ B4y4) + iy\ +y2)(Bsy3 + B6y4), 

and 

£ t ( y » = Or +^3)(6?>'3 +Bsy4) + (y{y2 +y3y4)(B9y3 

+ Bwy4) + (y2
2+y2

4)(Bny3+Bny4) (58) 

where we have redefined all the coefficients. Clearly, there are 
only 12 real arbitrary constants. 
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Bifurcations in Three-Dimensional 
Motions of Articulated Tubes, 
Part 2: Nonlinear Analysis1 

The equations of motion of the two-segment articulated tube system, discussed in 
Part 1, are analyzed for bifurcating periodic solutions near critical flow velocities. 
In addition to the flow parameter, the system depends on four other parameters. 
Depending on the values of these parameters the system exhibits a wide variety of 
behavior. This behavior is studied in detail in several specific cases. 

6 Determination of Periodic Solutions 

In Part 1 of this paper it was shown that the downward 
vertical position of equilibrium of the two-segment articulated 
tube system becomes unstable when the flow velocity, p, 
reaches a critical value pcr. This loss of stability is associated 
with two coincident pairs of complex conjugate eigenvalues 
crossing the imaginary axis. In this part of the paper, the 
nonlinear equations of motion of the system, which in 
standard form are given in (29), are analyzed for bifurcating 
periodic solutions. 

There are many methods available for finding small 
periodic solutions of a weakly nonlinear system. For 
multiparameter systems, which is the case here, and especially 
when the scaling relationship between the small parameters 
and the amplitude of nonlinear oscillations is, apriori, 
unknown, either the method of Liapunov-Schmidt or the 
method of Alternate Problems is appropriate. The scaling 
that relates the amplitude of periodic solutions to the small 
parameters in the problem is ultimately suggested by the 
"bifurcation equations." Here we follow the latter method. 
We will present the basic ideas of the method of Alternate 
Problems. For the mathematical details the reader should 
consult references [1,2]. 

Consider the system (29). At ix- a = 0, the linearized system 

y = A0y 
has two pairs of pure imaginary eigenvalues ±ioi0, u>0> 0. 
Thus, the linearized system at criticality has two pairs of 
periodic solutions of period 2TT/W0. We are interested in 
finding periodic solutions of the complete system (29) when ^ 
and a are nonzero but small. Although we do not know the 
period of the solutions of the nonlinear system, it is known 
that in the limit as parameters /* and a go to zero, it converges 
to the period of the periodic solutions of the linearized system 

1 This work was supported by funds from the National Science Foundation 
under Grant NSF-CME-7921351. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, August, 1981; final revision, March, 1982. 

at criticality. Let us assume that the unknown period is 
T= 2-ir/ui and let r= wf. We introduce a new small parameter x 
so that o)= co0/(l + x). Then (29) becomes 

"oy = A0y + F(y,/i,a,x) (30) 
where 

F(y,M.«.x) = xA0y + (l+x){/iA,y + aA2y + k(y,M)) (31) 

and where ( ) now denotes differentiation with respect to r. 
We now obtain 2ir-periodic solutions of the system (31). 

We first define some operators in the context of the 
nonhomogeneous linear system 

co0y = A0y + f(0. (32) 
Let P2ir be the space of continuous 27r-periodic 2n-vector 
functions defined by 

P2 lr=lg : R-— R2"> g continuous and 27r-periodic, 
with norm II g II = sup I g(V) I) 

0<T<2TT 

where I • I denotes the Eucledean norm in R2". The (2« x 4)-
matrix functions *(T) and ^(T) defined by 

*(T) = exp ( — A0 T) (ti ,e2 ,e3 ,e4), (33) 
'W0 

*(T) = exp( A0
rT)(e1,e2,e3,e4) (34) 

are, respectively, a basis for the 27r-periodic solutions of the 
homogeneous part of the linear system (32) and its adjoint 

<*>oy=-A^y- (35) 
Here e;, ;'= 1, 2, 3, 4 denote 2n-vectors with 1 in the /th entry 
and zero elsewhere. 

Following Hale [2], we also define projection operators on 

Pi, by 

Uf = *(.)P"'[ * *T(s)f(s) ds 

and 
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{ 2ir 

*T{s)i(s) ds (36) 

for any f €P2 *•> where P and Q are 4 x 4 nonsingular constant 
matrices given by 

P=\ * $T(s)<!>(s) ds, Q = f **T(s)*(s) ds. 
Jo Jo 

Note that U takes P2T onto the subspace of P2r spanned by 
the 27r-periodic solutions of (Moy = A0y. Similarily, V takes 
P2w onto the subspace of P2lr spanned by the 27r-periodic 
solutions of (35). Also, let E = ( I - V ) where I is the identity 
operator on P2T. 

We define one more operator K. If f (s)€P2ir in (32), then 
KEf is the particular integral of (32) with Vf = 0 and 
UKEf = 0. K is defined on the range of E and has a range that 
is contained in the range of the projection ( I - U ) ; fur­
thermore, KE is a bounded linear operator on P2r. 

With these definitions, the problem of finding 2Tr-periodic 
solutions of the system (30) can be shown to be equivalent to 
finding solution y,y€P2r, of the alternate problem 

y = Uy + tf(I-V)F(y^,a,x) (37) 

and 

Vf(y,M,a,x) = 0. (38) 

In terms of the familar perturbation procedure, equation 
(38) is equivalent to the usual solvability condition used to 
remove secular terms. The second term on the right-hand side 
of equation (37) then determines the unique solutions of the 
sequence of linear nonhomogeneous problems that arise after 
removing the secular terms while the first term Uy gives the 
solutions of the homogeneous linear systems. 

In the spirit of the method of Alternate Problems, if we let 
y = yi +y2> the component y] =Uy of the periodic solution y 
of (30) is composed of the solutions of the homogeneous part 
of equation (32) whereas the component y2 = (I -U)y contains 
the higher harmonics. In view of this decomposition of y we 
have 

y 2 =/s : ( I -V)F(y l +y 2 ,^ ,a ,x) 

which can, using the implicit function theorem, be solved 
uniquely for y2 in terms of y] ,n,a, and x for small enough y i, 
fi,a, and x- The function y2 =y2(yi,f*,a,x) is smooth in its 
arguments. Substituting y = yi + y2 (yi ,ti,a,x) m (38) gives the 
bifurcation equations in yx, jx.a, and x and to every solution 
of the bifurcation equations there corresponds a periodic 
solution of (30). The operator bifurcation equations VF 
(yi +y2(yi>/*.a>x). M.a.x) = 0 thus obtained reduce to four 
algebraic nonlinear bifurcation equations if we note that every 
y! is given by y! =*(r)d where d is some constant vector in 
IR4. 

To obtain the bifurcation equations explicitly, we write 

A i (/*) = A J O + ^ A , , +0(n2), 

and 

k(y)A0=kc(y) + 0(lyl5) + 0 ( l M | . | y l 3 ) 

where kc(y) is a homogeneous cubic in y. Then substituting 
the preceding expressions in (37) and (38) and expanding the 
resulting expressions in Taylor series, we get the algebraic 
bifurcation equations 

G(d,M,a,x)-xMxd + jiM„d + aM«d + C t(d) 

+ 0(l0*,x)l2 .ldl) 

+ 0(IO*,x)Mdl3) + 0(ld'l5) = 0 (39) 

where 

M ^ s ^ ' ^ ^ A o ^ s ) ds, M^\0* * r ( s ) A l 0 * ( s ) ds, 

J 2?r 

¥ r ( s ) A 2 # ( s ) ds 

and Ck(d)=^\T(s)kc(*(s)A)ds. (40) 

Note that in these equations we have set y, =#(r)d for some 
deR4 . 

Equations (39) are a system of four nonlinear algebraic 
equations dependent on two small parameters n and a which 
can be varied independently. A general analysis of these 
equations, to determine all the possible small solutions (d,x) 
for n and a varying over the whole neighborhood of the origin 
(0,0) in (n,a) plane, is quite difficult in general. Equations of 
this kind have been analyzed in detail by Chow, Hale, and 
Mallet-Paret [3,4]. 

The proper scaling for the system (39) can now be deter­
mined. Assume that C*(d) implies d = 0. Then it can be shown 
[3] that every small solution of (39) satisfies the inequality 

I d l s ^ l / i l ' ^ + lxl'^ + lal'72) (41) 

for some constant t\ jtQ. This inequality suggests the scaling 

d = ed, x=e2X2. ^ = «2M2 a n d <x = e2a2 (42) 

which reduces the system (39) to 

X2Mxd + Ai2M^d + a 2 M a d + CAr(d) + 0(l«l2) = 0. (43) 

The parameter e can be fixed by normalizing the vector d 
using the condition 

ldl = l. (44) 

Then e is a measure of the amplitude of the periodic solution. 
The reduced bifurcation equations are obtained by taking the 
limit e—0 to give 

X2oMxd0 + ji20M„d0 + a2 0M ad0 + Ck(d0) = 0, 

l d l = l . (45) 

The solutions to these equations determine the first ap­
proximation to the periodic solutions of (30). Note that, since 
ix and a are independent and small in (39), a20 in (45) is in­
dependent, finite, and real. We are looking for solutions 
(d0,/i20,x2o) °f (45) for given values of a20. The case of 
symmetric systems corresponds to a20 = 0. These equations 
have been studied in complete generality for the rotationally 
invariant systems in [1]. In the remaining of this section we 
quickly summarize the analysis in [1] and then present results 
for a20 = 0. The effects of symmetry-breaking perturbations 
(a20 ?i 0) will be discussed in a later section. 

The bifurcation equations (45), taking the equations (27), 
(33), (34), and (40) into account, are given by 

-X2o"o«i sin 0 + A'2o«i(?cos0-disin0) 

8 

+ a2
 2 (Hx cos0 + (2Hs + J¥lo)sin0) ] = 0, 

X20woaicos<£+/*20ai(':>'cos4>+£sin<W + 

-!-[«!2 [Hi sin<j> - H2cos<j)) 
8 

+ a2
2( - / / 2 c o s 0 + (2#7-//9)sin4>)]=O, 

/*2o«2 H v [ a i 2 ( 2 W , + H9cos2<t> 
O 

- / / 1 0 s in24>)+/ / 1 « 2
2 ]=0. 

- «2 
X20W0«2+Al20«2W+ y 

[«!2( -2HS +Hl0cos2<j> + H9sin2<j>} -H2a2
2]=0, 
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and where 

a , 2 + a 2
2 = l. (46) 

Here we have replaced d0 by the polar variables 

^01 = «icos0i, d0i = a1sva<t>i, 

dO 3=a2cos02 , d04 = a2sin<t>2, 

and then set <t>t = <A and <j>2 = 0 because the system (30) is 
autonomous and, therefore, its phase is arbitrary. 

The coefficients HUH2,H1,H%,H9, and Hw in (46) are 
formed by combinations of the 12 coefficients Bt of the cubic 
nonlinear terms given in Appendix B of Part 1 and are given 
by 

Hi = 3Bl+B4+B5+Bi+B9 + 3Bl2, 

H2 = —B2—Bi—3B6 + 3B1+Bl0+Bu, 

i / 7 = Bx +B5 +BS +Bn, 

Hs = -B2-B6+B-j +Bn, 

Hg = 5 j +.B4—2?5 —B$+ B9+Bi2, 

and 

^10 = —B1+B3+B6—B1—B\0+Bu. 

Note that these coefficients are not completely independent 
but satisfy the relations 

Ht = 2HT+H9 and 2Hi=H2+Hi0. 

If we define a{ =rcos$, a2 = rsin$, and eliminate n20
 a n d 

X2o from equations (46), we get a system of two equations 
which, in matrix form, can be written as2 

4//10sin</>sin2^ 

4//9sin<£sin2$ 

4//9sin0sin2i/' 

- AHlosin0sin2i/' 

cos$ 

sin<£cos2$ 
= 0 

We are seeking real solutions to these equations. Note that 
the two vectors forming the rows of the matrix are orthogonal 
to each other and their inner product with the same vector 
(cos<£, sin</>cos2^)r is zero. Thus, there are only three possible 
solutions which in terms of the original vector d0 are given by 

1 
(fl)do V2 

(-sin^cos^.cos^.sin^)7", 0 < ^ < 2 T T , 

H-j Hg S1H-1 

4ij 4co0 4£co0 
(47o) 

(ft)d02 = -7=(sin\l/,-cos\l/,cos\l/,sm\p)T, 0<\j/<2%, 

M20 = 
Hi 
4£ 

H< S>Hn 

X20 — ~. •" ~TZ— 1 

Aw0 A£w0 

(47ft) 

and 

(c) d03 = (cos0cost/',cos0sinv!', - sintfcosi/', - sinfein^)r, 

0s,d,\l/<2ir, 

/*20 = 
H 

_ H^ OHi 

8o)0 8£co0 

(48) 

where ^ accounts for the arbitrary phase. 
Let us interpret these solutions in terms of the original 

coordinates z = (zi,z2)
T where z, and z2 represent motions in 

two orthogonal planes in the physical space, the two planes 
intersecting in the axis of rotational symmetry. We recall that 

L ' 2 J 
= eC*(T)b0+0(e2) 

* ( T ) = 

SinT COST 

COST - sinT 

0 

0 

SinT COST 

COST - s i n T 

0 

Thus the periodic solution that corresponds to (47«) is given 
by 

z, (T) = V2e[c , 'COS(T-i / - ) - d , ' s in(T- i / - ) ] + 0(e2), 

Z 2 ( T ) = V2e[d! ' C O S ( T - V) + C[' s in (T- i/-)] + 0(e2) (49) 

^€[0,2ir). 

From these two expressions we see that zt =z 2 ( r+ TT/2) and, 
therefore, the motion, when viewed along the axis of sym­
metry, will appear to be a circle with the axis of symmetry as 
the center and the motion along the circle will be counter­
clockwise. A similar conclusion holds for the solution (47ft) 
except that the motion in this case is clockwise. Because of 
these features of the solutions (47), we call these solutions 
"circular" solutions. 

The amplitudes of the periodic solutions (47a) and (47ft) are 
the same, and in the first-order theory, they are determined in 
terms of the external parameter fi by ft = /x20e

2 +0(e3). Thus, 
using the expression for /i20 f

rom (47) we get 

W7!- (50) 

If H-, >0 , /*2o < 0 a n d for e to be positive, we have to take 
j*<0. Thus, for H-i > 0 the circular solutions are subcritical. If 
H-j <0 , we have to take fi>0 and the circular solutions are 
supercritical. 

We now consider the solution (48). Without much difficulty 
we can see that the corresponding periodic solution is given by 

z, =2e[c,'sin(T+i/') + d1
lcos(T+t/')]cos0 + O(e2), 

z2 = 2 e [ - c , 'sin(T+ iA)-d, 'COS(T+ ^)]sin0 + O(e2), (51) 

0<i/>, 0<2ir 

Equations (51) represent motion in â  plane that passes 
through the axis of symmetry. The plane of motion is 
determined by the angle 6. For example, for 6 = 0, the motion 
is in the plane z2 = 0. We call this family "planar" motion. 

The amplitude e of these planar motions is given by 

8|M 

Ht 

(52) 

This procedure was suggested by Dr. George Sell. 

The solution is supercritical if Ht < 0 and subcritical ifHt >0 . 
The frequency of the preceding motions is, of course, 

amplitude dependent. The quantity X20 determines the 
correction, from co0, to the frequency of the corresponding 
solutions. The frequency of each of the foregoing solutions is 
given by 

co = co0/{l+e2X2o+0(e3)) (53) 

with appropriate e and x20 as given in the foregoing. 
We now discuss the stability of the periodic motions. 

7 Stability of the Bifurcating Solutions 

The stability of the periodic solutions is determined by the 
Floquet exponents [2] of the variational equation 
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co0^=A0^+£2K(T,Q;2,e)^ (54) 

for the system (30) where 

K(T,a2,e) = X2(e)^o+(l+e2X2(e))(/*2(e)A1+a2^2 

+ ky(y(r,e),eV2(e))). 
dk 

ky(y.i") = ^ — (y,M) 
dy 

and where 

(ey(r,e),e2X2(e),eV2(e).e2a2) 
is a periodic solution of (30) whose stability is being studied. 
Equation (54) is a linear 27r-periodic differential system which 
depends smoothly on e for small enough e uniformly in r. It 
can be easily shown that the four noncritical Floquet ex­
ponents of (54) are given by 

/3,(e) = X/+0(6), /' = 5,6,7,8 

where X,-0 are the noncritical eigenvalues of the matrix A0 . 
The stability of the periodic solutions is, therefore, 

basically determined by the remaining four Floquet exponents 
P/(e)i y = l . 2, 3, 4 for small e. These exponents can be 
determined using any of the standard perturbation 
techniques. Using the method of Alternate Problems, ex­
plained in the preceding section, we can show that these ex­
ponents $=e 2 $2 are the solutions of 

[X2Mx+»2MIJ + (X2Ma+CM(d)-P2a0l + 0(e2)]6 = 0 (55) 

which is just the eigenvalue problem for the variational 
equation of the bifurcation equations (39). In the limit as 
€—0, the Floquent exponents $2o

 a r e the roots of the 
characteristic equation 

det[X20Mx + ft0M, + a2 0M a + Cw(do) - /320w0I] =0 (56) 

which is a quartic in o0 /320. We consider here the cases of the 
three periodic solutions discussed in Section 6 for a2 = 0. The 
case with ot2 ^ 0 will be considered in a later section. 

The characteristic equations (56) for the two circular 
periodic solutions corresponding to solutions (47a) and (476) 
reduce to a single equation given by 

a4 - -J- {Hi +H9W + ̂  (H^+H^+lHjH^o2 

4 10 

-~{H^+H^)CJ=0 (57) 

where o=u0J32o- Thus both the solutions have the same 
stability properties and the physical system in the stable case, 
and will perform either of the two circular motions depending 
on the initial conditions for the system (30). 

Considering equation (57), it is clear that one root is zero 
which is a consequence of the fact that system (30) is 
autonomous and therefore for any periodic solution y, dy/d^ 
is a 2ir-periodic solution of (54) for all e. By the theorem of 
"orbital stability" of a periodic solution (Hale [2]), the 
bifurcating circular periodic solution is asymptotically or-
bitally stable with asymptotic phase if the three nonzero roots 
<7,, ( = 2,3,4 of the equation (57) lie in the left half of the 
complex plane. Stability of these solutions for a variety of 
cases, as determined by specific values of system parameters, 
is discussed in the next section. 

The stability of the two-parameter family of periodic 
solutions (51), called the planar solutions, cannot be deduced 
directly from the discussion for the circular solutions 
although the general analysis remains valid. The four critical 
Floquet exponents still are the roots of the quartic (56). One 
can easily verify that equation (56), for this case, when 
evaluated at the solution (49) of the reduced bifurcation 
equations, reduces to 

ff4_l(//i_//9)(T3_^£(T2=0. ( 5 g ) 

Clearly, two roots of (58) are identically zero which is because 
the solution is a two-parameter family and both dy/d\j/ and 
dy/d6 are linearly independent 2Tr-periodic solutions of the 
variational equation (54). In fact, the independence of dy/d\p 
and dy/dQ implies that two Floquet exponents are identically 
zero for all e. Equation (58) determines first approximation to 
the remaining two nonzero Floquet exponents. These two 
nonzero roots of (58) are 

al=Hl/4 and a2=-H9/4 

and therefore the critical characteristic exponents for the 
planar solution in terms of the external parameter n are given 
by 

0 , 0 , - ^ + 0 ( l ^ l 3 / 2 ) and - ^ - M + 0 ( ^ I 3 / 2 ) . (59) 
C00 Wo-"l 

It then follows, from a theorem by Hale and Stokes [5] on the 
stability of /r-parameter family of periodic solutions, that if 
the two nonzero critical exponents given in (59) are in the left 
half of the complex plane, the two-parameter family of 
periodic solutions (51) is asymptotically stable with asymp­
totic phase \p and asymptotic angle 6. This concept of stability 
is a natural generalization of the concept of orbital stability of 
a periodic solution and precise definitions can be found in 
Hale and Stokes [5]. In the context of the planar solution (51) 
this concept of stability can be explained as follows: consider 
any periodic solution z(r,\p;6i) for a fixed value of 6, say 6 = 
6,. This motion is in the plane defined by the angle 6{. Let I9 

be a small interval around dx • Let M be the solution manifold 
in R2"+1 which is defined by x = Z(T,^;0) , 0€ hx. H [0, 2TT). 
If this solution manifold is stable in this sense, given a small 
disturbance to this family, the solution of (30) with a = 0 
tends to the foregoing manifold. However, the parameter 0 
determining the plane of the motion goes to some value 0) as r 
—• oo. The asymptotic angle 0j depends on the initial con­
ditions. The smaller the disturbance, the smaller is the angle 
difference 10, - 0,1. Therefore, if we disturb a stable planar 
motion, the plane of the motion drifts into another nearby 
plane. 

Consider now the planar solution. Since £ > 0 and ft = 
jx2ae

2 + 0(e3) = - # i / 8 £ e2 + 0(e3), it bifurcates for n > 0 
(supercritically) if H{ < 0 and for //, < 0 (subcritically) if Hi 
> 0. From the Floquet exponents (59), we can distinguish 
three distinct possibilities which are in contrast to the problem 
of Hopf bifurcations where there are only two cases. For 
subcritical solutions, Hi > 0 and jt < 0; therefore, one of the 
Floquet exponents is always positive. Thus, the subcritical 
planar solution is always unstable. For the supercritical case, 
there are two possibilities depending on the sign of Hg. If H9 

> 0, the supercritical solution is stable while if Hg < 0, it is 
unstable. 

The preceding conclusions regarding stability depend on the 
values of the constants Hs. As shown earlier, these constants 
depend in a very complicated manner on the system 
parameters and the eigenvectors of the matrix A. Detailed 
specific results are therefore best obtained by computing these 
quantities numerically. We discuss these results for specific 
ranges of parameters in the next section. 

8 Results and Discussion for the Symmetric System 

In the following we present results and numerical 
calculations over a range of system parameters p, j3, K, a, and 
G. As noted in Section 2, 0 lies between 0-3 while a, G, and K 
are all positive. To study the whole parameter space is a very 
difficult task. Therefore our calculations are restricted to 
within realistic limits. We consider five values 0.25, 0.5, 1.0, 
2.0, and 4.0 for each of the parameters a and K. For each fixed 
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pair (K,a), the parameter |3 was varied over the whole interval 
(0,3)- Since the parameter n only determines the size of the 
periodic motions, the significant quantity is (1/ l/x2o1)̂  and it 
is the one that is presented in the results. 

The situation with respect to the gravitation parameter G is 
much more involved. This is because the effect of G on the 
problem is fundamental in that it can change the character of 
the instability. We can see from (19) that for G = 0, the the 
articulated pipes system gets unstable only by complex 
eigenvalues crossing the imaginary axis. On the other hand, if 
G is very large, it can be shown that for 0 > 0.5, the vertical 
position gets unstable with real eigenvalues crossing the 
imaginary axis through the origin. For small enough G, below 
some critical value G = G*, we still get the oscillatory in­
stability over the whole 0 range and it is of primary interest 
here. This number G* is determined by other system 
parameters. We have therefore treated cases in which the 
gravitational forces are much smaller compared to the elastic 
restoring forces. Specifically, we present results for G = 0.0 
and G = 0.25. There are, however, cases (when K is small) 
when G has to be as low as 0.1 for all instabilities to be of 
oscillatory nature. We should mention here that cases, when 
one pair of complex eigenvalues and one real eigenvalue cross 
the imaginary axis simultaneously, have been studied by 
Holmes [6]. 

Since it is not possible to present results for all the 
parameter values considered, we describe in detail a few 
typical cases and then summarize the major conclusions of 
numerical calculations. 

The results are simplest to describe in the case when the 
length ratio a = 2.0. Representative behavior is shown in 
Figs. 1(a) and (b) for a = 2.0, K = 1.0, and for G = 0.0 and 
0.25, respectively. It may be noted that the system parameters 
in this case, to some extent, approximate the case of a con­
tinuous cantilever tube. In these figures, as well as in all the 
others discussed later, the solid lines denote supercritical 
circular solutions while the dotted lines denote supercritical 
planar solutions. 

Let us first consider Fig. 1(a) corresponding to G = 0.0. 
The curves here are typical for all stiffness values considered. 
It is found that both planar and circular periodic motions are 
supercritical. Their amplitude increases monotonically with 
the mass ratio 0, being smallest near |3 = 0.0 and largest at (3 
= 3.0. For small values of /3, the planar solution is of larger 
amplitude and is stable while for larger values of /3 the circular 
solutions are of larger amplitude and are stable. The two 
kinds of solutions exchange stability at the value of /3 where 
they cross. It is also observed that for a given |3, the amplitude 
of periodic motions, whether planar or circular, goes down as 
the stiffness ratio K is increased. It is to be noted that, in 
contrast to Hopf bifurcations, it is possible to have unstable 
supercritical bifurcations in systems of the kind discussed 
here. 

We now consider Fig. 1(b) which is for G = 0.25 with other 
parameters being as for Fig. 1(a). For (3 < 1.19 the nature of 
solutions here is the same as in Fig. 1(a). For /S > 1.19, there 
also exist subcritical solutions that are not present in Figure 
1(a). These subcritical solutions are all unstable. The planar 
and circular subcritical solutions are denoted, respectively, by 
single chain and double chain lines. Thus, even very small 
gravity effects have profound influence on the periodic 
solutions for this parameter range. Based on these and other 
numerical calculations it is observed that for a fixed /3, the 
amplitudes of the supercritical planar and circular solutions 
increase as G is increased from zero until a value of G is 
reached when the circular solution first becomes subcritical. If 
G is increased further, another value of G is reached where 
planar supercritical solution also becomes subcritical. For 
every value of G there are values of the mass ratio 0 above 
which all circular and planar solutions are subcritical. It is 
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Fig. 1(a) Amplitudes of periodic solutions for a = 2.0, u = 1.0, G = 0.0 
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Fig. 1 

also observed from Fig. 1(b) that if for a given 0 at least one 
of the solutions is subcritical, both solutions are unstable. 
This is found to be the case for all parameter values con­
sidered. This does not imply that there are no stable periodic 
solutions for such values of /3. The present conclusions are 
valid only for the first approximation. 

In the graphs discussed in the foregoing there was only one 
intersection (and exchange of stability) of supercritical planar 
and circular solutions. This is not the case for all parameter 
values. In Fig. 2 results are given for a = 0.25, K = 4.0, and G 
= 0.0. Both the solutions are supercritical for /3 > 0.72 
whereas for (3 < 0.72 the planar solution is subcritical and the 
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Fig. 2 Amplitudes of periodic solutions for a = 0.25, * = 4.0, G = 0.0 

circular solution is supercritical. The two supercritical 
solutions intersect at /3 = 1.02, 1.67, and 2.03 and exchange 
their stability. For example, as /Sis increased through 1.67, the 
stable circular solution becomes unstable and the unstable 
planar solution gains stability. The planar subcritical and the 
supercritical circular solutions for small values of /3 are both 
unstable. It is also observed from calculations that the 
gravitation effects are small in this and other cases, where the 
length ratio is smaller and the stiffness ratio is greater than 
one. This insensitivity of the solutions to G for small a can be 
explained by the fact that G appears in nonlinear terms 
multipled with factors quadratic in a. 

We now summarize the main conclusions from numerical 
results described in the foregoing and those that were ob­
tained for other values of system parameters discussed earlier. 

1. Both supercritical and subcritical planar as well as 
circular solutions can exist over the interval 0 < j3 < 3.0 for 
the range of parameters a, G, and K studied. 

2. For a fixed value of 0, if either of the solutions (planar 
or circular) is subcritical,both the solutions are unstable based 
on the first-order theory. 

3. If planar as well as circular solutions are supercritical, 
the solution with the larger amplitude is stable and whenever 
the two amplitude curves intersect, there is an exchange of 
stability. For a fixed value of parameters a, K, and G, there 
can be many intervals in /3 of alternating stability and in­
stability. 

4. For small values of (3, the circular solution is always 
supercritical and unstable while the planar solution can be 
supercritical and stable or subcritical and unstable. 

5. For large values of /3, the circular solution is in most 
cases stable if supercritical and always unstable if subcritical. 
On the other hand, the planar solution is in most cases un­
stable if supercritical and always unstable if subcritical. 

6. For length ratio less than unity, the influence of gravity 
G on the qualitative and quantitative nature of periodic 
solutions is small. This influence is, however, very 
pronounced for a > 1.0 especially for larger values of fi. 

7. The intervals in 0 over which subcritical solutions exist is 
very much influenced by the stiffness ratio K and the gravity 
parameter G. 

8. Over the whole range of parameters considered, sub-
critical circular solutions were never found to exist for small 
0. 

9 Periodic Solutions 
Perturbations 

With Symmetry-Breaking 

In Section 6 it was shown that reduced bifurcation 
equations for perturbed symmetric systems are given by 

X20Mxd0 + ̂ oM^do + a20Mad"0 + Ck (d0) = 0 
and (60) 

ld 0 l= l . 
The solution of these equations clearly depends on the 

nature of the matrix Ma which in turn is determined by the 
choice of the matrix A20 that represents the asymmetry in the 
linear part of the system. 

Without loss in generality we can introduce asymmetry 
through only one of the two linear modes in the Jordan form. 
The dynamical system in Jordan coordinates will then be in 
the form. 

y = A0y + ̂ A1(fi)y + aA20y + k(y,/n) (61) 

where the general form of the symmetry-breaking matrix is 
assumed to be 

(62) 

and where/)] andp2 are real arbitrary constants. For a = 0 
the behavior of eigenvalues of the system as a function of p 
for both modes is the same. In case/?] = 0, p2 ^ 0, only the 
periods of the two linear modes are different and the 

Pi Pi 

-Pi Pi 

0 

0 

0 

_ 
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eigenvalues cross the pure imaginary axis at the same value of 
the flow rate. This possibility can arise when the stiffness of 
any of the joints does not have polar symmetry and stiffness 
in one plane is slightly greater than in the other. Similarly, if 
P\ ?* 0, p2 = 0 , the two linear modes have the same period 
but they cross the pure imaginary axis at slightly different 
values of the flow rate. Such a situation may arise if the 
damping in one plane is a little more than in the other. 

With this form of the matrix A20, we intend to solve the 
reduced bifurcation equations (60). The solutions of (60) for 
a2o = 0 have already been discussed in the preceding section. 
It is clear from equation (43) in Section 6 that for a2 ~ 0(e) 
(i.e., a ~ 0(ft)), the circular solutions of (60) with a20 = 0 
give first approximation to solutions of the perturbed system. 
Here we are interested in solutions of the perturbed system 
when \x, and a are of the same order. Because n = ft2e

2 and a 
= a2e

2, we would therefore like to find solutions of (60) for 
given a20 such that /t20 and a2Q are of the same order of 
magnitude. 

For any solution (d0, n20, x2o) of (60) with a given a20, the 
stability is determined by the roots of the characteristic 
equation (56): 

det[X20Mx + ^20M^ + awMa + Cw (d 0 ) - oI4] = 0 (63) 

The system of equations (60) is nonlinear and very difficult 
to solve in the general case. We take advantage of the known 
solution for a20 = 0 and solve them numerically. In the 
numerical solution, a20 is increased in steps and the solution 
of the preceding step is taken as the initial guess for the 
solution corresponding to the new value of a20. Once the 
solution is known, its stability is determined by finding roots 
of (63). 

The main purpose of introducing asymmetry is to have the 
assurance that the solutions obtained for the perfectly 
symmetric system will persist in slightly modified form in the 
presence of small asymmetry. Therefore, we checked the 
influence of asymmetry in only a few cases. 

The numerical solutions of (60) were obtained for /3 = 1.5, 
a = K = 1.0, and G = 0.0 starting with the circular solution 
for a2a = 0 which is supercritical and stable. The cases (pj & 
0, p2 = 0) and (p t = 0, p2 ^ 0) were studied separately by 
finding solutions with (pltp2) = (1.0, 0.0) and (0.0, 1.0). For 
the range of a20 (0.0-0.1) considered, all solutions were found 
to be supercritical and stable. Some of the interesting ob­
servations that can be made from these results are as follows: 

1. (pl,p2) = (1.0, 0.0): This is the case when, for a20 > 
0, the first mode crosses the pure imaginary axis before the 
second one. As one would expect, the amplitude of this mode 
is the larger of the two and the resulting motion is elliptic in 
nature. The average amplitude also increases with a20, a20 > 
0. 

2- (Pi, P2) = (0.0, 1.0): In this case, for a20 > 0, the 
frequency of the first mode is larger than that of the second. 
Again, the amplitude of the first mode is greater than that of 
second and the periodic motion in physical three-space is 
elliptic in nature. In this case, however, the average amplitude 
does not change much with increasing a20. Also, the ec­
centricity of the ellipse in this case is much greater. The 
difference in amplitudes of the two modes here can be at­
tributed to a different physical phenomenon: the linear part 
of system has different frequencies in the two modes. On the 
other hand, for periodic nonlinear motions the frequency in 
either mode has to be the same. Since, in general, the period 
of nonlinear motions depends on the amplitude, the system 
adjusts the amplitudes of the two modes to different values in 
such a way as to attain the same frequency in each mode. 

Thus, we see that the difference in the rate of growth of the 
linear modes has more pronounced influence on the amplitude 
while the difference in periods of linear modes gives rise to 
larger eccentricity of elliptic motions. In a given physical 
situation, the actual behavior of the system will be determined 
by the factor that dominates. 

We would like to finally mention that no effort was made to 
study the effect of asymmetry on the plane periodic motions. 
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Nonparametric Identification of 
Nearly Arbitrary Nonlinear 
Systems 
A nonparametric identification technique is presented for use with discrete 
multidegree-of-freedom nonlinear dynamic systems. The method requires in­
formation regarding the system response and estimates of its pertinent "mode 
shapes" to determine, by means of regression techniques involving the use of two-
dimensional orthogonal functions, an approximate expression for the system 
generalized restoring forces in terms of the corresponding generalized system state 
variables. The technique is applied to several example systems. The method can be 
used with deterministic or random excitation to identify dynamic systems with 
arbitrary nonlinearities, incuding those with hysteretic characteristics. It is also 
shown that the method is easy to implement and needs much less computer time and 
storage requirements compared to the Wiener-kernel approach. 

1 Introduction 

The identification and modeling of nonlinear multidegree-
of-freedom dynamic systems through the use of experimental 
data is a problem of considerable importance in the applied 
mechanics area. A recent survey article by Ibanez [1], con­
taining over 130 references related to system and parameter 
identification, is indicative of the wide range of applicability 
of this subject in the structural dynamics field. 

Since the model structure in many practical dynamic 
problems is by no means clear, the use of parametric iden­
tification methods, which assume that the structure is known 
and only parameter values need to be identified, may not be 
appropriate. As a result, an increasing amount of attention 
has recently been devoted to nonparametric identification 
methods such as the ones that use the Volterra-series or 
Wiener-kernel approach [2-5]. 

However, the traditional nonparametric identification 
techniques have their own problems. Some include restric­
tions on the nature of dynamic systems to be identified 
(nonhysteretic, stationary) and on the input signal that can be 
used (white noise). Furthermore, when dealing with systems 
that incorporate commonly encountered nonlinearities, such 
as polynomial nonlinearities, the evaluation of higher-order 
terms requires a prohibitive amount of computational effort, 
coupled with very demanding (and usually unrealistic) storage 
requirements. 

A recent paper by the authors [6] presented a relatively 
simple and straightforward approach to the identification of a 
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F,(t) 

F,(t) 

s 2 ( t ) 

Fig. 1 Simplified model of nonlinear multidegree-of-freedom system 

broad class of nonlinear single-degree-of-freedom (SDOF) 
dynamic models. The method is based on the use of regression 
techniques in conjunction with orthogonal polynomials and 
alleviates most of the aforementioned problems associated 
with the traditional nonparametric identification techniques. 
The procedure has the following specific attributes: (a) it was 
shown to be applicable to systems with practically arbitrary 
nonlinearities (including hysteretic types); (b) it has virtually 
no restriction on the wave form of the probing signal used for 
identification purposes, so long as the signal adequately 
excites the system; (c) both computer execution time and 
storage requirements are relatively minimal; and (d) the 
convergence rate is rapid, even for nonpolynomial types of 
nonlinearities. 

The method in [6] was extended to handle the special case of 
chain-like multidegree-of-freedom (MDOF) nonlinear 
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Fig. 3 Response time history of the hysteretic system UCB-3 under 
sinusoidal and random excitation 

dynamic systems whose components are interconnected by a 
single nonlinear element [7]. These structures have the 
property that the nonhnearities in the various links of the 
chain are independent of each other. Thus, with a suitable 
transformation of variables, the method just described for 
SDOF systems can be applied directly to each link separately. 

The present paper further extends the work in [6] by 

generalizing the approach to handle, approximately, the case 
of arbitrary nonlinear MDOF dynamic systems with multiple 
inputs and outputs. Section 2 of this paper presents the 
identification procedure, including problem formulation, 
generation of needed experimental data, information 
processing to extract the generalized system state variables, 
and final determination, by the use of orthogonal functions, 
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Fig.' 4 Variation of restoring functions G/ with the corresponding 
state variable z, in the hysteretic system UCB-3 

of the best estimate of the system "restoring forces." In 
Section 3, the method is applied to a model of a three-story 
building that has been extensively analyzed, both analytically 
and experimentally, at the University of California at 
Berkeley (UCB). It is shown via numerical "experiments" 
that the approximate method under discussion is very efficient 
and can be utilized under realistic conditions to accurately 
identify general MDOF dynamic systems with arbitrary types 
of nonlinear components, even those possessing hysteretic 
characteristics and undergoing large nonlinear defor­
mations—situations that pose serious problems to con­
ventional identification methods. 

2 Identification Procedure 

Consider a discrete nonlinear MDOF system that consists 
of a collection of lumped masses, each of magnitude m,, 
which are interconnected by means of discrete elements Gk 
with arbitrary nonlinear characteristics. To clarify the 
presentation, a simplified version of such a system with three 
masses and six nonlinear elements is shown in Fig. 1. 

The structure may be subjected to nonuniform base ex­
citation and/or directly applied forces. The displacement of 
m, is measured by y,(t). It is assumed that the excitation and 
response of the system are available from measurements and 
that the masses m, are known or easily estimated. 

2.1 Formulation. Consider a nonlinear dynamic system 
whose motion is governed by 

wy + f(y,y) = p (0 , 0) 
where m = diagonal mass matrix of order n 

y = displacement vector = col. [y1,y2, . . . ,y„) 

f = function that represents nonconservative 
nonlinear forces 

p (t) = excitation vector 

The transformation matrix <f> of order n x /-is introduced: 
y = 0u, (2) 

where the r columns of <j> represent estimates of the r 
"modes" of interest pertaining to the nonlinear system of 
equation (1). 

Substituting (2) into (1) and premultiplying by 4>T, 

Mu + /i(u,ii)=Q(r), (3) 
where M= diagonal mass matrix = <j>Tm4> 

h = <f>Ti 
Q(t)=<t>Tp(t) 

For a linear system with classical normal-modes [8], function f 
is of the form 

f(y.y) = cy + *y. (4) 
where c and k are constant matrices. 

If matrix <j> appearing in the transformation of equation (2) 
is the eigenvector matrix associated with m~lk, then for the 
linear system 

h(u,ii)=Cii+/i:u (5) 

where C= diagonal damping matrix = <£rc</> 
K = diagonal stiffness matrix = 4>Tk<j> 

Due to the orthogonality condition, equation (3) simplifies 
in the cases of linear systems to a set of uncoupled equations 

Miu,+hi(ui,ui)=Qi(t), i = l , 2 r (6) 

in which each function /r, depends only on the corresponding 
generalized coordinate M, and its time derivative M,-. 
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Fig. 5 Time history of modal state variables u( and u(- and modal 
restoring forces h, in hysteretic model UCB-3 under sinusoidal and 
random excitation 

Returning to the more general problem represented by Similarly, the contribution of terms involving products of 
equation (3), the "generalized restoring force" h can be various powers of ti, and u, can be found from 
expressedas Ap>(u,u) =/iJ1>(n,u)-«J2> («„«,) (12) 

h(u,ii)=Q(/)-Mu. (7) a n d 

Consider the ith component of equation (7); 
hl(u,i)=Ql(t)-Mlu„ « = l , 2 , . . . , r (8) ^ ( M ) - * ! 3 ' («„«,) = E £ a® Tk(u^T,(Uj) (13) 

k I 

Thus, if m, y, and p(r) are known, /i,(u, li) can be deter­
mined from (8). Obviously, this procedure can be extended to account for 

Let an estimate of ht (u, li) be given by £<", where h^ is a11 "modes" that have significant interaction with "mode" i. 
expressed as a double series involving Chebyshev orthogonal W h e n t h l s 1S done> h> wl} b e approximated by 
polynomials: hi(u,VL)<*h?')(ui,ui) +hf)(ui,uj) 

( 9 ) +h?HuhUj)+ . . . (14) 
k ' where the choice of/' would usually be (i — 1) and (i + 1). 

Note from (9) that A}!) considers only the contribution of 
terms of the type ufti^i-e., only the/th "mode" is involved). 2 2 P r o c e s s i n o f Experimental Data. To identify a 

In order to better approximate h, (u, u) let the deviation p a r t i c u l a r s v s t e m > form t h e f o l i o w i n g s t e p s : 
between n, and its first estimate hy> be given by 

u<i)t - \ _ w -̂  £(D/ -^ / , m (!) Measure y, y, y, and p(0 at a given sampling rate. 
n, (.u,u;-«,(u>uj-ft, (u,,w,j (10) ( 2 ) C o m p u t e o r e s t i m a t e t h e diagonal mass matrix of 

The contribution of "modal interaction" to h, can be order/? X n andmatrix <j> of order n x r. 
accounted for by determining a new Chebyshev double series (3) Determine sampled values of u(t), ii(r), and h(f) 
fit involving mode / and/' ^ i: from the following relationships: 

A|»)(u,ri)-/iP(«/,«;)= E E c 2 | P 7 ' t ( « / ) r / ( « , ) (11) (a) ^ the order of ^ is such that « = /•, 
T / n(t)=M-^Tmy(t), u«> =M-1tf>rwy(r) (15) 

£,(u,ii)«£|"(n„ii,) = E Eci#)7'*<«*>r,(«i/)-

622/ Vol. 49, SEPTEMBER 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



RANDOM 

/(OOOO 1(0000 

- 1 0 0 10 - 1 0 0 10 
u3 u3 

Fig. 6 Variation of modal restoring forces / ) / with the corresponding 
state variables ut in hysteretic model UCB-3 under sinusoidal and 
random excitation 

(b) lfr<n, then u and li can be found from 

u(t)=Ayr(t), u(t)=Ayr(t) (16) 
where matrix A = </>~' is the inverse of the submatrix 
4>r consisting of the first r rows of 4>, and yr is a vector 
of the first r components of y. Next compute the time 
history of the "modal restoring force" from 

h(t)=<t>Ti(t)=<j>T{p(t)-my(t)) (17) 
(4) For each mode /, determine the two-dimensional 

Chebyshev series coefficients CI(/) for h, (u, ii), 

K?Hu„Uj)= £ YiC^T^u^T,^) (22) 

h?)(Mhui)= £ £ C U P 7 ^ ) 7 ^ , . ) (18) 

(5) Compute the residual error in the fit for all digitized 
values of hj{t), 

hPU)=hi(t)-hW(t) (19) 

(6) Determine a two-dimensional Chebyshev fit for 
h\l) (t) m terms of w, and «,-, wherey is any arbitrary "mode" 
that significantly interacts with mode /, 

h?HuhUj)= £ £ Cl®Tk(ut)T,(Uj) (20) 

(7) Compute the residual error in the fit for the digitized 
values of AW ( 0 , 

hfHt)=h\iHt)-hfHt) (21) 
(8) Determine a two-dimensional fit for h<i2) (/) in terms of 

ii, and Uj, 

(9) Repeat steps 6-8 for different values of mode index j , 
until the norm of the residual error after s approximations is 
within an acceptable limit, 

IIA/S> (011^5 (23) 

where 5 is a small positive constant. 

(10) Repeat steps 4-9 for each mode i = 1, 2, . . . ,r. 
This step concludes the identification task. To use the 

results for predicting the response to an excitation other than 
the probing signal used for identification, the governing 
nonlinear equations of motions can be evaluated numerically. 
At a given time t0 with values of u and ii known, the 
magnitude of each h,(t) can be estimated from 

h,(t) «A,(u,ii) =hP(u„u,) +h?HuhUj) +h?\uhUj) 

+ . . . +£/*>(«„«*) (24) 

Once hj (t) is determined, the governing equations of motion 
can be solved numerically to compute the response «, at (t + 
At): 

M,u,U)+h,U)=Q,(t), i=l ,2, . . . ,r (25) 

At any time t, y and f(y, y) can be found from 

y(t)=4>u(t) (26) 

f(y ,y)=P(0-my(0 (27) 
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Fig. 7 Comparison between the exact and approximate modal 
restoring forces in hysteretic system UCB-3 under sinusoidal and 
random excitation 

3 Applications 

To illustrate the application of the method under 
discussion, consider the UCB frame that has been the subject 
of extensive analytical and experimental studies [9, 10]. A 
simplified three-degree-of-freedom stick model of this frame 
is shown in Fig. 2. 

The chain-like structure of this model makes it ideally 
suited for treatment by the procedure in [7]. However, a 
major feature of the present identification method is that it is 
not restricted to any particular structure or class of discrete 
nonlinear systems. Consequently, the close-coupled nature of 
the example system in Fig. 2 will not be invoked and it will in 
no way modify the identification procedure from what it 
would otherwise be for systems that are not chain-like. 

3.1 Polynomial Nonlinearities. The arbitrary nonlinear 
elements G, interposed between the masses are dependent on 
the relative displacement z and velocity z across the terminals 
of each element. In the case of elements with polynomial 
nonlinearities, the elements assume the form 

G,(z,z) ^p^z+p^z+p^z3 (28) 
where p f is the linear stiffness component, pP is the linear 
viscous damping term, andp|;> corresponds to the coefficient 
of the nonlinear cubic displacement term. Thus, depending on 
the sign of p\l), the form of G, given in equation (28) can be 
made to represent restoring forces with hardening or sof­
tening nonlinearities—a commonly encountered type of 
nonlinearity in physical systems. 

3.2 Hysteretic Nonlinearities. The form of the 
nonlinearity discussed so far involved polynomial-type 
without cross-product terms. To illustrate the wide ap­
plicability of the present method, a hysteretic-type restoring 
force will be considered. Such a nonlinearity not only involves 
cross-product terms of displacement and velocity, but is of 
course not even expressible in polynomial form. Hysteretic 
systems, widely encountered in all areas of applied mechanics 
(particularly building and equipment systems), are among the 
more difficult types of nonlinear properties to investigate and 
identify [11-21]. 

Consider the nonlinear model shown in Fig. 2 in which the 
first element Gt has a hardening nonlinearity of the 
polynomial type, element G2 is of a hysteretic type, and 
element G3 has a softening nonlinearity of the polynomial 
type. Element G2 is of the bilinear hysteretic form in which 

zy = yield displacement level = 2.5 
kx = stiffness in the elastic range = 14,900 
a =k2/kl = stiffness ratio = 0.414 

(29) 

This model will henceforth be referred to as model UCB-3. 
As pointed out earlier, the nonparametric identification 

technique under discussion allows great freedom in the choice 
of the probing signal used for identification as long as the 
signal is persistently exciting and large enough to drive the 
system beyond the elastic region. To illustrate this, two 
simulated "experiments" will be considered: one case in 
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Table 1 Coefficients of Cl$ of two-dimensional Chebyshev 
series for the identification of modal restoring functions for 
model UCB-3 

TYPE OF EXCITATION 
LEVEL OF EXCITATION 
LOCATION 
MODE 

Random 
a • 30,000 
At Mass 1 
A l l 3 

i, (»,.»,) - ^ n J i ' V « , > V«,) 

v»> 
T,(„> 

T2(u) 

T,M 

T,tu) 

V»> 

v»> 
T,(u) 

T0(M 

-123.20 

8801.00 

-127.50 

-254.10 

-20.31 

-364.50 

54.73 

13.07 

T,(S) 

1767.00 

-54.30 

198.BO 

Z10.50 

-147.90 

-84.94 

-89.86 

-132.40 

yii) 

-90.45 

-16.IB 

-14.89 

177.50 

-60.59 

-203.90 

16.90 

77.50 

T3(u) 

723.50 

-142.20 

381.20 

8.72 

100.60 

-0.21 

-111.80 

39.17 

• T,(fi) 

-190.50 

-130.30 

-4.96 

216.90 

-15.24 

-220.70 

84.68 

105.60 

yfi) 

633.00 

84.99 

310.30 

112.70 

-92.25 

-43.66 

-125.40 

-56.43 

T6(uJ 

-126.40 

-7B.13 

126.10 

152.40 

128.50 

-75.76 

-171.40 

79.06 

T7(u) 

83.93 

-60.90 

-129.90 

-73.49 

-9.75 

-3.14 

-66.21 

-6.58 

1 - Z k \ ^ 

T„(u) 

T,(»l 

T2(U) 

V"> 
T4W 

T5(«) 

T,(«) 

T7t») 

V»i 

-6610.00 

24890.00 

-756.00 

-291.70 

173.30 

582.60 

38.75 

-228.80 

V«) 
8761.00 

-16.60 

-657.50 

146.00 

170.00 

-110.30 

-122.60 

66.81 

T2(ii) 

-522.10 

-733.50 

301.70 

766.30 

321.70 

335.40 

9.62 

-373.40 

T3(u) 

-1124.00 

-106.60 

-205.30 

-80.39 

146.80 

65.00 

167.50 

-131.00 

T4(u) 

779.30 

-71.10 

62.25 

545.60 

-136.30 

-640.40 

220.80 

49.18 

T5(u> 

116.00 

-223.60 

61.68 

604.40 

-463.70 

-14.30 

89.88 

-110.10 

y i i ) 

-534.80 

19.57 

-289-BO 

-84.13 

-21.20 

-130.00 

-11.13 

34.55 

T?(u) 

-503.30 

49.79 

-263.50 

-99.12 

13.B4 

-339.60 

230.10 

91.50 

k \ 

T0(u> 

Tjfu) 

T2(u) 

T3(U) 

V«) 

y»> 
T6(u) 

T;(u) 

T0(u) 

-1826.00 

9890.00 

-86B.40 

-287.30 

-374.50 

415.40 

472.60 

-228.90 

-yii) 

4534.00 

-12.38 

30.13 

68.38 

1.33 

-94.95 

1.09 

7B.B0 

Tz(ii) 

135.00 

-226,60 

310.30 

176.60 

59.97 

170.50 

-169.00 

-172.50 

T3(i) 

-106.30 

-1.44 

-207.00 

-32.52 

159.20 

-9.70 

-44.59 

67.63 

y*) 

176.80 

135.00 

-163.10 

-108.30 

29.92 

-60.93 

-35.93 

130.10 

T5(J) 

-385.60 

11.66 

39.56 

10.83 

-70.58 

-24.29 

-45.23 

60.35 

y« 

123.70 

-55.16 

5.29 

-B.67 

110.90 

15.96 

-92.88 

50.78 

yu> 

-15.28 

-38.65 

-19.67 

70.84 

59.49 

-55.51 

30.12 

-17.98 

which a swept-sine excitation is used, and another case in 
which a broad-band random excitation is applied. 

Following the identification procedure outlined in the 
foregoing and using mode-shape estimates based on the 
average stiffness of the system result in the measurements 
shown in Figs. 3 and 4. From Fig. 4(6) the example structure 
is clearly undergoing a large nonlinear deformation of the 
bilinear hysteretic type with a ductility ratio n = (peak 
displacement)/(yield displacement) of about \x. = 2. 

The representative measurements, shown in Figs. 5(a) and 
(d) for the estimated modal displacements u, and in Figs. 5(b) 
and (e) for the estimated modal velocities H, (under swept-
sine and random excitation, respectively), clearly indicate the 
predominant component of the response corresponds to the 
first mode in both excitation cases. Howevere, the estimated 
modal restoring forces shown in Figs. 5(c) and (/) show that 
contributions of higher modes are quite significant, par­
ticularly under broad-band excitation. 

The plots of the estimated modal restoring forces versus 
their corresponding modal displacement in Fig. 6 clearly 
indicate the presence of hysteretic components in the system. 

Using Chebyshev polynomials in accordance with equations 
(9)-(14) to obtain two-dimensional fits for the surfaces of the 
modal restoring functions will yield the typical identification 
results shown in Table 1 and Fig. 7. 

Although the fits for the various modal restoring forces 
over the total record length are not as good as in the case of 
polynomial nonlinearities [24] as evidenced by the residual 
error, the representative time-history segments exhibited in 
Fig. 7 clearly show that the quality of the Chebyshev fit, 
under both swept-sine and random excitation, is good for the 

frequency content as well as amplitude of each of the three 
modal restoring forces. 

The identification process yields a nonparametric model for 
an equivalent memoryless nonlinear system. The area en­
closed by the loop is the mechanical energy dissipated per 
cycle of motion. Using energy approaches, the work done by 
the hysteretic element per cycle can be equated to that done by 
an equivalent viscous damper [22, 23] to estimate the value of 
ceq, the equivalent coefficient of viscous damping for the 
hysteretic element. The Cm coefficients in Table 1 
corresponding to h, are close estimates of the generalized 
equivalent viscous damping ceq. for each mode. 

It should be emphasized that the identification does not 
find the parameters of the hysteretic loop. Rather, it produces 
the Chebyshev coefficients of a model whose response 
matches the measured system response in a least-squares sense 
for the given excitation. The fact that the hysteretic loop is not 
an analytic function is immaterial, since the Chebyshev ex­
pansion treats all nonlinearities equally. When the 
nonlinearity is not a function, the procedure fits an equivalent 
memoryless nonlinear restoring force in a least-squares sense. 

It is clear from Table 1 that determining the optimum least-
squares fit for the data associated with the hysteretic system 
does involve many cross-product terms in displacement and 
velocity. It also requires a relatively larger number of terms in 
the series (eight used in the present example) for a good 
estimate. 

The preceeding is a good illustration of the need to use two-
dimensional surface fits rather than uncoupled one-
dimensional series to estimate the system properties. Whether 
cross-coupling is significant or not is a decision that need not 
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Fig. 8 Comparison between the measured and predicted 
displacement of hysteretic system UCB-3 under sinusoidal and random 
excitation by using in both cases the approximate model identified 
with random excitation 

be made a priori when following the method presented 
here—the system will effectively "decide" by its own response 
(signature) the extent and relative dominance or contribution 
arising from various powers of Tt (u) Tj («). 

The adequacy of the approximate (identified) nonlinear 
model to predict the response of the exact (hysteretic) 
nonlinear system UCB-3 under deterministic and random 
excitation is clearly illustrated by the results shown in Figs. 
8-10, in which the "exact" displacement, velocity, and ac­
celeration of each mass location of the system UCB-3 is 
compared to its corresponding value as computed on the basis 
of the approximate nonlinear model. A further demonstration 
of the validity of the present identification method is that the 
estimated response of the system under sinusoidal excitation 
shown in Figs. 8-10 was predicted by means of the ap­
proximate nonlinear model identified by means of a random 
probing signal. 

Additional details and examples that are useful in 
evaluating the identification method under discussion are 
available in [24]. 

4 Summary and Conclusions 

A relatively simple and approximate nonparametric 
identification technique has been presented that is suitable for 
use with discrete multidegree-of-freedom nonlinear dynamic 

systems. The method requires information regarding the 
system response and estimates of its pertinent "mode shapes" 
to determine, by means of regression techniques involving the 
use of two-dimensional orthogonal functions, an approximate 
expression for the surface of each of the system generalized 
restoring forces in terms of the corresponding generalized 
system state variables. 

The main features of this method are: 

(1) Practically any type of nonlinear system charac­
teristics can be accurately identified. Hysteretic systems, 
which pose problems for conventional nonparametric 
identification techniques, can be easily handled and 
reasonably estimated by the present method since they are not 
treated any differently from other arbitrary nonlinearities. 

(2) Virtually any type of probing signal can be used for 
identification; i.e., random signals (stationary or non-
stationary) and swept-sine signals are equally suitable. 

(3) Very modest amounts of computer time are needed to 
implement the method. 

(4) Computer storage requirements are extremely com­
pact for the characterization of arbitrarily nonlinear systems. 

(5) Fast convergence can be achieved with very few terms 
in the series expansion even in the case of hysteretic systems. 

(6) Noise pollution of the data has a minimal effect on the 
identification results obtained by this technique. 
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Fig. 9 Comparison between the measured and predicted velocity of 
hysteretic system UCB-3 under sinusoidal and random excitation by 
using in both cases the approximate model identified with random 
excitation 
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The Steady-State Response of a 
Class of Dynamical Systems to 
Stochastic Excitation 
In this paper a class of coupled nonlinear dynamical systems subjected to stochastic 
excitation is considered. It is shown how the exact steady-state probability density 
function for this class of systems can be constructed. The result is then applied to 
some classical oscillator problems. 

1 Introduction 

In the last 20 years the response of nonlinear dynamical 
systems to stochastic excitation has been extensively studied. 
The diffusion processes approach to this problem leads to the 
Kolmogorov equations, which have, until now, been explicitly 
solved only in a few simple cases. For linear systems the 
transition probability density function can be obtained by a 
variety of methods [1, 2], whereas in the nonlinear case only 
some specific one-dimensional systems have been exactly 
solved so far [3]. An honest survey of the developments in this 
area can be found in [3, 4]. In recent years the use of ap­
proximate techniques in the treatment of random vibrations 
has become increasingly popular [5-7]. It is expected that in 
the next decade this trend will continue as computing costs 
decrease. 

Our present knowledge of the steady-state response of 
nonlinear systems to white noise excitation is also far from a 
state of maturity [3]. The exact steady-state probability 
density for any one-dimensional nonlinear system, if it exists, 
has been found. Some specific nonlinear dynamical systems 
of higher dimensions have been considered [3], but in general 
very little is known. If the steady-state probability density of a 
dynamical system exists and can be found, then it may be 
possible to obtain the approximate nonstationary response by 
perturbation analysis [8]; the exact procedures to be used are 
dependent on the system under consideration. The purpose of 
this paper is to construct the exact steady-state probability 
density of a class of nonlinear dynamical systems subjected to 
stochastic excitation. It will also be shown that some 
previously published results [3] are particular cases of our 
present investigation. 

2 Construction of Steady-State Solution 

Consider the autonomous dynamical system in R2" whose 
behavior when subjected to white noise excitation is described 
by the following equation 
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X2i 

_ / t>i(X2i) 

~ \ -/(#)A/(Jf2/)-*/(Jri,*3, • > * 2 / i - l ) 

< " ) 

(1) 

x,{0)=y„ 

for 1 = 1, 2 n, where w,(f) are independent Wiener 
processes with zero means and E(dWj(t)dWj(t)) =2D8jjdt. 
The functions g, (x{, *3 *2/i-i) assumed to arise from 
a potential function V(xux3, . . . . ,x2„-i). 
Si(X\ ,X3, X2n-i) 

d 
V(Xl,X3 i #2fl-1) 

dx2i. 
1 = 1,2,. 

and H is defined by 

#<*)=£ \*? hiWdt+V{xltXi ,x2„_,) 

(2) 

(3) 

where 
Xi 

x2 

x2„ 
At the present stage we further assume that 

(/) / , H, Khave continuous second-order derivatives, H>0 
and there exists an H0>0 such that f(H) >0 if H>H0. In 
addition, 

, •> df 

(/7) There exists a constant L such that 
n n 

E I A / l 2 + E l / ( ^ * / + S / l 2 ^ ( l + l i l 2 ) (5) 
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where the vector x is defined by (4) and the arguments of the 
functions on the left-hand side are those components of x 
previously indicated. 

These restrictions will be relaxed later on. The preceding 
assumptions are such that the Lipschitz conditions for system 
(1) are satisfied. A little manipulation with L and the Lip­
schitz constants reveals that assumptions (/) and (if) are 
sufficient to guarantee the following result of Ito [3, 9]: there 
exists an almost everywhere continuous solution of system (1) 
which is a homogeneous Markov process, the solution being 
unique up to a stochastic equivalence. Moreover, when an 
invariant distribution exists, the unique steady-state 
probability density p(x) may be obtained from the stationary 
form of the Fokker-Planck equation where dp/dt = Q. The 
previous statement expresses the equivalence under very mild 
restrictions of the stochastic differential equations approach 
and the diffusion processes approach [10], a topic that has 
been rigorously examined by mathematicians. Hence we will 
have constructed the only steady-state probability density 
from the stationary Fokker-Planck equation subsequently, 
under assumptions (0 and (if). 

We have been interpreting the dynamical system (1) using 
Ito calculus [10]. It is immaterial whether system (1) is 
regarded in the sense of Ito or in the sense of Stratonovich 
[11, 12] since in this particular case the so-called Wong and 
Zakai [13] corrections terms to the drift vector are identically 
zero. It is for this reason that assumption (1) need only hold 
on every finite domain. (Suppose S is a system where con­
ditions (i) only hold on every finite region. Define a sequence 
of systems S„ in the following way: S„ is the restriction of S 
on the closed ball B(0, ri), and / , H, V are assigned suitable 
constant values outside B(0, ri). As n — oo, S„ tends to S and, 
for the type of systems considered in this paper [13, 14], the 
solution of S„ converges to the solution of S. (We have not 
discussed condition (if) because it will later be removed.) Let 
p(x, t\y)dx be the probability of the system (1) in the range 
(x, x + dx) at time t given that it is initially at y. The associated 
system of Fokker-Planck equations has the form 

dxn- dx2i dp 

dp 

dt dx2. 
[hi(x2i)p] + ^[(f(H)hi(x2i) + 

d2p 1 olp 
g;(*i.*3 •*2„-i))Pj +Dfo> 

i-=l,2, . V 

(6) 

,n 

As previously explained, the steady-state density is governed 
by the following system of linear partial differential equations 

dp dp d 

dx2i dx2i_l dx2i 

{f(H)hi(X2i)p+D^-yO (7) 

i=\, 2, . . . . ,n 

First we observe that if p(\) satisfies the following conditions 
it will certainly be a solution of (7) 

dP u < , dp n g/7 h,(xv) = 0 
dx2i dxz-t 

3 T dp 
\f(H)h,(x2i)p+D 

9*2/ 
/ = 1 , 2 , . 

9*2. ; ] -

(8) 

(9) 

Since (8) constitutes a linear first-order system of partial 
differential equations, we may solve them by the method of 
characteristics [15]. The subsidiary equations are 

i = l , 2 , n 
f>i(x2i) gj 0 

for which two independent integrals are 

p = constant (10) 

and 

V(xux3 ^ 2 » - i ) + J 0 M f W = * , - (11) 

/=1,2, . . . . ,n 

where k, is a constant depending on x2j, j= 1, 2 , n, 
j^i. The system of equations (11) is equivalent to 

H=V(xi,x3l. . . . ,x 2 n _i )+ 1 , ] 0 A ( M " = constant (12) 

Thus the general solution for (8) is of the form 

P = * (H) (13) 

where <f> is an arbitrary function. Since p and its first partial 
derivatives vanish as Ix I — <», equations (9) imply 

dp 
f(H)h,(x2i)p + D~^-=0 (=1,2, ,n 

°x2i 

Substituting (13) into (14), we have 

h,(x2,)[D~+f(H)<t^ + 0 i = l , 2 , ,n 

Assuming that none of h, is identically zero, it follows that 
1 r " 

(14) 

(15) 

•-M-^L/H 
where A is a normalizing constant. Hence the steady state 
density is given by 

p(x) = (16) 

where the denominator is a 2/z-fold integral. It can be easily 
checked that the expression defined in (16) satisfies all the 
requirements for a probability density function and therefore 
it represents the unique steady-state density of the coupled 
nonlinear dynamical system (1), under the assumptions (f) and 

00. 
The assumption (if) is a rather severe growth restriction on 

the class of systems under consideration. It should be 
removed if our results are to be of practical use. To this end 
we recall the concept of well-behaved solutions (see Ap­
pendix). Now it can be shown that under assumption (/') the 
solution (16) is a well-behaved solution of the stationary 
Fokker-Planck equation (7). Since it has been shown that a 
well-behaved solution of the stationary Fokker-Planck 
equation is unique [8, 16], we have the following result. 

Theorem. The solution (16) is the unique steady-state 
solution of the dynamical system (1) subjected only to con­
ditions ((')• 

It should be noted that the last theorem can also be 
established by using only the diffusion processes approach 
(i.e., a direct interpretation of the solution of the stochastic 
differential equation (1); using Ito calculus is not required). In 
this case (see the Appendix) some caution is needed to furnish 
a rigorous argument because the hard machinery needed 
comes from the theory of partial differential equations [8]. It 
is clear that assumption (;') is sufficient but not necessary and 
thus can be relaxed. In order to keep physically interpretable 
conditions, this will not be done in this paper. 
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3 Applications and Further Discussion 

We shall apply the theorem established in the previous 
section to some classical oscillator problems, mentioning 
possible extensions when appropriate. 

Example 1. The motion of a Brownian particle in a 
constant force field with dissipation of Rayleigh type [1, 17] 
may be described by 

x + Qx+g=w(t) (17) 

where E(w(S)w(t)) = 2D8(t-s). The associated Fokker-
Planck equation is 

dp .dp dp 8 [ dp dp _ .dp dp d r . dpi 
dt dx dx dx L dx J 

We assume that there is a reflecting barrier at x = 0, so that the 
particle does not disappear toward x= - oo. We may consider 
the present system as a particular case of (1) and make the 
following identifications: 

«=1 

X\ =X 

x2=x=hl 

f=P 
g\=g 

Then H=\/2x2 +gx and the unique steady-state density as 
given by (16) is 

>**-\J¥-(-'i(\*+«')) <"> 
for x>0, -oo<i<oo. This is the well-known barometric 
distribution [1]. 

Example 2. Consider the following self-excited oscillator 
corrupted by white noise 

x-e(l-x2-x2)x+x=w(t) (20) 

where e>0. This can be written in the equivalent form 

x2 
x\ 

1 * 2 . t{\-x\-x2
2)x2-xx 

0 
(21) 

Hence by taking hl=x2, gi=xit we have H=l/2 
x{

2 + \/2x2
2, f= —e(l~2H), and the steady-state density is 

given by 

p(*„*2) = Ctexp(^tf ( i -JJ)) (22) 

where C=i^«,J~„ exp(e/DH(l -H))dxldx2. It is easy to 
check that the function (22) is a well-behaved solution of the 
associated Fokker-Planck equation. It is also easy to see that 
all circles on the xxx2 plane with centers at the origin are loci 
of constant probability for the steady-state distribution. 
Moreover the steady-state density attains a maximum when 
H=l/2 corresponding to xx

2+x2
2 = 1, and decreases ex­

ponentially on either side of the unit circle. If we now examine 
the deterministic oscillator obtained by omitting the last term 
on the right-hand side of (21), we will find by a standard 
analysis using the Poincare'-Bendixson theorem [18] that the 
unit circle is the unique limit cycle for the deterministic 
oscillator. 

The information given in the last paragraph suggests that 
the nonstationary response of the system (21) in the neigh­
borhood of the limit cycle may be obtained by perturbation 
techniques. This has been done by one of us for the case of 
weak damping and weak excitation [8], when e, D< < 1. The 
approximate spectral density has also been obtained by the 
same means. 

Example 3. A class of generalized Van der Pol-Rayleigh 
oscillators subjected to white noise excitation is described by 
the equation [3] 

x+f{H)x+g(x)=w(t) x(0)=y,x(0)=y (23) 
where E((dw(t))2) = 2D dt. The equivalent first-order 
system is 

0 

XlJ 

x2 

-f(H)x2-g(x{) w(t) 
(24) 

where H=l/2x2
2 + \oig(^)d^ is a measure of the system 

energy. In this case the associated Fokker-Planck equation is 

(18) $P= 
dp dp d2p 

», x2^ + -f-(f(H)x2+g(xl))p+D—^ 
dt dxx dx2 dx2

l 

(25) 

(26) 

lim p(xux2,t\y,y)=8(xl-y)5(x2-y) 
1-0 

The steady-state solution as given by (16) is 

/>(*„*2) = Oexp(-^Jo/(0<tf) 

where C~'= j-»l-»exp (-\/D\^f(^)d^dxidx2. If the 
system (24) possesses limit cycles, then the steady-state density 
(26) will have relative peaks on these limit cycles, with ex­
ponential decay away from the limit cycles. The nonstationary 
response in the neighborhood of a limit cycle may be obtained 
by perturbation techniques, the particular methods used are 
dependent on the form of f(H). Moreover, asymptotic 
matching on regions enclosed by two adjacent limit cycles 
may be used in some cases to determine a uniform ap­
proximation. This is the subject of a subsequent paper. 

4 Conclusion 

In this paper the exact steady-state probability density 
function of a class of stochastic dynamical systems has been 
constructed. The construction has been justified by two 
alternative procedures. The result has been tested in some 
classical oscillator problems. When the steady-state density is 
known, the possibility of using perturbation techniques to 
compute the nonstationary response has been pointed out. In 
fact, a multiple-scale analysis has been used by one of us in an 
earlier paper [8] to derive the approximate nonstationary 
response of a specific oscillator. The conditions (/) made in 
this paper are sufficient but not necessary. Some of the 
smoothness requirements may be relaxed, to handle specific 
problems. 
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A P P E N D I X 
Many problems in mechanics and related fields involving 

the response of dynamical systems to stochastic excitation can 
be modeled by stochastic differential equations of the form 

m 

dx(t)=a(t,x(t))dt + Yi ok(t,x(t))dwk(t) 
k = \ 

x(?o) = y (27) 
where x, a, okeRm for k= 1, 2, . . . . , m, and the wk {t) for 
k = 1, 2, . . . . , m are independent Wiener processes, with 
E(dWj(t)dv/j(t)) = bydt. It can be shown that the response in 
this case is a Markov process. In appropriate circumstances 
[3, 9], the transition probability density function satisfies the 
Fokker-Planck equation in a region D 

dp & 9 1 & d 

bij=Yiaik(t<x)°jk(t,x) (29) 

£ = -E £[*,(«*+±E dt dX; 

(28) 

2 jfv bXjbXj 

[biJ{t,x)p]=Lp 
with initial condition 

lim p{x,t\y,s) = 8(x-y) 
t—s 

The coefficients an by are derived in the following way: a, are 
the components of a (?, x) and 

where ars, r= 1, 2, m, are the components of os(t, x) 
defined in (27). A well-behaved solution of the Fokker-Planck 
equation (28) is defined in the following way: 

(7) If ps is a solution of the stationary Fokker-Planck 
equation Lp = 0, then it is well-behaved if 

on the boundary 3D of the region D, where n, are the com­
ponents of the outward normal to dD. If D is an infinite 
domain, then (30) should be taken in a limiting sense. 

(77) If p is a solution of the time-dependent Fokker-
Planck equation, it is well behaved if equations (30) are 
satisfied with ps replaced by p, and for all solutions ps of the 
stationary equation Lp = 0, 

\DPs-
xP2dx<<*> 

, /dP\2 

\DPS \^J dx<°° 

(31) 

for all />0, with the convergence being uniform in / if D is an 
infinite domain. 

The following has been established [8, 16]. 

Theorem 
Well-behaved solutions to the Fokker-Planck equation are 

unique. Under some mild restrictions [8] the well-behaved 
solution p of the time-dependent Fokker-Planck equation 
converges in L1 to a function of ps as /—oo and/Jj is exactly a 
solution obtained by solving that stationary equation Lp = 0. 

Because of the exponential nature of p defined in (16) and 
the conditions (/), it is easy to check that the solution (16) 
satisfies (30) and is thus the unique well-behaved steady-state 
solution. By assuming that the time-dependent solution of 
(28) is well behaved [8], a self-consistent diffusion processes 
approach based on the Fokker-Planck equation may be 
developed to derive the same results as in Section 2. In this 
case the intermediate use of assumption (77) is not needed. 
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Natural Frequencies of Thick Annular Plates 
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The natural frequencies of vibration based on the Mindlin 
plate theory are tabulated for uniform annular plates under 
nine combinations of boundary conditions. 

The design data present the correct natural frequencies (the 
dimensionless frequency parameters) of uniform thick an­
nular plates under nine combinations of boundary conditions 
for the six modes. The natural frequencies of annular plates 
based on the Mindlin theory have been previously obtained by 
Rao and Prasad under the same boundary conditions [1]. 
However, their results are incorrect as indicated by the present 
authors [2]. 

Here, a brief explanation is presented for the solution of 
thick annular plates for convenience of the calculation. The 
moments and shearing force of annular plates are expressed as 
[3,4] 

Mt 

M, s = 
D(\-v) 

[;(£-*)•£] <» 
and 

Qr=K2Gh(ir+^) 

Qe=K2Gh(^e 

dr / 

1 dW\ 

~rHd) (2) 

in terms of the transverse deflection W and the angular 
rotations \j/r and \pe of the normal to the middle surface in 
radial and circumferential directions, respectively. The 
quantity D is the flexural rigidity expressed by 
D=Eh3/12(1 - v2) using Young's modulus E, Poisson's ratio 

1 Professor, Associate Professor, and Student, respectively, Department of 
Mechanical Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, 
Sapporo, 060 Japan. 

Manuscript received by ASME Applied Mechanics Division, January, 1981; 
final revision, November, 1981. 

v, and the plate thickness h. The quantity G is the shear 
modulus and K2 = TT2/12 is the shear coefficient. The 
deflection and the rotations are written as 

dWi dW2 1 dW} 
^ = ( f f _ 1 ) _ L + (ff 1) - + -—-i 
Yr ' ' dr 2 dr r dd 

1 bWx 1 bW2 dW3 

dr 

w= wx + w2 

using the functions 

(3) 

Wx = \cxJn(«, ^ ) +C*Yn(a, £)]cos#tf 

W2 = [c2Jn (o2 £ ) + C*2Y„ (s2 ^)]cos«fJ 

W3 = [c3Jn («3 ^ ) + C*Y„ («, 0 ] sinnd 

(" = 0,1,2 ) (4) 

where C, and C/ (/'= 1,2,3) are arbitrary constants and /„ (x) 
and Y„ (x) express Bessel functions of the first and second 
kinds, respectively. For simplicity of the treatment, the 
following dimensionless parameters have been introduced: 

1 
«i. 62 = 2 X4 ( # + S ± V ( / ? - S ) 2 + 4 / X 4 ) 

d2=2(R\4-l/S)/(l-v) 

a, ,<T2=(Si,o?)/(*\4- l /S) 

R = (h/a)2/12, S=D/K2Ga2h={2/ir2(l-v))(h/a)2 (5) 

The circular frequency is expressed as 

r.2 =x2 0% (6) 
a- " ph " \a/ ^ 12(1-v2)ph2 

using a dimensionless frequency parameter X2. The quantity a 
is the outer radius of annular plates, and p is the mass per unit 
volume. 

The boundary conditions at the edges are written as 

Mr = Mre =Qr=0 at a free edge 
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DESIGN DATA AND METHODS 

Table 1 Frequency parameters \ls of uniform annular plates with free inner edge; v = 0.3 

(a) Plates with free outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

s 

1 
2 
1 
2 
1 
2 

j 

1 
2 
1 
2 
1 
2 

A/a = 0.1 

8.65 
35.95 
19.56 
52.90 

5.21 
32.69 

b/a = 

0.2 

8.30 
31.23 
17.75 
42.93 

5.03 
28.39 

b/a = 0A 

h/a = 0.1 

8.46 
59.60 
15.92 
63.24 
4.50 

29.03 

0.2 

8.06 
49.09 
14.08 
51.21 
4.33 

24.87 

:0.1 

0.3 

7.83 
26.58 
15.70 
34.62 
4.81 

24.12 

0.4 

7.31 
22.69 
13.77 
28.37 
4.55 

20.51 

\ r 
0.3 0.1 
7.51 

40.33 
12.17 
41.59 
4.10 

20.80 

(b) Plates with simply supported outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

5 

1 
2 
1 
2 
1 
2 

s 

1 
2 
1 
2 
1 
2 

A/«=0.1 

4.81 
28.04 
13.50 
43.83 
24.26 
61.94 

bla = 

0.2 

4.70 
24.94 
12.61 
36.52 
21.76 
49.77 

b/a = 0A 

h/a = 0.l 

4.73 
44.05 
11.33 
48.15 
21.95 
59.24 

0.2 

4.62 
37.43 
10.37 
40.04 
19.61 
47.29 

0.1 

0.3 

4.54 
21.67 
11.50 
30.05 
19.04 
39.93 

9.10 
81.03 
15.76 
83.48 
4.17 

28.05 

0.4 

4.34 
18.82 
10.39 
25.08 
16.63 
32.80 

0.3 0.1 

4.47 
31.28 

9.34 
32.96 
17.10 
37.80 

5.03 
59.53 
10.90 
62.28 
20.92 
70.09 

0.1 

8.32 
39.08 
18.59 
49.57 

5.04 
32.04 

0.5 

0.2 

8.55 
64.01 
13.77 
65.32 
4.00 

23.64 

/ " 
0.1 
4.68 

29.86 
13.07 
40.82 
23.80 
60.03 

0.5 

0.2 

4.91 
48.56 

9.95 
50.22 
18.56 
55.00 

0.2 

8.00 
33.79 
16.66 
40.49 

4.86 
27.86 

0.3 

7.84 
51.25 
11.72 
51.94 

3.78 
19.42 

0.2 

4.58 
26.48 
12.10 
33.99 
21.38 
48.15 

0.3 

4.72 
39.22 

8.94 
40.24 
16.11 
43.25 

0.2 

0.3 

7.55 
28.71 
14.57 
33.02 
4.62 

23.68 

0.6 

0.1 

10.31 
118.14 

16.71 
119.82 

3.82 
28.75 

0.2 

0.3 

4.43 
22.96 
10.95 
28.09 
18.73 
38.57 

0.6 

0.1 

5.65 
86.80 
11.12 
88.71 
20.71 
94.26 

0.4 

7.05 
24.55 
12.65 
27.43 

4.37 
20.13 

0.2 

9.45 
88.23 
14.19 
89.01 
3.66 

23.46 

0 . 4 ^ 

4.25 
19.93 
9.83 

23.52 
16.36 
31.63 

0.2 

5.47 
66.65 
10.08 
67.72 
18.17 
70.84 

0.1 

8.23 
46.63 
17.02 
52.50 

4.80 
30.77 

0.7 

0.1 

12.46 
188.95 

19.12 
190.04 

3.47 
31.83 

0.1 

4.63 
34.92 
12.19 
41.45 
23.07 
57.18 

0.7 

0.1 

6.81 
139.61 

12.29 
140.90 
22.01 

144.71 

0.3 

0.2 

7.89 
39.57 
15.13 
43.17 

4.61 
26.63 

0.2 

10.89 
131.06 
15.27 

131.38 
3.29 

24.19 

0.3 
A. 

0.2 

4.53 
30.49 
11.19 
34.80 
20.71 
45.73 

0.2 

6.49 
97.41 
10.90 
98.04 
18.86 
99.90 

0.3 

7.42 
33.18 
13.16 
35.42 
4.38 

22.52 

0.8 

0.1 

16.50 
349.39 
23.85 

349.96 
3.11 

38.32 

0.3 

4.39 
26.08 
10.09 
28.93 
18.13 
36.61 

0.8 

0.1 

9.23 
259.52 

15.28 
260.29 

26.24 
262.59 

(c) Plates with clamped outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

s 

1 
2 
1 
2 
1 
2 

s 

1 
2 
1 
2 
1 
2 

/ 
h/a=0.1 

9.90 
36.33 
20.04 
52.53 
31.86 
71.35 

b/a = 

0.2 

9.22 
30.20 
17.58 
41.05 
26.72 
53.91 

b/a=0A 

hi a = 0.1 

13.19 
58.13 
18.19 
61.45 
28.80 
70.91 

0.2 

12.16 
44.17 
15.99 
46.19 
24.24 
52.17 

0.1 

0.3 

8.37 
24.70 
15.01 
32.23 
22.02 
41.64 

0.3 

10.91 
33.88 
13.81 
35.19 
20.13 
39.32 

0.4S 

7.50 
20.53 
12.82 
26.06 
18.37 
33.49 

0.1 

17.02 
77.24 
20.48 
79.41 
29.02 
85.76 

0.1 

10.15 
39.22 
19.20 
49.21 
31.21 
68.89 

0.5 

0.2 

15.40 
55.27 
17.94 
56.57 
24.33 
60.44 

0.2 

9.48 
32.17 
16.77 
38.52 
26.24 
52.04 

0.3 

13.55 
40.90 
15.42 
41.71 
20.21 
44.29 

0.2 

0.3 

8.62 
26.04 
14.32 
30.26 
21.65 
40.14 

0.6 

0.1 

24.26 
108.92 
26.58 

110.39 
32.95 

114.75 

0.4 V 

7.75 
21.48 
12.25 
24.40 
18.08 
32.14 

0.2 

21.22 
72.13 
22.81 
72.98 
27.28 
75.56 

, ^ „ 
11.12 
46.25 
18.12 
51.74 
30.08 
66.24 

0.7 

0.1 

39.37 
165.42 
40.85 

166.42 
45.19 

169.38 

0.3 

0.2 

10.35 
36.77 
15.87 
40.18 
25.33 
49.74 

0.2 

32.44 
99.31 
33.35 
99.85 
36.08 

101.49 

0.3 

9.39 
29.08 
13.64 
31.32 
20.96 
38.10 

0.8 

0.1 

77.85 
279.83 
78.68 

280.47 
81.18 

282.38 
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DESIGN DATA AND METHODS 

Table 2 Frequency parameters A,2„ of uniform annular plates with simply supported inner edge; v = 0.3 

(a) Plates with free outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

s 

1 
2 
1 
2 
1 
2 

•s 

1 
2 
1 
2 
1 
2 

/* 
A/« = 0.1 

3.40 
19.79 
2.34 

22.94 
5.34 

33.43 

r——— 
h/a = 0.\ 3.65 

39.48 
3.95 

41.58 
6.66 

47.73 

b/a = 

0.2 

3.26 
17.35 
2.18 

20.29 
5.16 

28.93' 

b/a = 0A 
—-mJtomwummmmim 

0.2 

3.58 
33.36 
3.84 

34.93 
6.39 

39.42 

0.1 

0.3 

3.07 
14.81 
2.02 

17.55 
4.94 

24.49 

0.3 

3.47 
27.49 

3.69 
28.66 

6.04 
31.99 

0.4 

2.85 
12.65 

1.88 
15.15 
4.68 

20.74 

0.1 

4.09 
55.12 
4.79 

56.87 
7.79 

61.99 

0.1 

3.31 
23.56 
2.84 

26.50 
5.55 

35.30 

0.5 

0.2 

4.01 
44.64 

4.65 
45.85 

7.42 
49.35 

0.2 

3.22 
20.80 

2.72 
23.26 

5.35 
30.28 

" \ 
0.3 
3.88 

35.44 
4.46 

36.30 
6.97 

38.79 

0.2 

0.3 

3.10 
17.82 
2.58 

19.88 
5.10 

25.44 

0.1 

4.83 
82.21 
6.05 

83.63 
9.63 

87.81 

0.4 

2.94 
15.21 
2.43 

16.95 
4.83 

21.40 

0.6 

0.2 

4.70 
62.51 

5.82 
63.40 

9.08 
66.01 

0.1 

3.40 
29.79 

3.33 
32.29 
5.96 

39.64 

0.3 

0.2 

3.33 
25.89 

3.23 
27.87 

5.74 
33.52 

0.7 

0.1 

6.10 
134.41 

8.09 
135.50 
12.79 

138.71 

0.2 

5.86 
92.39 
7.63 

92.99 
11.79 
94.78 

0.3 

3.22 
21.87 

3.09 
23.44 

5.45 
27.78 

0.8 

0.1 

8.63 
252.71 

11.96 
253.43 

18.92 
255.56 

(b) Plates with simply supported outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

x 

1 
2 
1 
2 
1 
2 

s 

1 
2 
1 
2 
1 
2 

h/a = 0.l 

13.87 
46.95 
16.10 
51.07 
24.76 
63.82 

b/a- = 0.1 

_ _ _ ^ _ J t 
0.2 

12.45 
38.34 
14.64 
41.66 
22.16 
50.96 

b/a = 0A 

h/a = 0.\ 

26.70 
93.58 
28.50 
95.29 
33.93 

100.37 

^^tmmmmammt 

0.2 

23.56 
70.24 
25.02 
71.32 
29.32 
74.50 

(c) Plates with clamped outer edge 

n 

0 

1 

2 

n 

0 

1 

2 

s 

1 
2 
1 
2 
1 
2 

5 

1 
2 
1 
2 
1 
2 

h/a = 0A 

21.20 
56.91 
23.55 
61.03 
32.60 
73.60 

bla--

0.3 

10.86 
31.08 
13.04 
33.80 
19.34 
40.74 

0.3 

20.26 
54.06 
21.44 
54.80 
24.80 
57.00 

= 0.1 

_ _ _ _ J k 

0.2 

18.07 
43.43 
20.11 
46.53 
27.23 
55.17 

b/a = 0.4 

h/a = Q.l 

40.36 
109.73 
41.83 

111.20 
46.41 

115.59 

0.2 

32.16 
75.53 
33.20 
76.46 
36.45 
79.21 

0.3 

15.03 
33.51 
16.81 
36.01 
22.38 
42.43 

0.3 

25.46 
55.50 
26.23 
56.18 
28.67 
58.22 

0.4 

9.45 
25.72 
11.56 
27.98 
16.85 
33.39 

0.1 

37.33 
127.17 
38.86 

128.46 
43.45 

132.29 

0.4 

12.59 
26.84 
14.15 
28.92 
18.65 
34.01 

0.1 

55.09 
145.82 
56.26 

146.89 
59.84 

150.10 

0.1 

16.16 
56.91 
18.48 
59.99 
25.93 
69.25 

0.5 

0.2 

31.87 
90.64 
33.04 
91.39 
36.49 
93.64 

/ * 
0.1 

24.92 
68.64 
27.13 
71.50 
34.43 
80.17 

0.5 
™ « » A J ™ » ™ » » * * „ 

0.2 

41.62 
95.27 
42.41 
95.93 
44.85 
97.89 

0.2 

14.69 
45.87 
16.74 
48.08 
23.06 
54.53 

0.3 

26.67 
67.90 
27.56 
68.40 
30.17 
69.93 

0.2 

21.16 
51.25 
22.88 
53.20 
28.46 
58.98 

0.3 N 

31.91 
68.30 
32.50 
68.80 
34.33 
70.29 

0.2 

0.3 

12.97 
36.82 
14.79 
38.48 
20.01 
43.18 

0.6 

0.1 

56.08 
182.10 
57.36 

183.04 
61.17 

185.86 

0.2 

0.3 

17.54 
39.10 
18.88 
40.59 
23.20 
44.87 

0.6 

0.1 

79.75 
202.68 

80.65 
203.45 

83.40 
205.77 

0.4 

11.38 
30.24 
12.99 
31.55 
17.35 
35.19 

0.2 

45.52 
121.73 
46.42 

122.25 
49.08 

123.79 

0.4 

14.65 
31.09 
15.74 
32.30 
19.23 
35.73 

0.2 

56.14 
124.84 
56.73 

125.31 
58.54 

126.72 

0.1 

20.22 
71.71 
22.30 
73.99 
28.67 
80.78 

0.7 

0.1 

93.26 
280.58 

94.27 
281.24 

97.30 
283.19 

0.1 

31.01 
85.50 
32.84 
87.52 
38.64 
93.61 

0.7 

0.1 

124.94 
300.62 
125.61 
301.17 
127.64 
302.80 

0.3 

0.2 

18.21 
56.08 
19.98 
57.60 
25.22 
62.11 

0.2 

70.06 
162.31 
70.70 

162.70 
72.60 

163.90 

0.3 

0.2 

25.68 
61.56 
27.04 
62.87 
31.32 
66.81 

0.2 

80.34 
171.69 
80.78 

172.06 
82.13 

173.17 

0.3 

15.96 
44.18 
17.44 
45.27 
21.67 
48.47 

0.8 

0.1 

181.93 
486.97 
182.64 
487.37 
184.78 
488.55 

0.3 

20.89 
46.16 
21.90 
47.14 
25.16 
50.04 

0.8 

0.1 

220.96 
498.71 
221.43 
499.07 
222.84 
500.15 
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DESIGN DATA AND METHODS 

Mr = \pe = W= 0 at a simply supported edge 

^r = i/e = W= 0 at a clamped edge (7) 

The substitution of (4) into (l)-(3) yields the matrix equation 

{Z(r)}=[U(r)]{C} (8) 

where 

{Z(r)} = lMrMreQr^eW}T 

lO = [clc2c3c*clcUT 

The elements of the matrix [£/(/•)] are given by 

Un ,UU =£)(a, - l)[za" («i £) + -Z'„ (fi, - ) 

vn2 / r\^i 

t/,2,t/15 =£)(62 - l)[z„* (o2 Q + V-Z'n (b2 £ ) 

-£*•(»•;)] 

£/2 i , t4 

u2l,uJS = 

D(l-v)n{al - 1 ) 

£ > ( l - * ) « ( < r 2 - l ) 

(z:(6>9-7z»<)) 

^ . - ^ { z ; ( ^ ) - i z ; ( ^ ) 
72 

+ T 4 >Z«K)] 
t/31,t/34 =K2Gh(,lz'„ (§, £),£/32)C/35 = K2Ghh2Zn (&2 - ) 

f / 3 3 , C / 3 6 = ^ G / ; " z „ ( 5 3 ^ ) 

t/41 ,C/44 = (d! - 1)Z,; (s , ~ ) ,C/42,[/45 = (ff2 - 1)Z„' z ( s 2 ^ 

I /*,! /* 

u«,uu = 
n ( f f i - l ) , '«(5'3' t/S2.£/SS = 

n ( a 2 - l ) 

-W) 

t / 5 3 , t / 56=z , ; (5 3 ^) 

U6l,U„=Z. 

Ua,U66=0 

• • ( • • - : ) • 
UvVv=Z, •te) 

(9) 

where the function Z„ (Sjr/a) (y'= 1,2,3) represents /„ (bf/a) 
and y„ (d.r/a) for the first and second elements, respectively. 

* 
Upon eliminating the coefficients C, and C, of (8) from the 
equation that is obtained by substituting (8) into the boundary 
conditions (7), one can obtain the frequency equation of 
annular plates under any combination of boundary con­
ditions. 

Although the values of 52 are always positive in sign, the 
values of 82 and 53 become negative and hence 52 and 83 have 
imaginary values for \4<l/RS. Within this range of X, the 
functions Jn (x) and Y„ (x) in the preceding equations should 
be replaced with modified Bessel functions /„ (x) and K„ (x) 
of the first and second kinds, respectively. 

Tables 1-3 present the frequency parameters \2
ns obtained 

by the theory for uniform annular plates of Poisson's ratio 
p = 0.3 under some combination of the thickness ratio hi a and 
the radii bla (b: the inner radius of annular plates). The 
subscript n attached to \ns represents the number of nodal 
diameters appearing on the mode shapes of the vibration. 
Although the subscript s represents, in the classical plate 
theory, the number of nodal circles of the mode shapes, it 
indicates the order of the frequencies for thick plates without 
always representing the number of nodal circles. The 
frequency parameters decrease monotonically with an in­
crease of the thickness ratio. 

One can quote the natural frequencies of annular plates 
with given boundary conditions and dimensions from the 
tables, and can also easily obtain the values by the 
aforementioned process for annular plates with dimensions 
not tabulated here. The numerical computations presented 
here were carried out on a HIT AC M-200H computer of the 
Hokkaido University Computing Center. 
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A P P E N D I X 1 

In Table A-\, the frequency parameters X^ of circular 
plates are compared with those of annular plates with free 
small circular holes at the center. Although the parameters of 

the plates with free outer edge are not affected so much by 
small holes, those of the plates with simply supported or 
clamped outer edges slightly change the values. 
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DESIGN DATA AND METHODS 

Table A-l Frequency parameters \%s 
small hole; p = 0.3 

of uniform circular plates and annular plates with free 

{a) Plates with free outer edge 

n s 

0 1 
2 

1 1 
2 

2 1 
2 

/i/a = 0.1 

8.87 
36.04 
19.71 
54.26 

5.28 
33.03 

b/a = 

0.2 

8.51 
31.11 
17.98 
44.43 

5.11 
28.67 

= 0 

0.3 

8.01 
26.28 
15.98 
35.98 
4.89 

24.32 

(b) Plates with simply supported outer edge 

n s 

0 1 
2 

1 1 
2 

2 1 
2 

h/a = Q.l 

4.89 
28.24 
13.52 
44.72 
24.41 
62.68 

(c) Plates with clamped 

n s 

0 1 
2 

1 1 
2 

2 1 
2 

/ — 
67(7 = 0.1 

9.94 
36.48 
20.23 
53.89 
32.41 
72.37 

bla = 

0.2 

4.78 
24.99 
12.67 
37.59 
21.92 
50.30 

outer edge 

b/a = 

0.2 

9.24 
30.21 
17.83 
42.41 
27.21 
54.56 

0 

0.3 

4.60 
21.59 
11.60 
31.12 
19.18 
40.32 

0 

0.3 

8.36 
24.64 
15.26 
33.47 
22.38 
42.05 

0.4 

7.46 
22.27 
14.09 
29.38 

4.64 
20.64 

0.4 

4.40 
18.66 
10.51 
26.09 
16.74 
33.10 

0.4 

7.47 
20.42 
13.04 
27.21 
18.64 
33.76 

8.87 
36.03 
19.71 
54.25 
5.28 

33.03 

h/a = 0.1 

4.89 
28.23 
13.56 
44.73 
24.50 
62.68 

/ «_ 
6/(7 = 0.1 

9.94 
36.47 
20.18 
53.84 
32.20 
72.20 

6/a = i 

0.2 

8.50 
31.11 
17.98 
44.42 

5.11 
28.66 

0.01 

0.3 

8.01 
26.28 
15.98 
35.97 
4.89 

24.32 

6/(7 = 0.01 

0.2 

4.78 
24.99 
12.71 
37.59 
21.97 
50.30 

0.3 

4.60 
21.59 
11.63 
31.12 
19.22 
40.32 

6/a = 0.01 

0.2 

9.24 
30.20 
17.76 
42.37 
26.99 
54.45 

0.3 

8.35 
24.63 
15.19 
33.44 
22.22 
42.01 

0.4 

7.46 
22.27 
14.09 
29.37 
4.64 

20.64 

0.4 

4.40 
18.66 
10.53 
26.09 
16.76 
33.10 

0.4 

7.47 
20.42 
12.98 
27.20 
18.54 
33.75 

A P P E N D I X 2 

Table A-2 shows the comparison of the frequency 
parameters obtained here with the results of Rao and Prasad 
[1]. The numerical values of the present authors have been 
proved to be correct in comparison with the results obtained 
by other methods - the transfer matrix method and the spline 
interpolation technique [2]. However, the results of Rao and 

Prasad are incorrect, because there are probably some 
mistakes in analytical and computational process. 

Table A -3 shows the frequency parameters obtained by Rao 
and Prasad for clamped, simply supported plates. Although 
the parameters should become small monotonically with an 
increase of the thickness ratio h/a, they change in a wavelike 
manner. 

Table A -2 Comparison of frequency parameters Aj-j of uniform annular plates; v = 0.3, b/a = 0.3, h/a = 0.2 

F-F 
F-SS 
F-C 
SS-F 
SS-SS 
SS-C 
C-F 
CSS 
C-C 

(« 

Present 

7.89 
4.53 

10.35 
3.33 

18.21 
25.68 
6.14 

22.44 
30.04 

s) = 

Table A-3 

(0 1) 

Rao/ 
Prasad 

6.822 
2.35 
7.198 
3.358 

12.74 
32.87 
6.465 

23.22 
39.77 

(ns) = 

Present 

39.57 
30.49 
36.77 
25.89 
56.08 
61.56 
29.76 
59.38 
64.23 

Frequency parameters \*s 

and simply supported outer edge [1]; v = 

n s Classical 

(0 2) 

Rao/ 
Prasad 

— 
31.90 
46.83 
24.30 
80.59 
76.20 
37.13 
75.69 
97.16 

St 

(« 

Present 

15.13 
11.19 
15.87 
3.23 

19.98 
27.04 

5.79 
23.52 
30.77 

s)=(l 1) 

Rao/ 
Prasad 

17.61 
4.598 

15.04 
2.61 

22.56 
34.54 
5.721 

24.38 
40.61 

(n 

Present 

43.17 
34.80 
40.18 
27.87 
57.60 
62.87 
31.20 
60.62 
65.36 

of uniform annular plates with clamped inner edge 
• 0.3, b/a = < 

1/7 

0.3 

1/5 

h/a 

1/4 
_ ^ 

1/2 

s) = 0 2) 

Rao/ 
Prasad[l] 

_ 
34.03 
43.89 
28.64 
81.71 
77.39 
42.93 
77.39 
97.78 

0 
0 
1 
1 

1 
2 
1 
2 

29.90 
100.0 
31.40 

102.0 

26.03 
85.89 
30.84 
97.02 

23.22 
75.69 
24.38 
77.39 

16.66 
98.62 
25.36 
99.17 

25.18 
97.25 
28.67 

101.9 
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Estimation of Buckling Loads and Other 
Eigenvalues via a Modification of the 
Rayleigh-Ritz Method 

R. Schmidt1 

The Ritz method commonly makes use of approximating 
functions of the form [1,2] 

y— 2*f™mfm\xl>x2> • • ->XN) (1) 

in the case of multiterm approximation, or 

y=Af(xltx2, . . .,xN) (2) 

in the case of the one-term approximation. In equations (1) 
and (2), ,4's denote undetermined constants, / ' s are the 
assumed, definite, shape functions, and x's represent the N-
independent variables. In this Brief Note, by means of two 
examples, we shall demonstrate the utility of approximating 
functions of the general form 

y— 2^-^mfm(xl>x2> n,,n2, • , % ) , (3) 

where «'s are the M adjustable parameters. The constants v l m 

can be determined as originally described by Rayleigh and 
Ritz [1, 2], while the parameters «, should be adjusted, in the 
case of eigenvalue problems, in such a way as to minimize (or 
nearly minimize) the approximate eigenvalue. 

Example 1 

Let us consider the axisymmetric buckling of a clamped 
circular plate of radius a and uniform thickness h, if the plate 
is uniformly compressed by the distributed force N, per unit 
length [1, 3]. The expression for the potential energy n in this 
case is 

Yl=TrD\" (rV 2 + — + 2vp 
r -5-rn dr 

= xDJW]«_0 + j ° (/-/3'2+ y - -^r/32)c?/-], 

(4) 

(5) 
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where D = £VJ 3 /12(1 - u2) is the flexural stiffness, v is 
Poisson's ratio, E is the modulus of elasticity, r denotes the 
radial distance, /3 is the rotation of a radial line element dr, 
and ft' = dp/dr. Except for the constant factor of 2, ex­
pression (4) coincides in form with the second variation of 
potential energy given in [1]. Hence, we may use the condition 
II = 0 for the determination of the critical value of N. The 
exact solution [1, 4] of this problem is given by /3 = 
AJi(rN'/'D~'/2), where Js denotes Bessel function of first 
order, and the exact value of the critical load is [1, 4] 

N„ = 14.68 
D 

(6) 

A fast estimate of the critical load is usually obtained by 
some work [5] or energy method [1, 6, 7] (e.g., the Rayleigh-
Ritz method, which yields the upper bound) with the aid of an 
assumed simple deflection function satisfying the imposed 
boundary conditions (/3 = 0 at r = 0 and r = a, in this 
example), such as [5] 

&=A(a2r-r*), (7) 

or still better 

&=A(ar-r2). (8) 

Substituting first (7) and then (8) into (4) or (5) and using the 
condition II = 0, we easily obtain 

TV = 16.00-
D 

and N„ = 15.00 -
D 

(9a,b) 

respectively. 
Herein, we propose to deviate from the common approach 

and, instead of (7) or (8), assume 

(3=A(a"-,r-r"). (10) 

Substituting (10) in (4) or (5), we obtain 

4«(« + l)(n + 3)11 = •wA2a2n (n - l)2[2(n + \)(n + 3)D-na2N], 

(11) 

from which, and the condition II = 0, 

a2N _2(n + \){n + 3) 

~D" ~ ~n ' 
(12) 

Since n is an adjustable parameter, and the Rayleigh-Ritz 
method yields upper bounds for the critical load, we minimize 
expression (12) by differentiating TV with respect to n and 
setting this derivative equal to zero. Thus, n2 - 3 = 0, from 
which n = VI = 1.73205, and finally from (12), 
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Ncr = 14.93 -
D 

(13) 

which is a better value than those in (9). 
We can also solve this problem in a somewhat different 

way, using the first variation of the potential energy integral 
n . The first variation 511 can be obtained by adding a small 
virtual increment e£ (/•) to /3, as explained in [1]. Thus, 

m = 2eirD 
! > ' « ' + K « ) ' + 

/ 1 Nr MA 
rfr. (14) 

(15) 

After an integration of (14) by parts [1], we obtain 

«n = 2«rZ>[[(r0' + »0)H?_o 

The condition 511 = 0 yields the previously obtained critical 
values, if j3 = £, i.e., when the Galerkin method is used. 
However, if we use (10) for /3 and (8) for £, or (8) for (j and 
(10) for £, we obtain 

a2/V_20(/z + 3)(« + 4) 

IT (« + 2)(« + 8) 

whose minimum occurs when n = 0.77485. Hence, 

a2Na 

(16) 

D 

which is an even better value. 

: 14.805, (17) 

Example 2 

As a somewhat more complicated example, let us next 
consider the axisymmetric buckling of a simply supported (or 
free) circular plate compressed by a uniformly distributed 
radial edge load N. A simple function that satisfies the 
boundary conditions is 

P=A( a"-lr-rn), 
\ 1 + v / 

(18) 

which, in conjunction with (4) or (5) and II = 0, yields 

2n[n4 +2(2+ v)nl - ( 5 - v2)n2 -2 (3 + 3v+v2)n 

a2N 
+ 6 + 4P+V2] = 4 ( l + p ) ( « + l)(/7 + 3)[2«3 

- ( 3 - e ) « 2 -2vn + l + v], (19) 

which is too complicated for differentiation. However, since 
the method under discussion is an approximate one, we need 
only to determine a near minimum by assuming different 
values for n and comparing results. Thus, for v = 0.3, we 
calculate, using (19), 

a2N 
n ~D~ 

etc. Obviously 

2.0 
2.2 
2.5 
3.0 

a2Ncr 

4.22 
4.21 
4.20 
4.21 

4.20. 
D 

The exact value is given as 4.20 in [1, 3, 4]. 
The method has also been used for calculating buckling 

loads and natural frequencies for various struts and beams 
with similarly gratifying results. 
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Table 1 

a 

Le 

«/32 

0.235 

n/16 

0.144 

n / 8 

0.108 

n / 4 

0.0786 

Table 2 

X/Le 

0.001 
0.003 
0.006 

0.010 
0.020 
0.030 
0.040 
0.050 
0.070 

0.100 
0.150 
0.200 
0.250 
0.300 
0.350 
0.400 
0.450 

0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

a = 

fRe 

109.3 
66.09 
48.27 

38.52 
28.93 
25.09 
22.70 
21.18 
19.90 

17.34 
15.82 
14.95 
14.47 
14.07 
13.83 
13.59 
13.51 

13.35 
13.19 
13.03 
12.95 
12.90 
12.87 

it/32 

K 

0.207 
0.335 
0.456 

0.568 
0.758 
0.887 
0.991 
1.076 
1.211 

1.364 
1.540 
1.664 
1.756 
1.828 
1.885 
1.930 
1.970 

1.997 
2.051 
2.091 
2.118 
2.139 
2.156 

a = 

fRe 

147.9 
81.62 
60.18 

48.30 
35.64 
30.20 
27.02 
24.92 
22.20 

19.91 
17.81 
16.65 
15.89 
15.35 
14.95 
14.65 
14.41 

14.22 
13.95 
13.76 
13.63 
13.52 
13.47 

n/16 

K 

0.177 
0.281 
0.377 

0.469 
0.628 
0.739 
0.830 
0.901 
1.019 

1.153 
1.313 
1.429 
1.517 
1.588 
1.646 
1.695 
1.735 

1.770 
1.825 
1.868 
1.902 
1.930 
1.951 

a = 

fRe 

180.4 
98.27 
63.69 

53.91 
39.59 
33.47 
29.89 
27.51 
24.41 

21.78 
19.40 
18.05 
17.09 
16.54 
16.06 
15.66 
15.34 

15.11 
14.79 
14.55 
14.39 
14.23 
14.15 

, / 8 

K 

0.171 
0.266 
0.352 

0.432 
0.567 
0.662 
0.738 
0.801 
0.903 

1.021 
1.165 
1.269 
1.350 
1.412 
1.464 
1.510 
1.546 

1.577 
1.625 
1.661 
1.689 
1.710 
1.728 

a = 

fRe 

226.0 
115.7 
78.29 

60.26 
43.93 
37.37 
33.50 
30.88 
27.44 

24.40 
21.58 
19.95 
18.87 
18.07 
17.51 
17.05 
16.70 

16.41 
15.96 
15.67 
15.46 
15.31 
15.19 

n/4 

K 

0.154 
0.241 
0.314 

0.380 
0.492 
0.571 
0.635 
0.689 
0.778 

0.881 
1.007 
1.100 
1.171 
1.229 
1.275 
1.315 
1.347 

1.375 
1.418 
1.451 
1.475 
1.494 
1.509 

exchangers, the flow over a major part of the channel is in the 
developing stage. Hence, knowledge of the velocity dis­
tribution and pressure gradient during such flows is vital for 
proper design. One duct geometry, which has received little 
attention in this regard, is the circular sector [1]. Only one 
research effort has been reported [2] so far, with numerial 
results limited to a duct angle 2a = ir/4. In addition, it was 
reported in [1] that the pressure results in [2] are incorrect due 
to a computational error. The objective of this paper is to fill 
part of the gap that exits in the literature by providing results 
for circular section ducts with angles 2a = TT/16, 7r/8, IT/4, 
and TT/2. These results are also of interest since they represent 
the limiting values for developing flow in internally finned 
tubes as the fins extend to the centerline of the tube. 

Exact mathematical models describing developing flows 
can be formulated by considering the complete set of Navier-
stokes equations. However, these models are normally very 
difficult to solve without the aid of unreaslistic simplifying 
assumptions. Consequently, other alternative approaches 

KFD 2 -
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-
-
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Fig. 4 Comparison with KFD-values reported In [1] 

have been developed such as the matching method, the in­
tegral method, and several linearization methods. The present 
solution [3] is based on the linearization method developed by 
Sparrow et al. [4]. This technique takes into account the effect 
of transverse flow implicitly, but not rigorously. However, it 
was found to predict well the axial velocity and pressure drop 
for many simple geometries (e.g., circular tubes and parallel 
plate channels [4], concentric annular ducts [5], and rec­
tangular, equilateral, and isosceles triangular ducts [6]). Since 
the geometry of circular sector ducts is also simple with no 
strong complications of flow asymmetry, the present 
linearization technique is expected to provide reasonably 
accurate results. 

Analysis 
The geometry of the duct and the coordinate system is 

shown in Fig. 1. The flow is laminar and steady, the fluid has 
constant properties, and body forces and viscous dissipation 
are neglected. The main flow is in the axial x-direction with a 
local velocity u and a bulk velocity ub. The pressure p is 
assumed uniform at any axial cross section. Inlet conditions 
commonly used in the analysis of hydrodynamically 
developing flows are: uniform flow, irrotational flow, 
uniform flow far upstream, and irrotational flow far up­
stream. The choice among these for any particular application 
depends on the physical arrangement at entrance, irrespective 
of the nature of the solution technique employed. However, 
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the most frequently used assumption is that of uniform flow 
at inlet, which simulates the actual condition of well-rounded 
entrance. This assumption was adopted in the present analysis 
and thus, at x = 0, the axial velocity and pressure are uniform 
with values u0 and p0, respectively. 

Following the procedure suggested in [4], the non-
dimensional momentum equation in the axial direction can be 
written as: 

\~2^~) dX* + a LJO R 36 e=o J 

d2U 1 dU 1 

du 
~~dR 

d2U 

de\ 

dR2 (1) 
R dR ' R2 dd2 

where R = r/r0, U = u/ub, e(X) = dX/dX*, X = 
x/(D„Re), D„ = 2r0a/(l + a), Re = Dhub/v, and the 
parameter, e can be formulated as: 

The nondimensional pressure gradient is given by: 

/ l + a \ 2 dP 32 f IT dU , , 16 rf1 1 3U 

K^r) -dx=^lu-3xdA+^[\0R dd 
dR 

+ {
01 

o 
dU 

~dR~ 
dd ']• (3) 

where P = (p0 - p)/(Vi pu\). Appropriate boundary and 
symmetry conditions are: 

[7=0 at R = l,0<d<a, 

and 0=0, 0<R<1, (4a) 

dU 
and— = 0 

dd 
at 6 = a,0<R<l. (,4b) 

Due to the symmetry around the plane 6 = a, the solution 
need be carried out only over the region O < 0 < a . Details of 
the derivation of equations (l)-(4) are given in [3]. 

Solutions were obtained using a finite difference aproach. 
At any axial location, the solution domain was subdivided by 
a 33 x 33 mesh, with the subdivisions adjacent to the straight 
and curved walls further subdivided into six equal parts for 
more accurate evaluation of wall gradients. The computation 
was marched from the inlet section to the fully developed 
region using axial steps with sizes AX* = 1 x 10 ~6 near the 
inlet, increasing to AX* = 5 X 10 ~4 as fully developed 
conditions were approached. Starting from the inlet section X 
= X* = 0 where the value of U is given, the velocity 
distribution at X* = AX* was obtained by solving (1) in-
teratively at all mesh points, subject to conditions (4). The 
value of e was then obtained from (2) and the relation AX = e 
AX* was used for the evalution of AX. Finally, dP/dX was 
evaluated from (3) before marching to the next cross section. 
The solution was progressed until all axial velocities were 
within 1 percent of the corresponding fully developed value, 
and the value of X there was taken as the entrance length Le. 

TT/32, 2.03 for ex = TT/16, 1.92 for a = ir/8, and 1.86 for a = 
7r/4) seem to conform with the asymptotic value of 1.82 
obtained in [4] for smooth tubes. A sample of the velocity 
results illustrating the velocity development at the symmetry 
plane is shown in Fig. 3. The well-known characteristic of 
entrance region flow, namely that the fluid is decelerated near 
the walls and accelerated in the central core is clear from this 
figure. Again, our velocity results for a = ir/8 compared 
fairly well [3] with those in [2]. 

The most commonly used parameters for presenting the 
pressure results are the product of the friction factor and 
Reynolds number fRe, and the pressure defect K. In the 
present analysis, the friction factor was defined as: 

f=(Dh/2)(-dp/dx)/(pu2
b), 

and hence 

fRe= 
1 dP 

4 dX 
(5) 

The pressure defect is normally defined as: 

K(X)=\p0 -p+ (dp/dx)FDx]/(Vipu2
b), 

which reduces to the following nondimensional form: 

K(X)=P-4(fRe)FDX. (6) 

Results based on equations (5) and (6) are listed in Table 2. 
The values of fRe at X = Le compare to within 3 percent of 
those reported in [1]. As expected [1], the present pressure 
results for a = ir/8 are widely different from those in [2]. A 
comparison between the A'-values at X = Le and the fully 
developed AT-values reported in [1] is shown in Fig 4. It must 
be pointed out that the KFD values reported in [1] are based on 
an approximate analytical method which utilizes only the fully 
developed velocity profile. Figure 4 shows a fair agreement 
with a maximum discrepancy of about 8 percent at a = TT/32. 
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Numerical Results 
The resulting values of Le are listed in Table 1 for the four 

duct geometries considered. With simple calculations, we can 
see from these results that for the same r0, ub, and v, the 
entrance length increases as a increases. This trend is ex­
pected, however, quantitative comparisons are not possible 
due to lack of similar results. Development of the stretching 
factor e along the duct is shown in Fig. 2 for different values 
of a. As shown in [3], the e values for a = w/8 compared well 
with those in [2]. The asymptotic value reached here for a = 
ir/8 is 1.92 as compared to 1.98 in [2]. It is also interesting to 
note that the present asymptotic values for e (2.22 for a = 
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and thus, at x = 0, the axial velocity and pressure are uniform 
with values u0 and p0, respectively. 

Following the procedure suggested in [4], the non-
dimensional momentum equation in the axial direction can be 
written as: 

\~2^~) dX* + a LJO R 36 e=o J 

d2U 1 dU 1 

du 
~~dR 

d2U 

de\ 

dR2 (1) 
R dR ' R2 dd2 

where R = r/r0, U = u/ub, e(X) = dX/dX*, X = 
x/(D„Re), D„ = 2r0a/(l + a), Re = Dhub/v, and the 
parameter, e can be formulated as: 

The nondimensional pressure gradient is given by: 

/ l + a \ 2 dP 32 f IT dU , , 16 rf1 1 3U 

K^r) -dx=^lu-3xdA+^[\0R dd 
dR 

+ {
01 

o 
dU 

~dR~ 
dd ']• (3) 

where P = (p0 - p)/(Vi pu\). Appropriate boundary and 
symmetry conditions are: 

[7=0 at R = l,0<d<a, 

and 0=0, 0<R<1, (4a) 

dU 
and— = 0 

dd 
at 6 = a,0<R<l. (,4b) 

Due to the symmetry around the plane 6 = a, the solution 
need be carried out only over the region O < 0 < a . Details of 
the derivation of equations (l)-(4) are given in [3]. 

Solutions were obtained using a finite difference aproach. 
At any axial location, the solution domain was subdivided by 
a 33 x 33 mesh, with the subdivisions adjacent to the straight 
and curved walls further subdivided into six equal parts for 
more accurate evaluation of wall gradients. The computation 
was marched from the inlet section to the fully developed 
region using axial steps with sizes AX* = 1 x 10 ~6 near the 
inlet, increasing to AX* = 5 X 10 ~4 as fully developed 
conditions were approached. Starting from the inlet section X 
= X* = 0 where the value of U is given, the velocity 
distribution at X* = AX* was obtained by solving (1) in-
teratively at all mesh points, subject to conditions (4). The 
value of e was then obtained from (2) and the relation AX = e 
AX* was used for the evalution of AX. Finally, dP/dX was 
evaluated from (3) before marching to the next cross section. 
The solution was progressed until all axial velocities were 
within 1 percent of the corresponding fully developed value, 
and the value of X there was taken as the entrance length Le. 

TT/32, 2.03 for ex = TT/16, 1.92 for a = ir/8, and 1.86 for a = 
7r/4) seem to conform with the asymptotic value of 1.82 
obtained in [4] for smooth tubes. A sample of the velocity 
results illustrating the velocity development at the symmetry 
plane is shown in Fig. 3. The well-known characteristic of 
entrance region flow, namely that the fluid is decelerated near 
the walls and accelerated in the central core is clear from this 
figure. Again, our velocity results for a = ir/8 compared 
fairly well [3] with those in [2]. 

The most commonly used parameters for presenting the 
pressure results are the product of the friction factor and 
Reynolds number fRe, and the pressure defect K. In the 
present analysis, the friction factor was defined as: 

f=(Dh/2)(-dp/dx)/(pu2
b), 

and hence 

fRe= 
1 dP 

4 dX 
(5) 

The pressure defect is normally defined as: 

K(X)=\p0 -p+ (dp/dx)FDx]/(Vipu2
b), 

which reduces to the following nondimensional form: 

K(X)=P-4(fRe)FDX. (6) 

Results based on equations (5) and (6) are listed in Table 2. 
The values of fRe at X = Le compare to within 3 percent of 
those reported in [1]. As expected [1], the present pressure 
results for a = ir/8 are widely different from those in [2]. A 
comparison between the A'-values at X = Le and the fully 
developed AT-values reported in [1] is shown in Fig 4. It must 
be pointed out that the KFD values reported in [1] are based on 
an approximate analytical method which utilizes only the fully 
developed velocity profile. Figure 4 shows a fair agreement 
with a maximum discrepancy of about 8 percent at a = TT/32. 
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Numerical Results 
The resulting values of Le are listed in Table 1 for the four 

duct geometries considered. With simple calculations, we can 
see from these results that for the same r0, ub, and v, the 
entrance length increases as a increases. This trend is ex­
pected, however, quantitative comparisons are not possible 
due to lack of similar results. Development of the stretching 
factor e along the duct is shown in Fig. 2 for different values 
of a. As shown in [3], the e values for a = w/8 compared well 
with those in [2]. The asymptotic value reached here for a = 
ir/8 is 1.92 as compared to 1.98 in [2]. It is also interesting to 
note that the present asymptotic values for e (2.22 for a = 
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BRIEF NOTES 

Multidegree-of-freedom vibrations are considered for a rigid 
cylinder embedded in an isotropic elastic medium that is 
subjected to random propagating disturbances. The 
numerical results obtained enable one to select values of 
parameters of the system which would provide desirable 
motions of the inclusion. 

1 Introduction 

The classical linear theory of wave propagation provides a 
thorough analysis of the phenomenon of wave diffraction. 
However, this theory is concerned with traveling disturbances 
that are simple deterministic processes. It is well known that 
in reality these disturbances are usually random or in­
completely defined. Due to this motivation, a number of 
investigations have been recently carried out on elastic and 
viscoelastic random waves. A survey of these works was 
presented by Beltzer [1]. 

This paper is concerned with random vibrations of an 
embedded rigid cylinder that are induced by elastic waves. All 
the stochastic processes used are taken to be stationary with 
zero mean. In view of the linearity of the system the last 
restriction does not lead to any loss of generality. 

2 Basic Equations 

We consider an infinite isotropic elastic medium (defined 
by its Lame constants X and n and by its mass density p) which 
contains a rigid movable infinite cylinder with arbitrary 
radius a and mass density p0. The medium is subjected to 
general plane waves of displacement traveling in the direction 
x and which impinge on the cylinder (Fig. 1). 

The random motion of the cylinder under this impact is 
characterized by three degrees of freedom: displacements 
u(t) and v(t) in the directions x and.y, respectively, and by a 
rotation <f>(t) about the direction z. The displacement u(t) is 
due to the P-component of the incident field only, whereas the 
SK-component causes both the displacements v(t) and </>(/). 

Let us denote the P or SK-component of the incident field 
of displacement as Wj (j = p, s), the spectrum of an incident 
wave as Q,(co), and the spectra of the inclusion motions as 
Qic(u), k = u, v, <f>. Taking into account the separability 
mentioned between P and SV-waves of excitation and the 
components of the inclusion motion, one can write the 
following equations governing the steady-state response 

CQu(uP 

Qv(u) 

.e*(w)J 
• = 

IG6(«)I 

0 

0 

0 0 

IGJ(a>)l2 0 

0 IGi(tt) I2 

fQP («)" 

a (co) 

where Gi(co), 0' = P, s; k = u, v, <j>) is the cylinder 
displacement k due to normalized harmonic ./-disturbance. 

Making use of the results for the harmonic response of a 
rigid cylinder [2], we have the following expressions for 
Gi(«) 

GP (w) =iv[8Hi(l3a) - 4 0a H0(fia)](TaaA)-1 (2) 

Gs„ (o>) is given by equation (2) where the replacements 

a--/3 0— a are made (3) 

G%(oi) =87;[/32a2iy1(,3tf) +4r//3« Ho(0a) -81;// ,(0a)]- ' /(TO) 

(4) 
where 
A = 4ij Hl(aa)Hi^a) - (1 + v)fyx H0{&a) H^aa) 

Propagation direction 

of rortdom P and 

Elastic medium 
X . ^ . P 

rigid cylindrical inclusion , p« 

Fig. 1 Geometry of problem 

I2.0 

T) -- p/p* 

Fig. 2 Mean-square inclusion displacement in the x-direction versus 
density ratio v 

- (1 +V)aa H0(aa) H^a) +aj3 a2H0 (aa) H0(@a) (5) 

and 

a = u/cp; P = w/cs; ri = p/p0 (6) 

(!) In the foregoing Hm(z) = Hm^(z) stands for the Hankel 
function of the first kind of the wth order and cp and cs are 
the velocities of dilatational and shear waves in the matrix. 

Now we can determine the variances of nth derivatives of 
each of the stochastic processes of interest, i.e., of u(t), v(t), 
and 0(f) 

i oo 

o)2nQk(o))do>, (k=u,v,<j>;n = 0,l,2 . . .) (7) 
— 00 

3 Response to White Noise Disturbances 

The spectra of the incident field is taken to be 

Qj («)= Go = const; I to I <<x>J=p,s (8) 
Making use of asymptotic expansions for \Gi

k(d>) I it can 
be shown that the improper integrals, given by equation 7, 
exist only for n = 0, i.e., for the variance of the 
displacements. The multivalued character of the Hankel 
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functions necessitates a numerical evaluation of these in­
tegrals. 

The results computed are presented in Figs. 2-4. As ex­
pected, these figures show that the motion of a "heavy" 
inclusion (7; < 1) is always less random because of its greater 
inertia. The effect of the Poisson ratio, v, on the variance of 
the inclusion motion is shown. For 77 = 1 the results are in­
dependent of v for all components of the response. For other 
values of rj, Var[«] and Var[y] are explicitly affected by this 
parameter whereas the influence on Var[<£] is slight. It is of 
interest to note that greater damping of the motion of a 
"light" inclusion (7; > 1) in the ^-direction occurs for a 
rubberlike material with v — 0.5 as the matrix. On the other 
hand, for damping of the vibrations in the x-direction values 
as v approaches zero are essentially more suitable (Figs. 2 and 
3). 

4 Conclusion 

The results, presented in Figs. 2-4, cover the majority of 
practically interesting cases. They can be used in the analysis 
of composite materials to provide minimum (or maximum) 
damping or better protection of a rigid embedded cylinder. If 
the inclusion serves as a sensor for monitoring the incoming 
waves the results obtained can be employed to reduce the 
distortion due to a random noise. 

References 

1 Beltzer, A. I., "Random Waves in Solid Media," The Shock and Vibration 
Digest, Vol. 14, No. 3, 1982, pp. 3-6. 

2 Pao, Y. H., and Mow, C. C , Diffraction of Elastic Waves and Dynamic 
Stress Concentrations, Crane Russak, New York, 1972. 

On the Flow of a Viscoelastic Liquid Past an 
Infinite Porous Plate due to Fluctuation in 
the Main Flow 
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Introduction 

Stuart [1] and Messiha [2] investigated the oscillating flow 
of viscous liquid over an infinite flat plate with constant 
suction and variable suction, respectively, at the plate and 
discussed many interesting features of the flow. Soundalgekar 
and Puri [3] extended Messiha's problem to the case of non-
Newtonian liquid with Walter's liquid B' [4] as the model. 
However the equations of motion considered by the authors 
[3] in the approximation of short relaxation time are identical 
with those of second-order liquid for the same problem and 
can be solved only by successive approximation. We extend 
Messiha's problem to the class of viscoelastic liquid known as 
stress-relaxing liquid of Oldroyd [5] and, as observed in our 
earlier work [6], we get a more general solution giving the 
solution [3] as a first approximation for small elastic 
parameter. Our solution shows some interesting effects of the 
stress-relaxing property of the liquid on the response of the 
boundary layer to the fluctuation in the main flow. 

Formulation and Solution of the Problem 

The constitutive equation for a viscoelastic liquid of 
Oldroyd [5] has the form 

Pij=-p6ij + Tij, 

-~ + vK TUiK - viiK TKj - vJiK TiK) = 2T70 e,y, (1) 

where Py and e,y are, respectively, stress tensor and rate-of-
strain tensor, v, are velocity components, \ , is the relaxation 
time, and r;0 is the viscosity coefficient. Taking the A:'-axis 
along the plate in the direction of flow and the .y'-axis per­
pendicular to the plate directed into the liquid, the flow field 
is given by u' = u' (y', t'), v' = i>o (1 + eAe'"'1'), u' = 0 
with the free stream velocity U' (f) (cf., Messiha [2]), where 
Vo is a nonzero constant mean suction velocity and A and e are 
small positive constants such that eA < 1. The differential 
equation for u' will be obtained by elimination of stress 
component Tx>y' between (1) and the momentum equation. 
This elimination is effected by taking the particular solution 
Ty'yi = 0, which means vanishing normal stress Ty'y' at the 
line of entry (or exit) of the liquid through pores of the 
boundary. 

Assuming external forces to be absent and introducing 
nondimensional quantities defined by y = y'v^/v, t = Vo2t/ 
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functions necessitates a numerical evaluation of these in­
tegrals. 

The results computed are presented in Figs. 2-4. As ex­
pected, these figures show that the motion of a "heavy" 
inclusion (7; < 1) is always less random because of its greater 
inertia. The effect of the Poisson ratio, v, on the variance of 
the inclusion motion is shown. For 77 = 1 the results are in­
dependent of v for all components of the response. For other 
values of rj, Var[«] and Var[y] are explicitly affected by this 
parameter whereas the influence on Var[<£] is slight. It is of 
interest to note that greater damping of the motion of a 
"light" inclusion (7; > 1) in the ^-direction occurs for a 
rubberlike material with v — 0.5 as the matrix. On the other 
hand, for damping of the vibrations in the x-direction values 
as v approaches zero are essentially more suitable (Figs. 2 and 
3). 

4 Conclusion 

The results, presented in Figs. 2-4, cover the majority of 
practically interesting cases. They can be used in the analysis 
of composite materials to provide minimum (or maximum) 
damping or better protection of a rigid embedded cylinder. If 
the inclusion serves as a sensor for monitoring the incoming 
waves the results obtained can be employed to reduce the 
distortion due to a random noise. 
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Introduction 

Stuart [1] and Messiha [2] investigated the oscillating flow 
of viscous liquid over an infinite flat plate with constant 
suction and variable suction, respectively, at the plate and 
discussed many interesting features of the flow. Soundalgekar 
and Puri [3] extended Messiha's problem to the case of non-
Newtonian liquid with Walter's liquid B' [4] as the model. 
However the equations of motion considered by the authors 
[3] in the approximation of short relaxation time are identical 
with those of second-order liquid for the same problem and 
can be solved only by successive approximation. We extend 
Messiha's problem to the class of viscoelastic liquid known as 
stress-relaxing liquid of Oldroyd [5] and, as observed in our 
earlier work [6], we get a more general solution giving the 
solution [3] as a first approximation for small elastic 
parameter. Our solution shows some interesting effects of the 
stress-relaxing property of the liquid on the response of the 
boundary layer to the fluctuation in the main flow. 

Formulation and Solution of the Problem 

The constitutive equation for a viscoelastic liquid of 
Oldroyd [5] has the form 

Pij=-p6ij + Tij, 

-~ + vK TUiK - viiK TKj - vJiK TiK) = 2T70 e,y, (1) 

where Py and e,y are, respectively, stress tensor and rate-of-
strain tensor, v, are velocity components, \ , is the relaxation 
time, and r;0 is the viscosity coefficient. Taking the A:'-axis 
along the plate in the direction of flow and the .y'-axis per­
pendicular to the plate directed into the liquid, the flow field 
is given by u' = u' (y', t'), v' = i>o (1 + eAe'"'1'), u' = 0 
with the free stream velocity U' (f) (cf., Messiha [2]), where 
Vo is a nonzero constant mean suction velocity and A and e are 
small positive constants such that eA < 1. The differential 
equation for u' will be obtained by elimination of stress 
component Tx>y' between (1) and the momentum equation. 
This elimination is effected by taking the particular solution 
Ty'yi = 0, which means vanishing normal stress Ty'y' at the 
line of entry (or exit) of the liquid through pores of the 
boundary. 

Assuming external forces to be absent and introducing 
nondimensional quantities defined by y = y'v^/v, t = Vo2t/ 
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I 
QQ 

/Apo-2,K=ao5. 
Ascte.Ksar^ 
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A=o,K*o*5 

\6 4 8 ca-» 12 
Fig. 1 Amplitude of the skin friction 

2 0 

4e, co = Avoi'/Vo2, u = t / ' / t /o, U= U'/UQ,K= \vd2/v, 
where [/Q is a reference velocity, co' is the frequency of the 
fluctuation in the main stream, A is the elastic parameter and 
v = ri0/p, we have for u the equation 

du A d2u . , d2u 

dt 4 dt2 dydt 

+ 4{K(l+eAe'"')2-l] 

(4 + (4 + ico^)£^e'u') ~ 

d2u 

du 

dU 

dy2 dt 
+ x^- (2) 

and boundary conditions u = Oaty = 0 and u = U{t) as y — 
oo. With U(t) = 1 + ee'"' for the free stream, the solution for 
u in the boundary layer is obtained, if K < 1, as u = 1 -

e-yl\-KD + iemt ( ^ + , - j^.) u p t 0 t h e first p o w e r m £> (3) 

where 

T 4A . 1 
Mr = 1 - e - " 1 ^ cos miy ——- smm ty , 

L co(l —A) J 
M{ = e~m'y 

-A) 
cos rrijy ] -

4.4 

2V2 + .S 

4V2(1-A) w , = 

co(l-A) 

4co+V2coX".s 
4V2s(l-A~) ' 

s = ^Jr + (4-Kw2), r=sl(4-Kw2)2 + \6w2 

The transient velocity for oit = n / 2 is u = 1 - e-"
n-KD - e 

Mj. We assume the nondimensional shear stress as 

T - Tx'y' = Tf" + pe'0"7<2> 
CofoP 

Then using the expression for u given in (3) and the free 
stream velocity U(t) = 1 + ee'w/, and utilizing the con­
stitutive equation (1) and momentum equation, we finally 
obtain 

-e l~K +eeia 
1 

w(l -A") 

( co -coA-4 / , 4 ) (4/n(l -AT) -z toA) 

where m 

4 + iwK 

mr + irtii 

e-'
ny+4iAe 

I 
1 - y t 

! • 

Shear stress at the wall = Txy\y=0 = 1 + t\B\cos(o}t + a), 

(4) 

where B=Br + i B,, tana = 

and 

II 
Br ' 

*'=i6^K(1-M) 

/ 1 M „ ^2\ <°2jfi:2 4AK1 

- m , ( — + cuff- coA2) - coA+ 
16,4 lAoiK2 

w(l -AT) + 
^coAM 

1 - A J' 

The results (3) and (4) reduce to those of Messiha [2] when A 
= 0 and to those of Stuart [1] when K = 0, A = 0. Expanding 
for small K and retaining only up to the first power in A, (3) 
and (4) give the results of Soundalgekar and Puri [3]. 

Discussion 

It is found from computations that due to elastic property 
of the liquid the back flow occurs at the plate at values of e 
and co much smaller than those in the case of Newtonian 
liquids, and this effect of elastic property is seen to be more 
pronounced in Oldroyd liquid than that in the case of Walter 
liquid B' or second-order liquid, probably due to the effect of 
stress-relaxation. It is also found that the velocity near the 
plate decreases as the elastic parameter K or frequency 
parameter co increases while, after a certain distance near the 
plate an opposite effect is observed. 

It is seen from the expression for transient velocity for 
constant suction that for each A there is a critical e at which 
the velocity profile is of "separation" type (i.e., with zero 
skin friction). For e greater than this critical value, the 
transient velocity profile is transient only on the whole but 
oscillates with y having reverse flow near the plate. This 
critical e decreases as k increases and for a given k it is ob­
tained from the relation e = 1/(1 - k) /«,-. Comparing with 
Stuart's [1] result it is seen that the elastic parameter k 
decreases the value of the critical e. Therefore the elastic 
property of the liquid will carry a high-frequency oscillatory 
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disturbance of the main stream to the vicinity of the plate 
more effectively and influence the skin friction even if the 
amplitude of the disturbance is very small (of the order 10"2). 
Graphs of the amplitude \B\ of the skin friction for different 
values of A and K are shown in Fig. 1. It can be seen that IBI 
increases with increasing value of A as observed by Messiha 
[2]. But for a fixed value of A, \B\ decreases with increasing 
K, this decrease being larger for higher values of co. Thus the 
stress-relaxing property of the liqiud decreases the maximum 
shear stress at the wall and the effect is much more 
pronounced in Oldroyd liquid considered here than in a 
second-order liquid (cf., [3]). 
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Radial Nonuniformity of the Fields Near a 
Moving Crack Tip in a Material With Linear 
Strain Hardening 

V. Dunayevsky1 and J. D. Achenbach1 

1 Introduction 

The fields near the tip of a propagating Mode-Ill crack in 
an elastic perfectly plastic material have been discussed by 
Chitaley and McClintock [1]. The results of [1] show bounded 
stresses, but strains with logarithmic singularities. On the 
other hand, for a material characterized by J2-flow theory 
together with a bilinear effective stress-strain curve, Amazigo 
and Hutchinson [2] have shown that both stresses and strains 
contain singularities of the form r5, where 0<s<-l. The 
strengths of the singularities, defined by s, depend 
significantly on the strain hardening parameter a, which is the 
ratio of the slopes of the two straight line segments of the 
effective stress-strain curve. For shear deformations this 
strain hardening parameter is 

a = tx,,/ix, a < l (1) 
where n is the shear modulus, which defines the slope when 
the effective stress is less than the yield stress in shear. It was 
noted in reference [2] that numerical computations suggest 
s-> — a'A when a—0. 

It stands to reason that the results for linear strain hard­
ening, as presented in [2], should reduce to those for perfect 
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plasticity, as presented in [1], in the limit a—0. Since the least 
amount of strain hardening produces singularities of the type 
r*, there appears to be a spatial nonuniformity in the domain 
of validity of solutions for small a. 

In this Note we have attempted to resolve this question by 
constructing near-tip fields for linear strain hardening with 
small a. Such fields are of interest on their own accord, but 
they can also be used to investigate the limit of vanishing a. 
Our results show the presence of an edge zone (a boundary 
layer) in which the fields are singular withs= — a'A. The edge 
zone is defined by r/rp = 0[exp( - 1 /a'A)]. Outside of the edge 
zone the solution can be represented by a regular expansion 
with respect to a'A, the first term being the solution for the 
elastic perfectly plastic case. In the limit a—0 the edge zone 
shrinks on the crack tip, thus eliminating the domain of 
validity of terms of order r1. The near-tip fields then reduce to 
those outside the edge zone, which are the ones for the elastic 
perfectly plastic material. 

2 Governing Equations 

Let (x,y,z) define a coordinate system which moves with the 
crack tip at a constant velocity v, such that the z-axis coincides 
with the crack edge. Following the notation of reference [2], 
the stresses and strains for antiplane shear are denoted by 
T$=ozp and Y|3 = 2e^, where @ = x,y. In the loading region, 
and relative to the moving coordinate system, the stress-strain 
relations according to /2-flow theory with linear strain 
hardening are [2]: 

Hty/3=af^+(l-a)T-lTi1f (2) 

where a is defined by equation (1), and 
r = (T2

x + T2
yy

/',andf>0 (3a,b) 

In (2), ( ) denotes material differentiation with respect to 
any monotonically increasing quantity. In the present paper 
we set 

C) — v± = -*>,. (4) 

consistent with a steady-state situation relative to the moving 
crack tip. Equations (2)-(4) are supplemented by equations 
defining equilibrium and strain compatibility: 

d0T0=OmddxyJ,-dyyx=O (5a, b) 

Let us introduce new variables y$ and T0 by 

(7/s»7/s) = (yp, ?„) exp[ - aij.\(x,y)] (6a,b) 
where 

Px + Py=k2 (7) 
Here the constant k defines the yield stress in shear. In terms 
of the new variables yp.tp, and X the constitutive equations 
(2) become 

dxyl3-anyi3dx\=-dxfl3-Tfidx\ (8) 

In the limit a—0, equation (8) turns into the constitutive 
equation for an elastic perfectly plastic material. 

In the loading region the term dx\ should be positive. 
Indeed, since r>0, we obtain from (3a), (4), and (6b): 

T= -vdxT= -vdx[(¥x +fy'Aexp(-ank)] 

= vkan exp( - aft\)dx X > 0 (9) 
which implies dxX>0. 

Equation (7) suggests the introduction of the "stress 
function" cb by the relations 

rx=-ksinw, fy,=kcosCi (10a,b) 
It is now convenient to introduce polar coordinates (r,8). 
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disturbance of the main stream to the vicinity of the plate 
more effectively and influence the skin friction even if the 
amplitude of the disturbance is very small (of the order 10"2). 
Graphs of the amplitude \B\ of the skin friction for different 
values of A and K are shown in Fig. 1. It can be seen that IBI 
increases with increasing value of A as observed by Messiha 
[2]. But for a fixed value of A, \B\ decreases with increasing 
K, this decrease being larger for higher values of co. Thus the 
stress-relaxing property of the liqiud decreases the maximum 
shear stress at the wall and the effect is much more 
pronounced in Oldroyd liquid considered here than in a 
second-order liquid (cf., [3]). 
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Strain Hardening 
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1 Introduction 

The fields near the tip of a propagating Mode-Ill crack in 
an elastic perfectly plastic material have been discussed by 
Chitaley and McClintock [1]. The results of [1] show bounded 
stresses, but strains with logarithmic singularities. On the 
other hand, for a material characterized by J2-flow theory 
together with a bilinear effective stress-strain curve, Amazigo 
and Hutchinson [2] have shown that both stresses and strains 
contain singularities of the form r5, where 0<s<-l. The 
strengths of the singularities, defined by s, depend 
significantly on the strain hardening parameter a, which is the 
ratio of the slopes of the two straight line segments of the 
effective stress-strain curve. For shear deformations this 
strain hardening parameter is 

a = tx,,/ix, a < l (1) 
where n is the shear modulus, which defines the slope when 
the effective stress is less than the yield stress in shear. It was 
noted in reference [2] that numerical computations suggest 
s-> — a'A when a—0. 

It stands to reason that the results for linear strain hard­
ening, as presented in [2], should reduce to those for perfect 
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plasticity, as presented in [1], in the limit a—0. Since the least 
amount of strain hardening produces singularities of the type 
r*, there appears to be a spatial nonuniformity in the domain 
of validity of solutions for small a. 

In this Note we have attempted to resolve this question by 
constructing near-tip fields for linear strain hardening with 
small a. Such fields are of interest on their own accord, but 
they can also be used to investigate the limit of vanishing a. 
Our results show the presence of an edge zone (a boundary 
layer) in which the fields are singular withs= — a'A. The edge 
zone is defined by r/rp = 0[exp( - 1 /a'A)]. Outside of the edge 
zone the solution can be represented by a regular expansion 
with respect to a'A, the first term being the solution for the 
elastic perfectly plastic case. In the limit a—0 the edge zone 
shrinks on the crack tip, thus eliminating the domain of 
validity of terms of order r1. The near-tip fields then reduce to 
those outside the edge zone, which are the ones for the elastic 
perfectly plastic material. 

2 Governing Equations 

Let (x,y,z) define a coordinate system which moves with the 
crack tip at a constant velocity v, such that the z-axis coincides 
with the crack edge. Following the notation of reference [2], 
the stresses and strains for antiplane shear are denoted by 
T$=ozp and Y|3 = 2e^, where @ = x,y. In the loading region, 
and relative to the moving coordinate system, the stress-strain 
relations according to /2-flow theory with linear strain 
hardening are [2]: 

Hty/3=af^+(l-a)T-lTi1f (2) 

where a is defined by equation (1), and 
r = (T2

x + T2
yy

/',andf>0 (3a,b) 

In (2), ( ) denotes material differentiation with respect to 
any monotonically increasing quantity. In the present paper 
we set 

C) — v± = -*>,. (4) 

consistent with a steady-state situation relative to the moving 
crack tip. Equations (2)-(4) are supplemented by equations 
defining equilibrium and strain compatibility: 

d0T0=OmddxyJ,-dyyx=O (5a, b) 

Let us introduce new variables y$ and T0 by 

(7/s»7/s) = (yp, ?„) exp[ - aij.\(x,y)] (6a,b) 
where 

Px + Py=k2 (7) 
Here the constant k defines the yield stress in shear. In terms 
of the new variables yp.tp, and X the constitutive equations 
(2) become 

dxyl3-anyi3dx\=-dxfl3-Tfidx\ (8) 

In the limit a—0, equation (8) turns into the constitutive 
equation for an elastic perfectly plastic material. 

In the loading region the term dx\ should be positive. 
Indeed, since r>0, we obtain from (3a), (4), and (6b): 

T= -vdxT= -vdx[(¥x +fy'Aexp(-ank)] 

= vkan exp( - aft\)dx X > 0 (9) 
which implies dxX>0. 

Equation (7) suggests the introduction of the "stress 
function" cb by the relations 

rx=-ksinw, fy,=kcosCi (10a,b) 
It is now convenient to introduce polar coordinates (r,8). 
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After some manipulation the governing equations (5a,b) and 
(8) are obtained in the form: 

cos(o> — 6)dr d H—- sin(o) — 8)decb 
r 

-au,[sm(cb — &)dr\ cos(u — 6)de\] (11) 
r 

cos(u — 6)dryx + -sin(Ci — d)dgyx 
r 

k 1 
H (cos03r<i — s\nddeCi) = 

H r 

1 
= auyx[cos(6i — 9)dr\+-sm(w-d)de\] (12) 

r 

-sin(o> — 6)dryx + -cos(u — 6)deyx 

+ k(cosddr X—sin06\, X) = 
r 

•— afiyx[sm(cb — d)dr\ cos(ai — d)de\] (13) 
r 

Substitution of (22) into (20) yields for small a 

yx = [ + ln(r/rp)] sinfl + 0(av>) (23) 

which tends to the solution for the elastic perfectly plastic case 
when a—0. Equation (22) is, however, not valid when 
p = 0(<x,/!), i.e., when r/r„ = 0 [ e x p ( - \/a'A)]. Then 
sinh(a'/2 p + B) ~ sinh(a'/j p), and (20) yields as a—0 

7* ~ - J " « " Vl(r/rp)-"" sine (24) 

Equations (23) and (24) reveal the existence of an edge zone 
near the crack tip, defined by rlrp ~0[exp(- l/aYl)]. This 
zone vanishes in the limit a—-0. Inside the edge zone (24) is 
valid, while outside the edge zone (23) holds. It is now evident 
that a regular expansion with respect to a'A, as alluded to in 
reference [2], cannot give a uniform transition from linear 
strain hardening to perfect plasticity. 

It is noted that neither (23) nor (24) contains the external 
load via a stress intensity factor. The external load is, 
however, implicit in these expressions through rp. 

By virtue of the compatibility condition (5b), we have for 
6»-0 

dyy _ k 
•Vi p— ctpA 

dp fi 

Upon integration we find 

smh(aA p + E) (25) 

3 The Solution in the Loading Zone 

As point of departure we assume that for small a, oi does 
not depend on r, and that the function X is independent of 0. 
In the sequel it will be shown that the solutions obtained on 
the basis of these assumptions have the proper behavior in the 
limit a—0. With these assumptions (11) yields u> = 0, and (12) 
and (13) reduce to: 

dpyx+ — smd = aiiyxd/1\ (14) 

(15) deyx—k cosd 9„X = 0 

where we have introduced 

p=-ln(r/rp) (16) 

Here rp is the length of the plastic zone in the plane of the 
crack. Integration of (15) with respect to 6 yields 

yx=ksin6dp\, (17) 

where we have used that 7^ = 0 for 6 = 0. Substitution of (17) 
into equation (15) results in 

cPX / d \ \ 2 1 

—-n^p) + r ° (18) dp2 

The appropriate solution to this equation is 

X= /«[cosh(a'/!p + 5)] +A, 
Oifl 

where A and B are arbitrary constants. Substitution of (19) in 
(17) and (6a) gives yx as 

(19) 

yx= a-'/'e-a>lAsinh(a'/lp + B)sme (20) 

Just outside the zone of plastic deformation, the elastic 
strain is yx = - (Ar//*)sin0. If it is assumed that the plastic 
strain is zero at x=rp, continuity of yx atx=rp and 6 small 
yields 

sinhB = a'Ae°"u4 (21) 

Clearly sinh B = 0(a ' / !) and cosh B = O(l) as a - 0 . For fixed p 
we then find in the limit a—0 

sinh(a'/j p + B)~ dA (p +1) (22) 

yy= -Q;-1e-a^cosh(o; ' / !p + 5) + C 

Continuity of yy sAx=rp gives 

(26) 

(27) C = — ( l - a - ' e - ^ c o s h f i ) 

Outside the edge zone, i.e., p = o(a"1/2), we can use the ex­
pansion 

cosh(a'/2p + E) = cosh/3 +av'p sinh5+ -ap2coshfl (28) 

By the use of (21) we then find from (26) and (27) in the limit 
a - 0 

yy = — [ l -ln(r/rp)+ ^ [ln{r/rp)]
2} +0(a14) (29) 

which is just the solution for the elastic perfectly plastic case. 
Within the edge zone (26) and (27) yield 

Jy 
k - i T 1 

~ 7 a L2 ']• 2 ( /•//• ,)- - 1 | + 0 ( 1 ) (30) 

The stresses corresponding to (30) follow from (6a) and 
(\0a,b) as 

T , = - -ke-°"ui[(.r/rp)
a* +{r/rp)-

a'A]sind 

Ty=-ke-a»A\(rlrpY
A + (r/rp)-

a'A]cos6 
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Approximate Stability Criteria for Some 
Second-Order Linear Differential Equations 
With S t a t i ona ry -Gauss i an Random 
Coefficients1 

G. Ahmadi2 and P. G. Glockner3 

Approximate sufficiency conditions for almost sure stability 
of the equilibrium state of some second-order linear systems 
with stationary-Gaussian random coefficients are obtained in 
analytical form. 

Introduction 

Stability of stochastic differential equations was in­
vestigated by Samuels and Eringen [1], Bertram and Sarachik 
[2], and Kozin [3]. Caughy and Gray [4], Infante [5], Kozin 
and Wu [6], and Kozin and Prodromou [7] have developed 
improved regions for stability of linear differential equations 
with stationary random coefficients of different kinds. 
Stability of nonstationary stochastic differential equations 
was studied by Ahmadi [8, 9] and Ahmadi and Mostaghad 
[10,11]. 

In the present work, stability of some second-order dif­
ferential equations subjected to Gaussian random coefficients 
is considered. Approximate analytical expressions for the 
sufficiency conditions for almost sure stability of the 
equilibrium state are derived. It is shown that for a small 
damping coefficient, the present approximate results become 
quite accurate. 

Analysis 

The second-order differential equations 

x + 2fr+[c+f(t)]x = 0, (1) 
x+[2{+f(t)]x+cx = 0, (2) 

with f and c being constants and f(t) being a zero-mean 
stationary ergodic process with finite second moments en­
countered in many engineering problems. The criteria for 
almost sure stability of the equilibrium state of equations (1) 
and (2), as obtained by Infante [5], are 

ff2<4f2, (3) 

4f2 

°2<TT?' (4) 

respectively, where the parameter c is taken to be equal to 1. 
In equations (3) and (4), a2 is the variance of/(f). Kozin and 
Wu [6] obtained the following stability criterion 

£ [ l / - / ( f ) l ) < 2 f ( / + c -n 1 / 2 , (5) 
for equation (1), where / is an arbitrary positive constant. 
Similarly, for the stability of equation (2), they found [6], 

E{\l-f(t)\}<2$\-a2/c), (6) 

where 
«=f+/ /2. (7) 

In equations (5) and (6) E ( ) stands for the expected value. 
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Fig. 1 Comparison of the stability prediction of equations (12) and (13) 
with the results of references [5,6] 

DAMPING COEFFICIENT, £ 

Fig. 2 Comparison of the stability limit according to equation (13) with 
the results of references [5,6] 

Stability criteria (5) and (6) are further developed in [6] and 
when f(t) is Gaussian, and c = 1, the boundaries of the 
sufficiency stability criterion are obtained by a numerical 
optimization technique. These results, together with Infante's 
criteria (equations (3) and (4)) are reproduced in Figs. 1 and 2. 
When/(f) is Gaussian, it can be shown 

E{ \l-f(t) I) =oV2Ar e-/2/2ff2 +21 erf (//o), (8) 
where erf is the error function as defined in [12]. For small 
values of 17 a, using a Taylor series expansion, up to the 
second order in /, equation (8) becomes 

£ ( l / - / ( 0 l ) = V 2 A r ( o - + £ ) . (9) 

Employing equation (9) in equation (5) and solving for a one 
finds 

a2<2-wf(l+c-f)-l2. (10) 
The optimum choice for / is 

/=7Tf2, (11) 

and the approximate stability criterion for equation (1) 
becomes 

a2 <(ir2-2ir){4+2irc{2. (12) 
For small values of £", neglecting the fourth power of f, one 
obtains 

a2<27rcf2. (13) 

Similarly, use of the approximate equation (9) in equation (6), 
after optimization, yields 
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4f2 

<T2<(27T-4)f2+ , (14) 

•+(!)(?) 
which is the approximate expression for almost sure stability 
of the equilibrium state of equation (2). The corresponding 
optimum choice for / is given by 

TTfVc 
/= —— . (15) 

'•(f)(4) 
The predictions of equations (12), (13), and (14) for c = 1 are 
also shown in Figs. 1 and 2. It is observed that the ap­
proximate equations (12), (13), and (14) give remarkably 
accurate results for damping coefficients below 0.6. However, 
for e > 1 the error becomes rather large and equation (13) 
underestimates the critical variance whereas equations (12) 
and (14) overestimate the critical variances of the stability 
limit. This is, of course, expected since the values of / as given 
by equations (11) and (15) are no longer small for relatively 
large magnitudes of the damping coefficient. 

Equations (12), (13), and (14) provide approximate suf­
ficiency criteria for the almost sure stability of the equilibrium 
states of equations (1) and (2) for arbitrary values of the 
parameter c. These analytical results are quite easy to use for a 
first-order estimation of the stability limit. 
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Edge Effect in the Bending of Inextensible 
Plates 

E. N. Kuznetsov1 

In the uniaxial bending of an elastic plate, a boundary layer 
develops along each free edge in the form of a small ripple in 
the deformed midsurface. The layer provides a smooth 
transition from the zero transverse bending moment at the 
edge to the required value in the plate interior. For an inex­
tensible plate, the formation of this type of a boundary layer 
is impossible. An alternative mechanism for providng this 
transition is identified and investigated. 

Introduction 

In a flexible plate with free edges that undergoes large 
deformation, boundary layers develop along the edges [1-3]. 
If the plate is deformed sufficiently, it behaves as a nearly 
inextensible one and approximates a developable surface 
except for the boundary layers where some additional 
localized deflections occur. This phenomenon can be easily 
traced using the example of a rectangular strip under uniaxial 
bending by a moment M. The strip would acquire a cylin­
drical form only if a transverse bending moment \xM was to 
act along the curved edges (fi is Poisson ratio). However, even 
in the absence of the transverse moment, the deviation from 
the cylindrical shape is small and confined to a narrow 
longitudinal strip adjacent to each of the free edges. This 
boundary layer provides a smooth transition from the con­
stant transverse bending moment in the interior of the plate to 
its zero boundary value at the free edges. The intrinsic 
mechanism of the boundary layer action (revealed in the 
preceding references) consists in the development of mem­
brane stresses resisting the tendency toward transverse 
bending. As shown in [1-2], the maximum deviation of the 
deformed midsurface from the cylinder equals a certain 
fraction of the plate thickness depending only on the Poisson 
ratio (for p. = 0.32 it is about 10 percent of the thickness). 

However small, this deviation and the formation of an edge 
ripple is only possible for extensible plates. Note that 
homogeneous plates, regardless of their thickness, are always 
extensible so that when a thinner plate is said to more closely 
approximate an inextensible plate, this only means that the 
boundary layer width reduces. However, the ratio of the edge 
ripple amplitude to the plate thickness preserves and, more 
importantly, so does the aforementioned mechanism of the 
boundary layer action (membrane stresses in the ripple fibers 
outside of the developable surface). 

For a truly inextensible plate, the entire deformed surface 
including its edges must be developable. Consider, for 
example, the uniaxial bending of a plate involving a very thin 
layer of material much stiffer than the rest of the plate. 
Although this layer, being made of a real material will still 
develop an edge ripple, its amplitude will measure no more 
than only about one-tenth of the layer thickness. This is in­
consequential for the deformation of the plate as a whole and, 
in particular, with regard to the boundary conditions at its 
free edges. Thus, for all practical purposes, such a plate is 
inextensible, which precludes the formation of a boundary 
layer of the foregoing type. Obviously, in this case any at­
tempt to evoke the previously described boundary layer 
mechanism (e.g., by introducing different Young's moduli of 
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4f2 

<T2<(27T-4)f2+ , (14) 

•+(!)(?) 
which is the approximate expression for almost sure stability 
of the equilibrium state of equation (2). The corresponding 
optimum choice for / is given by 

TTfVc 
/= —— . (15) 

'•(f)(4) 
The predictions of equations (12), (13), and (14) for c = 1 are 
also shown in Figs. 1 and 2. It is observed that the ap­
proximate equations (12), (13), and (14) give remarkably 
accurate results for damping coefficients below 0.6. However, 
for e > 1 the error becomes rather large and equation (13) 
underestimates the critical variance whereas equations (12) 
and (14) overestimate the critical variances of the stability 
limit. This is, of course, expected since the values of / as given 
by equations (11) and (15) are no longer small for relatively 
large magnitudes of the damping coefficient. 

Equations (12), (13), and (14) provide approximate suf­
ficiency criteria for the almost sure stability of the equilibrium 
states of equations (1) and (2) for arbitrary values of the 
parameter c. These analytical results are quite easy to use for a 
first-order estimation of the stability limit. 
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Edge Effect in the Bending of Inextensible 
Plates 

E. N. Kuznetsov1 

In the uniaxial bending of an elastic plate, a boundary layer 
develops along each free edge in the form of a small ripple in 
the deformed midsurface. The layer provides a smooth 
transition from the zero transverse bending moment at the 
edge to the required value in the plate interior. For an inex­
tensible plate, the formation of this type of a boundary layer 
is impossible. An alternative mechanism for providng this 
transition is identified and investigated. 

Introduction 

In a flexible plate with free edges that undergoes large 
deformation, boundary layers develop along the edges [1-3]. 
If the plate is deformed sufficiently, it behaves as a nearly 
inextensible one and approximates a developable surface 
except for the boundary layers where some additional 
localized deflections occur. This phenomenon can be easily 
traced using the example of a rectangular strip under uniaxial 
bending by a moment M. The strip would acquire a cylin­
drical form only if a transverse bending moment \xM was to 
act along the curved edges (fi is Poisson ratio). However, even 
in the absence of the transverse moment, the deviation from 
the cylindrical shape is small and confined to a narrow 
longitudinal strip adjacent to each of the free edges. This 
boundary layer provides a smooth transition from the con­
stant transverse bending moment in the interior of the plate to 
its zero boundary value at the free edges. The intrinsic 
mechanism of the boundary layer action (revealed in the 
preceding references) consists in the development of mem­
brane stresses resisting the tendency toward transverse 
bending. As shown in [1-2], the maximum deviation of the 
deformed midsurface from the cylinder equals a certain 
fraction of the plate thickness depending only on the Poisson 
ratio (for p. = 0.32 it is about 10 percent of the thickness). 

However small, this deviation and the formation of an edge 
ripple is only possible for extensible plates. Note that 
homogeneous plates, regardless of their thickness, are always 
extensible so that when a thinner plate is said to more closely 
approximate an inextensible plate, this only means that the 
boundary layer width reduces. However, the ratio of the edge 
ripple amplitude to the plate thickness preserves and, more 
importantly, so does the aforementioned mechanism of the 
boundary layer action (membrane stresses in the ripple fibers 
outside of the developable surface). 

For a truly inextensible plate, the entire deformed surface 
including its edges must be developable. Consider, for 
example, the uniaxial bending of a plate involving a very thin 
layer of material much stiffer than the rest of the plate. 
Although this layer, being made of a real material will still 
develop an edge ripple, its amplitude will measure no more 
than only about one-tenth of the layer thickness. This is in­
consequential for the deformation of the plate as a whole and, 
in particular, with regard to the boundary conditions at its 
free edges. Thus, for all practical purposes, such a plate is 
inextensible, which precludes the formation of a boundary 
layer of the foregoing type. Obviously, in this case any at­
tempt to evoke the previously described boundary layer 
mechanism (e.g., by introducing different Young's moduli of 
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bending and stretching and subsequently setting their ratio to 
zero) is doomed to failure. 

The objective of this study is to identify and investigate an 
alternative mechanism that provides a smooth transition of 
the transverse bending moment in inextensible plates. 

Analysis 

This goal can be achieved within the framework of a 
generalized theory of plates taking into account shear 
deformations. The governing system of equations of this 
theory [4] as applied to the problem in question (a rectangular 
plate bent in the x-direction) reads: 

jv=wf-p2v2wf, a2-. 6(1 - /0 

Dv*Wf=NW„ D = 
Et1 

(1) 

(2) 
12(1 -^2 ) 

where W is the plate deflection, W-f is the deflection com­
ponent due to flexure alone (disregarding the shear as is the 
case for the conventional plate theory), / is the plate thickness, 
N is the membrane force in the x-direction (other membrane 
forces as well as transverse loads are absent), E and ix are 
Young's modulus and Poisson's ratio, respectively, and 
subscripts x and y denote the corresponding partial 
derivatives. 

To reveal the essence of the phenomenon in question in a 
simple way, assume that the foregoing plate has a very thin 
and stiff midsurface layer with a modulus of elasticity E* 
> > E, but a thickness t* < < t so that the overall flexural 
rigidity and, hence, the preceding governing equations are not 
affected. Under the action of a longitudinal bending moment 
Mx = M the plate bends into a cylinder of a radius R with 
some small deviation, w=w(y), in the vicinity of the free 
edges. It is this deviation that produces a membrane force, N, 
of the magnitude 

N=-(E*t*+Et) 
R 

-kEt-
R 

where 

A:=l + 
E*t* 

(3) 

(4) 

Following the version of the perturbation method employed 
in [2], the additional plate deflections are referred to the 
cylindrical surface corresponding to the middle region be­
tween the two boundary layers: 

Wf=W{, + wf (5) 

W= W0 + w. (6) 

Since 

H« = 

it follows from equation (1) that 

W0 = W{-
R 

(7) 

(8) 

Substituting expressions (5) and (6) into equations (1) and 
(2) and taking into account relations (3) and (8) yields 

w = wf-02wfyy (9) 

UWyyyy 
kEt 

(10) 

This system reduces to one equation in the unknown w^: 

V^yyyy - 4^ ^Wfyy+ 4a4 ^ = 0 (11) 

where 

4a' 4
_ 1 2 * ( 1 - M * ) 

t2R2 (12) 

The roots of the biquadratic characteristic equation are 

X,_4 = ±j2a2(tx2/32 ±Va404 _ ,) (13) 

The subsequent analysis depends on the magnitude of the 
dimensionless parameter 

/2 

tR 2(1-/x) ^ 3 ( 1 - / * ) ' / ? 7
2 =2a 2 / 3 2 (14) 

For a homogeneous plate (k=l) this parameter is much 
smaller than unity (unless the radius of curvature becomes 
comparable to the plate thickness). If, indeed, y2 can be 
disregarded as compared to 1, the roots of the characteristic 
equation become 

X i ^ 4 = ± V ± 2 / a 2 (15) 

and the Fung and Wittrick [2] edge effect is obtained. 
Being interested in the opposite extreme (approaching a 

truly inextensible plate) we assume the value of k sufficiently 
large to produce 74 = 4a4 /34 > > 1. 

Then 

X, 4 = ± ̂ 2a2Wfi2
±a2&2(l-^-)] 

Xl 2 = ± — . 0 ± 
0 

(16) 

(17) 

and the general solution acquires the form 

vJ=Ae—*2>"t> +AxeSyV +Be~>"li +Ble>"li (18) 

To eliminate the growing exponentials (the solution must be 
finite and decaying toward the plate interior), the constants 
Ax and Bx must be set to zero, while the remaining constants 
are determined so as to provide the absence of the transverse 
bending moment and shear on the free edge (y = 0): 

Wfyy + ^Wi^Q 

Wfyyy+(2-n)Wfxxy=0 

(19) 

(20) 

Upon the evaluation of A and B using expressions (5) and 
(7) the preceding solution becomes 

M/ = 0V 1 

7
2 - l V7

6 
n-p-yiv. 

} R 
(21) 

Results and Discussion 

The transverse bending moment, M2 , and the total ad 
ditional deflection (9) are determined as follows: 

M2 =D(Wfy + fi}0xx) = fiM\ 1 + -^— ( JLP-i'yie-P-y/» '["A( 

w = v/ — /32 wCy = — 

1 VT
2 

M W + D -2 

R 
i y/e 

(22) 

(23) 

In the limiting case of a truly inextensible plate both the 
parameters a and y approach infinity and 

wf^-pe-y/e 
R 

w-0. 

(21') 

(22') 

(23') 
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As can be readily seen, in this limiting case the deformed 
surface remains perfectly cylindrical, while the transverse 
bending moment rapidly increases from M2 = 0 on the edge 
to M2 = ixM in the plate interior. For fx = 0.32, moment M2 

reaches 0.99 of its maximum value at the distance y = 2.28/ 
from the edge. Comparing this to the known limitations of the 
theory (plate with shear) shows that the accuracy of the 
proposed solution should be quite reasonable. 

Note that the described edge effect is linear, with all the 
components of displacements and internal forces being 
proportional to the external load from the very onset of 
loading. In this regard it is different in principle from the 
boundary layer investigated in [1-3] which is nonlinear and 
does not allow a continuous transition from the conventional 
linear plate theory [5]. 

The developed solution is rather general in that it covers the 
entire range of possible values of the parameter y (14) for 
which expressions (15) and (16) represents the two extreme 
cases. It applies directly (or can be readily modified to apply) 
to the analysis of laminated plates of various structural 
composition. 
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On Interactive Computation of Supersonic 
Boundary Layers With Wall Mass Transfer 

J. Brandeis1 

Nomenclature 

a = 
M = 
P = 

Re = 
T = 

t/c = 
u = 

V = 

X = 

y = 

local speed of sound 
Mach number 
pressure 
Reynolds number 
temperature 
free-stream velocity 
streamwise velocity com 
ponent 
lateral velocity component 
distance along the plate 
distance normal to the plate 
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8 = boundary-layer thickness 
5* = boundary-layer displacement 

thickness 
p = density 

Subscripts 

AW = adiabatic wall 
e = external 
r = reference 

w = wall 
oo = conditions far upstream 

Introduction 

Boundary-layer suction and injection, commonly used 
methods of controlling viscous layer growth, transition, and 
heat transfer are particularly applicable to control surface 
regions on wings and to jet engine inlets and diffusers. The 
effects of the wall mass transfer on boundary-layer 
development have long been calculated [1, 2] using the 
classical boundary-layer equations decoupled from the free 
stream. Recently, the boundary-layer equations have been 
used interactively with the potential outer flow [3-5] because 
the interaction was recognized as a significant factor in the 
boundary-layer development, especially in the presence of 
significant rates of mass transfer at the wall. The use of the 
interactive approach for solution of the flat-plate boundary 
layer with wall mass transfer may give rise to the following 
problem [6]. Under certain conditions the interactive solution 
shows thinning of the layer in reaction to injection at the wall, 
and thickening in response to suction. This behavior, devoid 
of physical meaning, is the consequence of an inappropriate 
initial condition for the interaction problem, which was 
shown by Garvine [7] to be of boundary-value type due to the 
ellipticity returned to the problem through interaction. Such 
solutions have been observed [7, 8] to exhibit branching 
behavior due to their sensitivity to the upstream condition. 
The same basic problem with wall mass transfer was also 
encountered by Smith and Stewartson, [9], and was noted by 
Werle, [5] who was able to avoid it by using a nonmarching 
(but iterative) interaction scheme. 

The problem due to solution branching exists only when the 
boundary layer exhibits subcritical behavior (i.e., following 
Crocco [10] d8*/dp>0). For these cases, a noniterative 
method is proposed that makes local corrections to the 
matching, reflecting the changes in the wall boundary con­
ditions due to variation in suction or injection level. The 
noniterative method is valid for modest rates of wall mass 
transfer, for which the upstream influence effect is small. The 
results computed using this method are compared with those 
computed using the general interactive approach. On this 
basis, the relative importance of the upstream influence is 
examined. 

For the supercritical boundary layer (dd*/dp<0), the 
solutions are nonbranching and insensitive to the initial 
condition, even in the presence of wall mass transfer. Such a 
nonbranching solution was computed in reference [11], but it 
was not identified as supercritical. Supercritical boundary 
layers are usually associated with hypersonic or turbulent 
supersonic flows. 

The qualitative difference in the behavior of the interactive 
solution for supercritical and subcritical boundary layers 
leads to an interesting observation concerning the location of 
possible separation points. 

Method of Solution 

All results presented here were obtained using the standard 
compressible boundary-layer momentum, continuity, and 
energy equations with the outer-edge compatibility relations 
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As can be readily seen, in this limiting case the deformed 
surface remains perfectly cylindrical, while the transverse 
bending moment rapidly increases from M2 = 0 on the edge 
to M2 = ixM in the plate interior. For fx = 0.32, moment M2 

reaches 0.99 of its maximum value at the distance y = 2.28/ 
from the edge. Comparing this to the known limitations of the 
theory (plate with shear) shows that the accuracy of the 
proposed solution should be quite reasonable. 

Note that the described edge effect is linear, with all the 
components of displacements and internal forces being 
proportional to the external load from the very onset of 
loading. In this regard it is different in principle from the 
boundary layer investigated in [1-3] which is nonlinear and 
does not allow a continuous transition from the conventional 
linear plate theory [5]. 

The developed solution is rather general in that it covers the 
entire range of possible values of the parameter y (14) for 
which expressions (15) and (16) represents the two extreme 
cases. It applies directly (or can be readily modified to apply) 
to the analysis of laminated plates of various structural 
composition. 
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8 = boundary-layer thickness 
5* = boundary-layer displacement 

thickness 
p = density 

Subscripts 

AW = adiabatic wall 
e = external 
r = reference 

w = wall 
oo = conditions far upstream 

Introduction 

Boundary-layer suction and injection, commonly used 
methods of controlling viscous layer growth, transition, and 
heat transfer are particularly applicable to control surface 
regions on wings and to jet engine inlets and diffusers. The 
effects of the wall mass transfer on boundary-layer 
development have long been calculated [1, 2] using the 
classical boundary-layer equations decoupled from the free 
stream. Recently, the boundary-layer equations have been 
used interactively with the potential outer flow [3-5] because 
the interaction was recognized as a significant factor in the 
boundary-layer development, especially in the presence of 
significant rates of mass transfer at the wall. The use of the 
interactive approach for solution of the flat-plate boundary 
layer with wall mass transfer may give rise to the following 
problem [6]. Under certain conditions the interactive solution 
shows thinning of the layer in reaction to injection at the wall, 
and thickening in response to suction. This behavior, devoid 
of physical meaning, is the consequence of an inappropriate 
initial condition for the interaction problem, which was 
shown by Garvine [7] to be of boundary-value type due to the 
ellipticity returned to the problem through interaction. Such 
solutions have been observed [7, 8] to exhibit branching 
behavior due to their sensitivity to the upstream condition. 
The same basic problem with wall mass transfer was also 
encountered by Smith and Stewartson, [9], and was noted by 
Werle, [5] who was able to avoid it by using a nonmarching 
(but iterative) interaction scheme. 

The problem due to solution branching exists only when the 
boundary layer exhibits subcritical behavior (i.e., following 
Crocco [10] d8*/dp>0). For these cases, a noniterative 
method is proposed that makes local corrections to the 
matching, reflecting the changes in the wall boundary con­
ditions due to variation in suction or injection level. The 
noniterative method is valid for modest rates of wall mass 
transfer, for which the upstream influence effect is small. The 
results computed using this method are compared with those 
computed using the general interactive approach. On this 
basis, the relative importance of the upstream influence is 
examined. 

For the supercritical boundary layer (dd*/dp<0), the 
solutions are nonbranching and insensitive to the initial 
condition, even in the presence of wall mass transfer. Such a 
nonbranching solution was computed in reference [11], but it 
was not identified as supercritical. Supercritical boundary 
layers are usually associated with hypersonic or turbulent 
supersonic flows. 

The qualitative difference in the behavior of the interactive 
solution for supercritical and subcritical boundary layers 
leads to an interesting observation concerning the location of 
possible separation points. 

Method of Solution 

All results presented here were obtained using the standard 
compressible boundary-layer momentum, continuity, and 
energy equations with the outer-edge compatibility relations 
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Pe", 

peu, 

due 

lie 

dTe 

lie 

dp_ 
dx 

dp_ 
dx (1) 

and the appropriate conditions on u, v, and T at the surface. 
To ensure the validity and consistency of results, these 
equations were solved using two different finite difference 
codes: the methods of Reyhner et al. [12] and of Murphy [13], 
the latter using the generalized Galerkin method on the 
boundary-layer equations rewritten in terms of the Levy-Lees 
variable. The method of reference [13] incorporates a tur­
bulent flow option. For the outer flow solution, the exact 
potential equation 

(ul —a1) \-uv 
dx 

/ du dv \ 
\ly + lie ) 

+ (v2-a2) dy 
-0 

du 

dy 

dv 
lie 

= 0 (2) 

was solved using the method of two-family characteristics. 
The two flows were coupled for interactive solution by 

matching pressure and slope along the matching line. Since 
only unseparated flows were considered, the displacement 
thickness was used as the matching line, with some results also 
recalculated using an outer streamline of the boundary layer 
for the matching line, initially corresponding to 0.98 Ue. 

Solution for the Subcritical Case 

To obtain a physical solution to the subcritical interaction 
problem with wall mass transfer, the initial condition for the 
pressure interaction must be correctly stated to satisfy the 
appropriate downstream condition in order to account for the 
upstream influence. This was done in [9] by making repeated 
streamwise passes of the solution, each time readjusting the 
initial condition. Equivalently, Werle [5] used an iterative 
approach that directly imposes the downstream condition 
during all stages of calculation. Both these approaches assume 
knowledge of the downstream condition. 

In the present approach, the interactive solution to the 
problem with any distribution of wall mass transfer is ob­
tained by making local adjustments at the matching line 
corresponding to the local change in the wall boundary 
condition, under the assumption that the upstream influence 

is small (i.e., for small rates of mass transfer). This is ac­
complished by imposing a local slope correction in the 
matching surface. This adjustment is proportional to the 
effect of the change of the wall condition and, in effect, 
constitutes an adjustment in the compatibility condition. The 
scheme for making the local slope correction is as follows. 

Assume that interactive solution is known up to some 
station x,. The first iteration at the next station, xi+l, is 
obtained by computing the boundary layer for this step with 
the suction-injection velocity, v„, and external pressure 
extrapolated from the preceding station, x,. The second 
iteration is computed with the actual v„ for xi+u Now the 

FLAT-PLATE SOLUTION 
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Fig. 2 Some results of interactive boundary-layer computation for 
laminar, flat-plate flow, M „ =2.25, TAW'- (a) constant level of wall mass 
transfer-pressure distribution; (6) constant level of wall mass trans­
fer-displacement thickness distribution; (c) sinusoidal suction; and 
(d) importance of interaction in the preceding cases. 
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Fig. 3 Some results oi interactive boundary-layer computation lor 
turbulent flat-plate flow with M.x = 2.23, TAW, for the two distributions 
of wall injection. (The solid and dashed lines refer to the corresponding 
injection levels shown in the lowermost plot.) 

difference in the matching streamline displacement between 
the two iterations 

^*(xi+1) = S*(xi+l,v„.l) - 8*(xi+i,vw.) (3) 

is taken as the local streamline slope correction (at constant 
pressure) due to the surface mass transfer. The interactive 
computation is resumed at this station after correcting the 
streamline location for "wall curvature effect" due to the 
wall mass transfer. 

The need for the correction arose since the downstream 
compatibility condition was set for the case of no mass 
transfer at the wall (thus neglecting the upstream influence). 
The corresponding pressure could therefore be expected to be 
lower than that in the case in which injection was present at 
the wall. Thus, the encountered decrease in pressure due to 
"turning on" of injection would constitute the right response 
of the matching scheme to the incorrect initial condition. 

The advantage of the present approach lies in its simplicity. 
Once the correct interactive solution has been obtained for the 
case of the flat plate with no wall mass transfer, solutions 
with arbitrary distributions of vw may be obtained from the 
same initial condition, using the marching process and ap­
plying equation (3). No knowledge of the downstream 
boundary condition is required for each v„ distribution. 
Specification of the downstream condition may not always be 
possible for cases in which the downstream conditions do not 
return to the original (undisturbed) state. It should further be 
noted that due to this "parabolization" of the interaction 
problem, the computation need not be continued as far 
downstream as would be necessary to completely satisfy the 
downstream condition. 

A comparison is presented in Fig. 1 between the method of 
equation (3) and that of repeated adjustment of initial con­
dition, which does fully account for the upstream influence. 
The marching scheme was used for both. For the slot suction 
case (Fig. 1(a)) the downstream boundary condition on 
pressure may safely be inferred as the corresponding value for 
the case without wall mass transfer. (A similar condition for 
slot injection was imposed in reference [5].) The method of 
equation (3) clearly meets the downstream pressure condition. 
The two solution branches obtained by the shooting method 
and corresponding to slightly different initial conditions 
exhibit a downstream pressure gradient (negative) in excess of 
that observed for the case with no suction. The same trend 
may'be observed in the results in [5], apparently caused by 
insufficient accuracy in imposing the downstream boundary 

condition. The significant discrepancy between the two 
solutions stems from the fact that the shooting method ac­
counts for upstream influence, and the local interaction 
adjustment of equation (3) does not. This difference is 
especially pronounced in the present example, for the length 
of the slot is comparable with the interaction length. The 
discrepancy rapidly decreases as the length of the region in 
which wall mass transfer occurs increases. This is shown in 
Fig. 1(b) for steplike continuous wall suction distribution. 
Although here the downstream boundary condition was not 
obvious, it was taken to match dp/dx at the downstream end 
of the solution with no suction. It is seen that except in the 
region close to the onset of suction, the two sets of results are 
in good agreement. 

Some more examples using the present approach are shown 
in Fig. 2 for a steplike suction-injection distribution in which 
equation (3) yields nonzero correction only at the discon­
tinuity, and for a sinusoidal suction distribution where the 
wall boundary condition changes continuously, resulting in 
continuous contribution of equation (3) to the solution. 

The relative importance of interaction and suction is seen 
from Fig. 2(d), which compares the displacement thickness 
calculated with and without interaction for the aforemen­
tioned sinusoidal and vw= —1.8 X 10 ~4 suction 
distributions. It is clear that interaction effects and those of 
suction are of the same order of magnitude, and that they 
complement each other in thinning the boundary layer, when 
the correction, equation (3), is applied. 

When applied to the problem of plate injection with vw one 
order of magnitude greater than those in Fig. 2, the present 
approach still gave a fair approximation to the pressure rise at 
the onset of injection, but overestimated the downstream 
pressure distribution. The solution was improved by making 
another downstream correction of the form of equation (3). 
This now resembles the approach in reference [8] and though 
locally involving iteration, may still be more convenient than 
the fully interactive approach. 

Solution for the Supercritical Case 

As an example of supercritical solution, Fig. 3 shows the 
pressure, displacement thickness, and skin friction 
distribution for a turbulent boundary layer with M„=2 .23 
for two different injection rates. These results were computed 
by straightforward downstream marching of the interactive 
solution, with transition set at the start of computation. 

It is interesting to note that the solution corresponding to 
the higher injection level breaks down due to approaching 
separation point. This breakdown occurs well into the 
blowing region. In contrast, Werle [5] in his study of in­
jection-induced separation, always observed the separation 
point to occur upstream of the onset of blowing. Since his 
results were obtained for a subcritical boundary layer, they 
may easily be explained by the significant upstream influence 
shown. The mechanism for the upstream influence does not 
exist (at least in interactive computation) for supercritical 
boundary layers. Thus, the present finding is not incongruent 
with the results of reference [5]. 

Conclusions 

The problem of interactive computation of boundary layers 
with wall mass transfer was considered. It was shown that the 
solution reacts differently to wall mass transfer for super­
critical and subcritical boundary layers. 

For the solution of the subcritical interaction with wall 
mass transfer, a method was proposed that is applied as local 
correction to the interaction while marching the solution 
downstream. This avoids the need for repeated iterations on 
the whole field, but the method ignores the upstream in-
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fluence, and consequently is limited to modest rates of wall 
mass transfer. 

For the supercritical interactive boundary layer with in­
jection, the separation point was encountered within the 
blowing region. For the subcritical case, separation was 
previously shown to occur ahead of the blowing region. 
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Vibration of a Rotating Orthotropic Disk 

A. Rajguru1 and V. Sundararajan2 

Introduction 
The vibration of a rotating isotropic circular disk is studied 

by Mote [1], Eversman and Dodson [2], and Barasch and 
Chen [3]. Ghosh [4] has formulated the vibration of a rotating 
orthotropic circular disk of uniform thickness neglecting the 
effect of bending stiffness. The present Note deals with the 
determination of the natural frequencies of a centrally 
clamped, rotating orthotropic disk with varying thickness and 
density which has applications in the design of composite fly 
wheels. The effect of the rigidity parameter (the ratio of the 
Young's modulus in the 6 direction to that in the r direction), 
the clamping radius, and thickness variation on the natural 
frequencies are analyzed. 

Problem Formulation 
A thin orthotropic disk with outer radius b and clamped at 
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Clamping radius,a/b 

Fig. 1 Variation of frequency with clamping radius for X2 = 1 

a 
Fig. 2 Variation of frequency with clamping radius for X2 = 0.25 

radius a rotating uniformly about the normal axis passing 
through and perpendicular to the center plane of symmetry is 
considered. The analysis is based on the plane state of stress 
assumption. The influence of shear and rotatory inertia is 
neglected. The material of the disk is homogeneous and 
polarly orthotropic. The thickness and density distributions 
are assumed to be symmetrical with respect to both the axis 
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fluence, and consequently is limited to modest rates of wall 
mass transfer. 

For the supercritical interactive boundary layer with in­
jection, the separation point was encountered within the 
blowing region. For the subcritical case, separation was 
previously shown to occur ahead of the blowing region. 
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Fig. 3 Variation of frequency with clamping radius for X2 = 4.0 

and the midplane of the disk. The thickness h and the density 
p are assumed to vary along the radius in the form 
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directions, Dy is the shear rigidity, and D\ = vyD6 = veDy. 
The maximum kinetic energy is given by 
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Where h and p are the local thjckness and mass density and h0 
and po that at b. fi and m are the thickness and density 
parameters. c 

Assuming that the plate is undergoing harmonic oscillations '3 

w = W(y) cos «9 cos w„ t (2) 

the maximum potential energy V, which is the sum of the 
maximum potential energy due to bending (VBmsx) and due to 
rotation (VR max) can be written as 
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Fig. 5 Variation of frequency with thickness parameter 
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The inplane stresses o> and ae of the orthotropic disk 
rotating with angular velocity Q, satisfying the boundary 
conditions 

u = 0 at f=a and o> = 0 at r = b 

are given by [5] 

'8\ ( y \ai + 0-1 ft ( y \ a i + " - ' 
J3 \ u / ft 
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It should be noticed that the stress expressions are not valid 
for combinations of X2, VQ, m, and B which make 

(9-\2)-BO + m + vB)+m(m + 6) = 0 

The mode shapes W(r) in the radial direction are assumed 
as 

W(y) =a0(y-a)2 +ai(y-a)3 +a2(y-a)4 + (7) 

which satisfy the geometric boundary conditions. 
Introducing the nondimensional quantities 
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and substituting equations (5), (6), and (7) into equations (3) 
and (4) and applying the Rayleigh-Ritz technique we obtain 
the eigenvalue equation: 

(M-coJUT]) = 0 (8) 

from which the natural frequencies are obtained. 

Results and Discussion 
The numerical solution of equation (8) is obtained con­

sidering the first six terms in equation (7). The natural 
frequencies (w„) of a stationary isotropic disk (X2 = 1) of 

constant thickness and density have been compared with the 
exact natural frequencies of Southwell [6] in Fig 1. For values 
of alb < 0.7, the values compare very well whereas for values 
alb > 0.7 the present estimate is higher than the exact value. 
The variation of w„ with alb for orthotropic disks (X2 = 0.25, 
4.0) rotating at a speed f2 = 20 are shown in Figs. 2 and 3. 
Frequencies are plotted for various nodal circles (s) and nodal 
diameters (n). 

The natural frequencies of an isotropic rotating disk with (3 
= m = 0 computed with the present technique compares very 
well with that of Barasch and Chen [3]. Figure 4 shows this 
variation in the case of an orthotropic disk for (3 = 0, 0.9. In a 
rotating disk co„ is controlled both by the bending stiffness 
and inplane stresses. Since the inplane stresses are propor­
tional to the angular velocity, the bending rigidity is the 
controlling factor at low speeds and the inplane stresses at 
high speeds. The inplane stress ar due to rotation decreases 
with increase in X2 [5] and consequently a„ decreases with 
increasing X2 at high fl. The variation of u>„ with (l neglecting 
the bending stiffness, for X2 = 1, is also plotted in Fig. 4. 

The variation of the natural frequencies with the thickness 
parameter /3 for various values of X2 is shown in Fig. 5. 
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On the Effect of Axial Force on Dynamic 
Fracture of a Beam or a Plate in Pure 
Bending 

C. Levy1 and G. Herrmann1 

Introduction 

The dynamic fracture response of a long beam of brittle 
elastic material subjected to pure bending was recently studied 
by Freund and Herrmann [1] and Adeli, Herrmann, and 
Freund [2]. A one-dimensional model was generated under the 
assumptions that the crack-tip velocity was low enough such 
that the normal stress distribution caused by the propagating 
crack could be approximated by the static distribution ap­
propriate for the instantaneous crack length and net-section 
bending moment [1]. F&llowing this, the model was modified 
to include the effect of the induced axial force on the frac­
turing cross section [2], 

Inclusion of the axial force was accomplished by modifying 
the fracture model stress-intensity factor (equations (11-13), 
[2]) and redefining the compliance coefficients (equation (23), 
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parameter /3 for various values of X2 is shown in Fig. 5. 
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On the Effect of Axial Force on Dynamic 
Fracture of a Beam or a Plate in Pure 
Bending 

C. Levy1 and G. Herrmann1 

Introduction 

The dynamic fracture response of a long beam of brittle 
elastic material subjected to pure bending was recently studied 
by Freund and Herrmann [1] and Adeli, Herrmann, and 
Freund [2]. A one-dimensional model was generated under the 
assumptions that the crack-tip velocity was low enough such 
that the normal stress distribution caused by the propagating 
crack could be approximated by the static distribution ap­
propriate for the instantaneous crack length and net-section 
bending moment [1]. F&llowing this, the model was modified 
to include the effect of the induced axial force on the frac­
turing cross section [2], 

Inclusion of the axial force was accomplished by modifying 
the fracture model stress-intensity factor (equations (11-13), 
[2]) and redefining the compliance coefficients (equation (23), 
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Fig. 1 Dimensionless moment and crack length versus time for the 
Euler-Bernoulli beam model 

[2]). In so doing, the following shape functions were in­
troduced in equation (13), [2]. 

£ , (? ) = 
-5.7272+15.1184? 

for 0 . 7 < ? < 1 (la, b) 

* 6 « ) = 
1.0363-0.5722 

( 1 - ? ) 3/2 

where ? = a/h, a being the crack length and h being the beam 
depth. These functions led to the "bump" in the velocity 
versus time graph in Fig. 3 of [2]. For an infinitely long beam 
this bump should not appear, but does so due to an in­
consistency in the g,(?) formula proposed in [2]; this Note 
attempts to correct this by defining a more consistent model. 

Modification of the Shape Functions 

An inconsistency exists if equation (la) and the one-
dimensional wave equation are used to correlate the induced 
discontinuity in displacement at the centerline and the net 
cross-section induced loading. This function is correct if the 
load were located at the "centerline" of the unbroken 
ligament [3]. Since the longitudinal wave equation is written 
with respect to the original centerline of the beam, by ap­
plying the load at the "centerline" of the remaining ligament 
implies an additional bending moment proportional to p(t) 
times the unbroken ligament.2 This can be taken care of by 
using a shape function proportional to (1 - ? ) ' 3 / 2 , similar to 
8b (?) [3]- A more consistent set of formulas for g, (?) would 
then be 

g,(?) = ? I / 2(1.99-0.41? + 18.7?2 

-38.48?3+53.85?4) 

and 

Fig. 2 Dimensionless crack speed (a/e0) and load on fracture cross 
section {Phl6Mf) versus time (c0 t/h) for the Euler-Bernoulli beam model 

Because of the change in the interval length ([0,0.6] as 
opposed to [0,0.7]) a minor change in gb (?) is also required; 
thus, 

£*(?) = ?1 / 20 -99 - 2.47? + 12.97?2 

-23.17?3+24.80?4) 0 < ? < . 6 

(2c, d) 

0.7083-0.0744? 
£*(?) = 0 . 6 < ? < 1 

( l - ? ) 3 / 2 

These functions would in turn modify (equation (20), [2]) to 

a w = a,6 = ?2(1.98-1.91? + 16.009?2 

-34.838?3+83.933?4 

-153.649?5+256.722?6 

-244.668?7 + 133.548?8) 

a„ = ?2(l .98-0.544? +18.649?2-33.70?3 

+ 99.261 ?4-211.901 ?5 

+ 436.838?6 -460.477?7 +289.982?8) 

0 < ? < 0 . 6 (3a,b) 

and equation (23), [2]) to 

"bt 

gr(?) = (1.7756 +0.0526?) ( — ^ i ) 

rr-t 0.1873 0.5796 \ 

/ l+V? \ 
-0.1021 -0.2lnl * ) 

(1.672 + 0.194?) 

+ 1.5633 

0<?<.6 
(2a, b) 

«« = -0.197/n(l-?)-0.003? 

1.672? 

0 . 6 < ? < 1 
( I - ? ) 2 

0 . 6 < ? < 1 (4a, b) 

Using these shape functions leads to a more consistent 
2 It should be noted that the formulas in [3] are true only for a semi-infinite 

crack in a half space. However, locally, deep cracks near the boundary do take , . _ . , , « , 
on this characteristic. See, for instance, [3] pp. 2.10-2.11 for the form of the model and provides results, shown in Figs. 1 and 2, that are 
formulas used. more consistent qualitatively with those of [4] and [6j. 
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Discussion of Results 

Unlike the results in [2], the moment (Fig. 1) and the load 
(Fig. 2) tend to nonzero asymptotic values, a consequence of 
the fact that the beam is infinitely long. The results more 
readily confirm qualitatively the experimental observation of 
[4] and [6] for the moment and load, even though in both 
papers the measurements were not made at the fracturing 
cross section. It is noted that the crack length and crack 
velocity are also effectively arrested, confirming Kinra and 
Kolsky's observations for extremely long beams [6]; i.e., in 
the absence of end reflections the forward motion of the crack 
is arrested at 90-95 percent of beam depth. It should also be 
noted that the model confirms Kolsky's narrative in the 
discussion of his results in [5]. 
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Stress Field in Orthotropic Accelerating 
Disks 

G. Genta,1 M. Gola,1 and A. Gugliotta1 

Nomenclature 

( 

a = normal stress 
T = shear stress 
io = angular acceleration 

) , x = derivative with respect to variable x. 

h = 
r = 
u = 
v = 
E = 
G = 

Su = 

P = 
7 = 

P = 

disk thickness 
radius 
radial displacement 
circumferential displacement 
elastic modulus 
tangential modulus 
elastic compliances in the 
cumferential directions 
ratio r//re 

shear strain 
linear strain 
polar angle 
Poisson ratio 
density 

radial and cir-

Indexes: 
c = 
e = 
i = 
r = 

L = 

circumferential direction 
external, outer 
inner 
radial direction 
principal longitudinal direction of the material (0 
= 0 deg) 
principal transversal direction of the material (0 = 
90 deg) 

1 Introduction 

The stress field produced by an angular acceleration in an 
isotropic disk of any shape has been known for a long time 
[1], in the hypotheses of plane stress and material's linearity. 

The stress field in an orthotropic accelerating disk has been 
solved in [2], but doubts are to be cast on the correctness of 
this solution. 

The aim of the present work is to discuss the controversial 
aspects of the problem, to provide a new closed-form solution 
when it is possible, and to show more general results obtained 
via a numerical approach. 

2 Analytical Approach 

2.1 Fundamental Equations. A geometrically axisym-
metrical disk is given, defined by polar coordinates (r, 9). 

The thickness varies along the radius, and is indicated h (r). 
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Fig. 1 Stress distribution in an accelerating disk of constant 
thickness made of orthotropic material, (a) Material satisfying equation 
(5); and (b) material not satisfying equation (5). 
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The stress field produced by an angular acceleration in an 
isotropic disk of any shape has been known for a long time 
[1], in the hypotheses of plane stress and material's linearity. 

The stress field in an orthotropic accelerating disk has been 
solved in [2], but doubts are to be cast on the correctness of 
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The aim of the present work is to discuss the controversial 
aspects of the problem, to provide a new closed-form solution 
when it is possible, and to show more general results obtained 
via a numerical approach. 
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Fig. 1 Stress distribution in an accelerating disk of constant 
thickness made of orthotropic material, (a) Material satisfying equation 
(5); and (b) material not satisfying equation (5). 
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Fig. 2 Stress distribution in conical disks, ratio of inner rim thickness 
to outer rim thickness equal to 3.1. Respectively, same materials as in 
Figs. 1(a) &(b). 

The equilibrium equations in the radial and in the cir­
cumferential directions are: 

h r r 

(1) 
1 2 1 
7 (Trch),r+ — Trc + - (ac),e-p6ir = 0 
n r r 

Equations (1) have been obtained in the hypotheses that the 
stress state is plane and that only body forces due to the 
angular acceleration are present. 

If the thickness h is constant with the radius, equation (1) 
reduces to equation (1) in [2]. 

The strain compatibility equation is: 

1 2 1 

2.2 Axisymmetrical Material. If the material is isotropic 
and homogeneous, the solution of equation (1) is [1]: 

>rc = ( - pw f ' w3 hdu)/(r2h) 

ar = ac = 0 

(4) 

It is easy to verify that equation (1) holds also in the case of 
axially orthotropic material, provided that the radial and 
circumferential directions are the material's principal 
directions (S13 = S23 = 0). 

If the material is isotropic but nonhomogeneous, the 
solution is expressed again by equation (4) where the density p 
is moved inside the integral symbol. 

This conclusion is immediately arrived at, by observing the 
structure of the differential equation (1) in [1]. 

The same solution holds also in the case of orthotropic 
axisymmetrical materials. 

2.3 Orthotropic, Nonaxisymmetric, and Homogeneous 
Material. This is the case solved in [2], but limited to the 
constant thickness. The present authors did not succeed in 
finding a closed-form solution valid for whatever material. It 
is, though, possible to find such closed-form solution in the 
special case where: 

1 1 
EL ET 

2vLT 1 
= 0 (5) 

and where the disk's thickness does not vary with the radius. 
A material satisfying condition (5) has particular 

properties, already studied by De St. Venant [4] and Wolf [5]; 
specifically its characteristic is to produce an axisymmetrical 
stress field under the centrifugal accelerations in disks of any 
thickness shape [6-8]. If (5) is satisfied, and the disk has 
constant thickness, it is easy to verify that the stress field 
coincides with the one expressed by equations (4) for isotropic 
materials. Since equations (4) satisfy the equilibrium 
equations (1), it is sufficient to verify that they also satisfy the 
compatibility equations. Since the stresses are functions only 
of the radius, while the Sy's depend only on 8, and moreover 
since ar = ac = 0, the compatibility equation becomes: 

1 
^23(Jcr)>rr + ~T (Sn)>06Ta 

(2S23 - S 1 3 ) 
+ ; (,Tcr),r + 

- (S33),e (rcr),r T (S33)>0Tcr-O 
r r 

(2b) 

Introducing equation (5) into the expressions of the elastic 
compliances Sy with angle 8 for orthotropic materials, it 
follows: 

Sn = S23 =sin0-cos0. (^r-^r) 

$ 3 3 = -7T-

(6) 

1 1 
- - ( 7 r e ) . r t - - 2 - ( 7 r c ) i » = 0 

r r 
(2) 

The stress-strain relationship has, in the linear field, the 
general form: 

fer.ec.7rc)7 = [S\{or,oc,Trc}
T (3) 

where the compliance matrix [S\ is valid for the plane stress 
case, and its elements Sy are in general point functions; thus r 
and 6 play different roles according to the material type. 

With equations (6) and their derivatives, equation (26) 
becomes: 

1 4 
(7) 

Now, differentiating the first of equation (4) and sub­
stituting into equation (7), it becomes apparent that the 
compatibility equation is satisfied. The displacements are 
obtained by integrating the known relationships: 
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er= (u),r 
u 1 

ec= — +-{v),r 

v 1 
r r 

(8) 

and therefore giving the following circumferential (v) and 
radial (u) displacements: 

poi 
u= -—sin 

v = 
po> 

\EL ET/\r 3 / 

cosWl-l)^-^)-,-1-^^) 
\E, ET/\r 3 / G,T\ r) 

(9) 

While the stresses are functions only of the radius r, 
displacements depend also on 8. If the material does not 
satisfy condition (5), or if the thickness is not constant, the 
present authors could not find a closed form solution. 

A numerical approach, illustrated in the following section, 
shows that in that case the stress field is no longer axisym-
metrical, and that the normal stresses (radial and cir­
cumferential) are no longer zero. 

3 Numerical Approach 

The present authors described in [9] and [10] a finite 
element procedure particularly suitable for studying rotating 
disks. Use was made of semi-analytical annular elements, in 
which the radial and circumferential displacements were 
expressed by third-degree polynomials along the radius and by 
truncated Fourier series along the angle. The advantage was 
that at the interfaces the continuity was attained both for 
displacements and for stresses/strains. 

For evident reasons of symmetry, the study of orthotropic 
rotating disks requires the trigonometrical terms of even 
order, sin {2KB) and cos (2KB), and moreover only sines for 
the circumferential displacements and only cosines for the 
radial displacements. 

This basic program was adapted to the present case, by 
introducing circumferential body forces and by expressing 
radial and circumferential displacements both with sinusoidal 
and with cosinusoidal terms. 

The displacement field, made more general in this way, can 
nevertheless be considered as the superposition of: 

(a) a symmetrical part, i.e., the part necessary if cen­
trifugal forces only are present (symmetry is relative to the 
material's principal axes); 

(b) an antisymmetrical part, i.e., the part that contains 
sinusoidal terms for the radial displacements and cosinusoidal 
terms for the circumferential displacements. 

In the resulting stiffness matrix, however, the symmetrical 
and the anti-symmetrical parts result to be uncoupled, 
therefore the stress field in an orthotropic disk can be 
separately studied in these two parts. The meaning of this 
uncoupling is also that circumferential forces will produce a 
purely antisymmetric displacement field. 

A more general examination of the structure of the stiffness 
matrix shows that all the harmonics of even order are un­
coupled from the odd-order harmonics; since the virtual work 
of the circumferential acceleration forces is due to the cosines 
of order zero, i.e., of even order, the most general 
displacement field that is needed to study the stress field due 
to angular and to centrifugal accelerations is: 

= E 
cos 2n8 

0 

0 

sin 2nd 

tJs 

M 

n = 0 

sin 2nd 0 

0 cos 2nd 

U2n 
(10) 

where apex S indicates the symmetric part, and apex A in­
dicates the antisymmetric part. 

Figures 1 and 2 show results obtained with the computer 
program elaborated on these grounds. 

Fig. 1(a) refers to an accelerating plane disk in an or­
thotropic material which satisfies equation (5): 

EL = 40,000 MN/m2 

GLT = 4210.53 MN/m2 

ET = 5000 MN/m2 

vLT = 0.25 

and having central hole with diameter equal to one-fifth of the 
outer diameter. As analytically shown before, the tangential 
stresses do not vary with angle 8, and the normal stresses are 
zero. 

Fig. 1(b) refers to a disk geometrically equal, but made of a 
material having a different value for GLT, and specifically 
GLT = 2000 MN/m2 , thus no longer satisfying equation (5). 
It appears that stresses now vary circumferentially. 

Figures 2(a) and (b) refer to conical disks, with outer and 
inner thickness ratio equal to about one-third, and made of 
the same materials, respectively, of Figures 1(a) and (b). 
Since the disk has not constant thickness, the stresses are in all 
cases functions of the angle 8. 

These solutions are completely different from the solutions 
proposed in [2]. The present authors have reason, thanks to 
analytical and numerical crossconfirmation, to trust their own 
solution, and moreover have noticed that the solution [2] is 
characterized by these facts: 

1. Radial stresses do not go to zero on the free edges. 

2. Normal stresses do not go to zero when the material 
satisfies equation (5). 

3. Shear stresses are independent of angle 6, and equal to 
the ones in isotropic disks (Fig. 2 in [2]), even if normal 
stresses are nonzero and functions of 6; this evidently conflicts 
with the second of equations (1), since the presence of the 
derivative (ac),6 implies that rrc must be different from the 
value it takes in the isotropic case, in which (ac),e = 0. 

4 Conclusion 

The stress field due to angular acceleration of a disk made 
of an orthotropic material is independent of the cir­
cumferential angle 8 if: 

1. the material is axisymmetrical orthotropic, 
2. the material satisfies condition (5) and the thickness is 

constant. 
In these cases, the tangential stresses take the same values 

characterizing a disk of equal geometry and density, but made 
of an isotropic material. 

If the disk has variable thickness with the radius, or if the 
material's parameters do not satisfy equation (5), the stress 
field is not axisymmetrical and normal stresses are nonzero. 
The present authors were not able to find a closed-form 
solution for this case, and the solution proposed in [2] does 
not seem to be correct. Therefore a numerical method was 
evolved for this purpose. 

In the case of flywheels for energy storage, the stresses 
induced by the angular acceleration are in general much lower 
than the stresses due to the centrifugal field. However there 
are cases, such as thin disks earring a rim of relevant mass or 
flywheels designed to deliver high powers for short times [12], 
in which tangential stresses may reach higher values. 

660 / Vol. 49, SEPTEMBER 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

The situation can be made dangerous by the fact that the 
shear strength of some materials, such as filament wound 
composites, is very low. In the design of such rotors, the 
stresses due to angular acceleration must be considered. 
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Boundary Layer Over a Rotating Disk Sector 

M. Ungarish1, A. Solan2, M. Toren3 

Introduction 
Flow over rotating surfaces is usually modeled in two 

distinct geometries: full-circle axisymmetric disks or relatively 
narrow blades (e.g., [1]). In this paper we consider the 
laminar incompressible boundary layer flow over a rotating 
plane sector of wide angle (but significantly less than a full 
circle) and we show that the flow changes from the leading to 
the trailing edge from that characteristic of thin narrow blades 
to that characteristic of axisymmetric disks. The present paper 
is closely related to our previous paper which considered a 
similar problem for a stationary sector in a rotating fluid [2]. 

Consider a solid surface in the form of a disk sector of 
angle ds < 2w and infinite radius rotating about an axis 
perpendicular to the disk plane with angular velocity fi in a 
fluid at rest. Near the leading edge, the dominant velocity is in 
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the circumferential direction, forming a Blasius-type 
boundary layer which generates a secondary, radial flow. 
With increasing angular distance the radial component 
becomes comparable to the circumferential component and 
one may expect the flow pattern to approach that of a Von 
Karman type boundary layer, such as for an axisymmetric 
disk. As the solid surface moves, its trailing edge leaves a 
wake which is seen by the leading edge at its next revolution, 
such that at the leading edge the flow is slightly disturbed and 
is not purely circumferential. In a coordinate system rotating 
with the sector the problem is stationary, with an outer 
angular velocity fi. Following the same steps as in [2], we 
obtain for the /--scaled velocity components a system of 
equations that are similar, but not identical, to those of [2] 
(for details see [3]). As in [2], we first assume an undisturbed 
flow approaching the leading edge at 0 = 0 " and solve for the 
boundary layer over the solid surface 0 < 0 < ds, and then we 
solve the wake in the region 0S < 0 < 2TT and estimate the 
perturbation it causes in the oncoming flow. 

Flow Over the Solid Sector 
Near the leading edge, 0 << 1, the equations admit a 

solution in a series of functions of a similarity variable zB~ u2 

multiplied by ascending the powers of 0 [1, 2], where the 
leading term for v is Blasius. Such series can be used for small 
0 but strongly diverge from about 0 » 0.6. In the other limit, 
as 6 >> 1, one may expect the dependence on 0 to decay, 
leading to a classical Von Karman flow. To study the flow 
over the full range of 0 we transform the governing equation 
into momentum-integral form: 

d P °° P °° du 
— \ uvdz+\n I3u2~(v-\f]dz=-ir n (1) 
dO Jo Jo dz o 

d P °° ,, f ™ dv I 
— (v2-v)dz + A\ u(v-l)dz=-—\ (2) 
ddJo Jo dz lo 

and assume u = /(0)*(»?), v = I/-(T;), J? = z/8(d), where u 
and v are the /--called radial and circumferential velocity 
components and 8 is the boundary layer thickness. Once $ and 
4* are assumed, the problem is reduced to a system of two 
coupled ordinary differential equations for 8(6), f (8). Note 
that for 0 — 0 the equations admit an initial solution of the 
form 8 = « 0 1 / 2 , / = bd where a,6 are constants that depend on 
the choice of $, \p. This is the momentum-integral 
representation of the initial similarity solution of Blasius type 
[1,2]. 

Four pairs of functions representing u and v were tried: (A) 
* = sin 707, ]p = sin 7rij/2; (B) * = ri(l - -n)2, \p = 1 - (1 -
r;)2; (C) $ and \j/ from Von Karman's rotating disk solution; 
and (Z») if = f(d) 7,(1 - r,)2 + (1/6) [8(8) - 4/(0)] , ( l -
V)3, v = 1 - (3 /2 ) (1 - v)

2 + (1/2) (1 - j/)3 . (Here the u 
profile changes with 0.) 

Some results of the numerical solution with the four 
assumed profiles (A-D) are shown in Fig. 1. Also shown are 
the asymptotic values for small 0 (Blasius profile for v and the 
corresponding similarity solution for u), and for large 0 (0-
independent Karman solution). The limit values of (dv/dz)o 
and (du/dz)0 are also given in Table 1. 

Table 1 Aymptotic values of velocity gradients at wall 

0 - 0 0 - 0 0 

Profile 

A 
B 

C (Karman) 
D 

Blasius 

0-y2uz(O) 

0.297 
0.337 
0.343 
0.707 
0.665 

eu2vz(0) 

0.328 
0.365 
0.430 
0.323 
0.332 

«*(°°) 
0.317 
0.450 
0.510 
0.543 

-

M0 0) 
0.596 
0.622 
0.616 
0.537 

-
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The situation can be made dangerous by the fact that the 
shear strength of some materials, such as filament wound 
composites, is very low. In the design of such rotors, the 
stresses due to angular acceleration must be considered. 
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Introduction 
Flow over rotating surfaces is usually modeled in two 

distinct geometries: full-circle axisymmetric disks or relatively 
narrow blades (e.g., [1]). In this paper we consider the 
laminar incompressible boundary layer flow over a rotating 
plane sector of wide angle (but significantly less than a full 
circle) and we show that the flow changes from the leading to 
the trailing edge from that characteristic of thin narrow blades 
to that characteristic of axisymmetric disks. The present paper 
is closely related to our previous paper which considered a 
similar problem for a stationary sector in a rotating fluid [2]. 

Consider a solid surface in the form of a disk sector of 
angle ds < 2w and infinite radius rotating about an axis 
perpendicular to the disk plane with angular velocity fi in a 
fluid at rest. Near the leading edge, the dominant velocity is in 
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the circumferential direction, forming a Blasius-type 
boundary layer which generates a secondary, radial flow. 
With increasing angular distance the radial component 
becomes comparable to the circumferential component and 
one may expect the flow pattern to approach that of a Von 
Karman type boundary layer, such as for an axisymmetric 
disk. As the solid surface moves, its trailing edge leaves a 
wake which is seen by the leading edge at its next revolution, 
such that at the leading edge the flow is slightly disturbed and 
is not purely circumferential. In a coordinate system rotating 
with the sector the problem is stationary, with an outer 
angular velocity fi. Following the same steps as in [2], we 
obtain for the /--scaled velocity components a system of 
equations that are similar, but not identical, to those of [2] 
(for details see [3]). As in [2], we first assume an undisturbed 
flow approaching the leading edge at 0 = 0 " and solve for the 
boundary layer over the solid surface 0 < 0 < ds, and then we 
solve the wake in the region 0S < 0 < 2TT and estimate the 
perturbation it causes in the oncoming flow. 

Flow Over the Solid Sector 
Near the leading edge, 0 << 1, the equations admit a 

solution in a series of functions of a similarity variable zB~ u2 

multiplied by ascending the powers of 0 [1, 2], where the 
leading term for v is Blasius. Such series can be used for small 
0 but strongly diverge from about 0 » 0.6. In the other limit, 
as 6 >> 1, one may expect the dependence on 0 to decay, 
leading to a classical Von Karman flow. To study the flow 
over the full range of 0 we transform the governing equation 
into momentum-integral form: 

d P °° P °° du 
— \ uvdz+\n I3u2~(v-\f]dz=-ir n (1) 
dO Jo Jo dz o 

d P °° ,, f ™ dv I 
— (v2-v)dz + A\ u(v-l)dz=-—\ (2) 
ddJo Jo dz lo 

and assume u = /(0)*(»?), v = I/-(T;), J? = z/8(d), where u 
and v are the /--called radial and circumferential velocity 
components and 8 is the boundary layer thickness. Once $ and 
4* are assumed, the problem is reduced to a system of two 
coupled ordinary differential equations for 8(6), f (8). Note 
that for 0 — 0 the equations admit an initial solution of the 
form 8 = « 0 1 / 2 , / = bd where a,6 are constants that depend on 
the choice of $, \p. This is the momentum-integral 
representation of the initial similarity solution of Blasius type 
[1,2]. 

Four pairs of functions representing u and v were tried: (A) 
* = sin 707, ]p = sin 7rij/2; (B) * = ri(l - -n)2, \p = 1 - (1 -
r;)2; (C) $ and \j/ from Von Karman's rotating disk solution; 
and (Z») if = f(d) 7,(1 - r,)2 + (1/6) [8(8) - 4/(0)] , ( l -
V)3, v = 1 - (3 /2 ) (1 - v)

2 + (1/2) (1 - j/)3 . (Here the u 
profile changes with 0.) 

Some results of the numerical solution with the four 
assumed profiles (A-D) are shown in Fig. 1. Also shown are 
the asymptotic values for small 0 (Blasius profile for v and the 
corresponding similarity solution for u), and for large 0 (0-
independent Karman solution). The limit values of (dv/dz)o 
and (du/dz)0 are also given in Table 1. 

Table 1 Aymptotic values of velocity gradients at wall 
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Fig. 1 Boundary layer over solid sector. A-D momentum-integral 
solution with assumed profiles A-D. 
S = leading term of initial similarity solution; K = von Karman 
axisymmetric solution 
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0 . 0 5 -
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Fig. 2 Wake flow 

e-e. 

All numerical results exhibit a Blasius-like behavior for 
small 6 and tend to a constant value, like the Karman 
solution, for large 6. Although the values of the constants 
depend on the particular profile, the transition from the 
initial 0-dependent region to the final ^-independent region 
occurs for all profiles in the range 9 = 0.5-1.2, i.e., within the 
first quadrant. Thus, it is interesting to note that although the 
problem is definitely nonaxisymmetric, the results tend after a 
relatively narrow angle to values that correspond to the 

axisymmetric solution. (A similar behavior was obtained in 
[2].) 

In Fig. 1 all curves of $(1 -v)dz show a slight overshoot. 
Obviously, the integral solution based on the Karman profile 
(C) approaches the "correct" asymptotic value for 8 — oo, 
but it is interesting to note that this solution also fits quite well 
the initial Blasius curve (S). Further, it appears that the 
continuous momentum-integral solution with profile C can be 
approximated fairly well by a simple intersection of the two 
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asymptotic curves (S and K). For the other profiles (A, B, D) 
the general behavior is quite similar to that of C, with the 
final values differing by not more than 30 percent. For J udz 
the general trend of the four computed curves again ap­
proaches the asymptotic values, with slightly larger spread. 
(Recall that u is not imposed by the outer flow, but is induced 
by the rotational forces, thus its solution is more sensitive to 
the simplifying assumptions made in the integral solution.) 
Similar trends are observed in curves of wmax> (.dv/dz)o, and 
(du/dz)0 (not shown here, see reference [3]). In summary, all 
assumed profiles produce a solution that is Blasius-like for 8 
— 0 and Karman-like for 6 — oo, the transition occurring at 
about 6 = 0.5-1.2. Quantitatively, profiles C and D are 
somewhat better than A or B. As an approximation, a simple 
intersection of the initial and final similarity solutions is quite 
adequate. 

Referring back to the series solution for small 6 [1], our 
attempt to compute it for finite 0 showed that the series 
diverges from about 0 = 0.6. From the momentum-integral 
solution we now see that this is approximately where the flow 
rather abruptly changes its behavior from the initial to the 
final form, which is accompanied by a change in the direction 
of the axial flow. 

Flow in the Wake 

In the preceding section it was assumed that the flow ap­
proaching the leading edge is undisturbed. To assess this 
assumption, we now attempt a momentum-integral solution 
of the wake flow, which will allow us to estimate the 
disturbance that the wake causes at the leading edge. The 
momentum-integral equations are again (1) and (2) with the 
right-hand terms equal to zero. The profiles assumed were u 
= f(d)$(t)), v = 1 + g(6)$(ri). Here we have now three 
unknowns; 8,/and g, since unlike the preceding problem, the 
scale of v is not imposed from the outside. This requires a 
third equation to close the system. It is convenient to use the 
azimuthal momentum equations evaluated at z = 0, with the 
assumed profiles. The initial conditions for the wake at 0 = 
0/ are determined from the flow profiles of the boundary 
layer over the trailing edge of the solid sector at 0 = 0S~, by 
requiring the integrals of (v2-v), uv, and (1-v) to be 
continuous. These depend on the angle of the solid sector 6S. 
Numerical solutions were obtained for small 0S, for which the 
values of these integrals were approximated by the leading 
term (Blasius-like) of the boundary layer flow. The wake 
profile assumed was #(?/) = e~^. (A different profile, $(r;) 
= Vi + Vicosnri], (0 < r\ < 1) was also tried, with essentially 
similar results.) 

The results for / and g versus 6 — 6S (the angle from the 
trailing edge) are shown in Fig. 2. In particular, we can now 
estimate /and g, i.e., the scales of the two components of the 
velocity perturbation, induced by the wake at the leading 
edge, 0 = 2ir. For example, for 0S = 0.4, the results are 
«m«0r) = 0.112,/(0/) = 0.136, g(0+) = -0 .868 , / (2TT) 
= 0.038, and g(2ir) = -0.025.4 It can be seen that g(6), 
which represents the u-component, decays rapidly and its 
value as it reaches the leading edge (at 6 = 2w) is small 
compared to the outer flow which is of order 0(1). The u-
component, represented by /(0), decays somewhat slower, 
and its value at the leading edge /(2TT), though small com­
pared to unity, is not negligible compared to umaK(6^), i.e., it 
can be expected that the returning flow may have an effect on 
the boundary layer over the blade. Hence a detailed analysis 
of the interaction of the flow over the full circle appears to be 
a worthwhile topic for further study. 

4For0s = 0.1 the corresponding values are 0.028,0.034, -0.868,0.021, and 
-0.029. 
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Plastic Torsional Buckling of Thin-Walled 
Cylinders 

D. W. A. Rees1 

Introduction 
In Donnell's original solution to the critical shear stress for 

which elastic torsional buckling occurs in short to moderately 
long thin-walled cylinders [1], it was found that no constraints 
were required to prevent longitudinal motion of the ends. The 
solution was shown to be in good agreement with the results 
of buckling experiments in which the ends of cylinders were 
either held perpendicular to the axis of twist (clamped) or 
were free to change their angle with the twisting action 
(hinged). The attempt that has been made to extend the elastic 
prediction to the torsional buckling stress for cylinders 
operating in the plastic range employs a plasticity reduction 
factor [2]. The extension implies that axial restraint is again 
unimportant when it is known that appreciable inelastic 
tensile strain will accumulate during plastic torsion when one 
end of the cylinder is completely unrestricted [3]. The second-
order axial strain together with an associated diametral 
contraction prevent a state of pure shear from being achieved 
by the application of a shear stress alone. In combination with 
axial compression and internal pressure, which prevent 
second-order effects in a thin cylinder, a shear stress can 
sustain a state of pure shear which would be the proper 
starting point for an investigation into inelastic torsional 
buckling. However, the influence of diametral contraction on 
buckling is important only for the unrestrained condition 
when it is then equivalent to buckling by external overpressure 
[4]. An approximate state of pure shear can be achieved for a 
thin cylinder in which the accumulation of axial strain is 
prevented since diametral contraction is small and defor­
mation before buckling occurs primarily by first-order shear. 
This approximation has been exploited for the present ex­
perimental investigation in which buckling is shown to depend 
on the degree to which axial extension is prevented. 

Analysis 
Second-order effects are due to the influence of the third 

deviatoric stress invariant J{ in the yield criterion f(J{, Jj)-
The following form is assumed 

f=J{ + \j{ (1) 

where Y is the tensile yield stress and p is a constant which 
must lie in the range — 3 < p < 3/2 to ensure convexity of the 
yield surface [5]. When the stress subspace is torsion r, 
combined with tension a, equation (1) becomes 
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asymptotic curves (S and K). For the other profiles (A, B, D) 
the general behavior is quite similar to that of C, with the 
final values differing by not more than 30 percent. For J udz 
the general trend of the four computed curves again ap­
proaches the asymptotic values, with slightly larger spread. 
(Recall that u is not imposed by the outer flow, but is induced 
by the rotational forces, thus its solution is more sensitive to 
the simplifying assumptions made in the integral solution.) 
Similar trends are observed in curves of wmax> (.dv/dz)o, and 
(du/dz)0 (not shown here, see reference [3]). In summary, all 
assumed profiles produce a solution that is Blasius-like for 8 
— 0 and Karman-like for 6 — oo, the transition occurring at 
about 6 = 0.5-1.2. Quantitatively, profiles C and D are 
somewhat better than A or B. As an approximation, a simple 
intersection of the initial and final similarity solutions is quite 
adequate. 

Referring back to the series solution for small 6 [1], our 
attempt to compute it for finite 0 showed that the series 
diverges from about 0 = 0.6. From the momentum-integral 
solution we now see that this is approximately where the flow 
rather abruptly changes its behavior from the initial to the 
final form, which is accompanied by a change in the direction 
of the axial flow. 
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proaching the leading edge is undisturbed. To assess this 
assumption, we now attempt a momentum-integral solution 
of the wake flow, which will allow us to estimate the 
disturbance that the wake causes at the leading edge. The 
momentum-integral equations are again (1) and (2) with the 
right-hand terms equal to zero. The profiles assumed were u 
= f(d)$(t)), v = 1 + g(6)$(ri). Here we have now three 
unknowns; 8,/and g, since unlike the preceding problem, the 
scale of v is not imposed from the outside. This requires a 
third equation to close the system. It is convenient to use the 
azimuthal momentum equations evaluated at z = 0, with the 
assumed profiles. The initial conditions for the wake at 0 = 
0/ are determined from the flow profiles of the boundary 
layer over the trailing edge of the solid sector at 0 = 0S~, by 
requiring the integrals of (v2-v), uv, and (1-v) to be 
continuous. These depend on the angle of the solid sector 6S. 
Numerical solutions were obtained for small 0S, for which the 
values of these integrals were approximated by the leading 
term (Blasius-like) of the boundary layer flow. The wake 
profile assumed was #(?/) = e~^. (A different profile, $(r;) 
= Vi + Vicosnri], (0 < r\ < 1) was also tried, with essentially 
similar results.) 

The results for / and g versus 6 — 6S (the angle from the 
trailing edge) are shown in Fig. 2. In particular, we can now 
estimate /and g, i.e., the scales of the two components of the 
velocity perturbation, induced by the wake at the leading 
edge, 0 = 2ir. For example, for 0S = 0.4, the results are 
«m«0r) = 0.112,/(0/) = 0.136, g(0+) = -0 .868 , / (2TT) 
= 0.038, and g(2ir) = -0.025.4 It can be seen that g(6), 
which represents the u-component, decays rapidly and its 
value as it reaches the leading edge (at 6 = 2w) is small 
compared to the outer flow which is of order 0(1). The u-
component, represented by /(0), decays somewhat slower, 
and its value at the leading edge /(2TT), though small com­
pared to unity, is not negligible compared to umaK(6^), i.e., it 
can be expected that the returning flow may have an effect on 
the boundary layer over the blade. Hence a detailed analysis 
of the interaction of the flow over the full circle appears to be 
a worthwhile topic for further study. 

4For0s = 0.1 the corresponding values are 0.028,0.034, -0.868,0.021, and 
-0.029. 
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Introduction 
In Donnell's original solution to the critical shear stress for 

which elastic torsional buckling occurs in short to moderately 
long thin-walled cylinders [1], it was found that no constraints 
were required to prevent longitudinal motion of the ends. The 
solution was shown to be in good agreement with the results 
of buckling experiments in which the ends of cylinders were 
either held perpendicular to the axis of twist (clamped) or 
were free to change their angle with the twisting action 
(hinged). The attempt that has been made to extend the elastic 
prediction to the torsional buckling stress for cylinders 
operating in the plastic range employs a plasticity reduction 
factor [2]. The extension implies that axial restraint is again 
unimportant when it is known that appreciable inelastic 
tensile strain will accumulate during plastic torsion when one 
end of the cylinder is completely unrestricted [3]. The second-
order axial strain together with an associated diametral 
contraction prevent a state of pure shear from being achieved 
by the application of a shear stress alone. In combination with 
axial compression and internal pressure, which prevent 
second-order effects in a thin cylinder, a shear stress can 
sustain a state of pure shear which would be the proper 
starting point for an investigation into inelastic torsional 
buckling. However, the influence of diametral contraction on 
buckling is important only for the unrestrained condition 
when it is then equivalent to buckling by external overpressure 
[4]. An approximate state of pure shear can be achieved for a 
thin cylinder in which the accumulation of axial strain is 
prevented since diametral contraction is small and defor­
mation before buckling occurs primarily by first-order shear. 
This approximation has been exploited for the present ex­
perimental investigation in which buckling is shown to depend 
on the degree to which axial extension is prevented. 

Analysis 
Second-order effects are due to the influence of the third 

deviatoric stress invariant J{ in the yield criterion f(J{, Jj)-
The following form is assumed 

f=J{ + \j{ (1) 

where Y is the tensile yield stress and p is a constant which 
must lie in the range — 3 < p < 3/2 to ensure convexity of the 
yield surface [5]. When the stress subspace is torsion r, 
combined with tension a, equation (1) becomes 

Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland. 
Manuscript received by ASME Applied Mechanics Division, May, 1981; 

final revision, February, 1982. 

Journal of Applied Mechanics SEPTEMBER 1982, Vol. 49/663 
Copyright © 1982 by ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

8 

f-2.0 -1.5 -1.0 -0.5 

\ 9"c 

i 

-0.5 

k f 

_ * ho 

k 

- 0 . 5 ^ S 

0.5 1.0 1-5\ 

(o.ol IY a 
I k ii 

--05 y 

-1.0 

\ 0.5 g 

Fig. 1 Yield locus defined by equation (2) for p = 1 showing the 
direction of the plastic-strain increment vector dypld(P corresponding 
to unrestricted torsion at A and restricted torsion (pure shear) at B 
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Fig. 2 Results from four torsion tests each approximating to a state of 
pure shear showing shear stress r versus shear strain y and axlai strain 
iz versus shear strain. Typical buckling mode and critical shear strain 
prediction from equation (8) are also indicated. The plots include 
elastic strain components. 

(-4) 3Y 
(2) 

where k is the shear yield stress in the absence of a. Identifying 
equation (1) with the plastic potential/in the flow rule defj = 
dk df/dcy the corresponding stress-incremental plastic strain 
relations are found 

« - T { * 4 ( - X ) } 
del--; T ( - 4 < - - T » 

«~?K (»4)) (3) 

dy" 
2d\ 
TryffT) 

where X is a scalar multiplier and polar subscripts z, 6, and r 
refer to the axial, circumferential, and radial directions, 
respectively. The normal strain components preclude volume 
change since their sum defi = 0 and, in an unrestricted 
cylinder where a = 0, are proportional to (dyp)2 which is the 
quadratic relationship that characterizes second-order strain 
[4]. The compressive stress ac necessary to suppress axial 
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i»9 

Fig. 3 Component strain paths for loading and unloading in torsion. 
Loading path shows increasing axial strain cz and small-order cir­
cumferential strain ie with increasing shear strain y. Unloading path 
shows small order of recovered axial and shear strains. The plots in­
clude elastic strain components. 

strain is found by equating the first of equations (3) to zero. 
Then, 

•(£-£)"]• « 3(Y 
'''lip' KP' 3 

Now from equation (2) Y2 = 3/c2/(l +2p/9) which can be 
combined with equation (4) provided T ~ k (i.e., ac *= 0). The 
compressive stress is then found in dimensionless form 

?±-5-( 3 ^ / ! f < r, 2P2 4n3nVl 

;)>[-£-£]"}• (5) 
2p \q + 2p 

In the rule of isotropic hardening equation (5) implies that 
for deformation before buckling the axial strain is eliminated 
by a constant compressive stress. The solution, which is made 
possible by the unsymmetrical nature of the yield locus 
represented by equation (2), is shown graphically in Fig. 1 for 
the casep = 1. Due to the difference observed between tensile 
and compressive yield stresses the locus allows the normal 
direction of a plastic strain increment vector dyp IdeP to have 
an axial component at A (shown exaggerated) in the 
unrestricted case but not at B in the restricted case where 
dyP/de" = oo. 

Results and discussion 
To ensure inelastic buckling, torsion tests were performed 

on cylinders manufactured from a commercial grade of pure 
aluminum to dimensions: 28.4 mm outside diameter, 25.4 mm 
inside diameter, and 75 mm parallel length. The compressive 
force necessary to restrict the second-order axial strain in 
annealed cylinders was found experimentally to be 500 g 
which was equivalent to the horizontal frictional force exerted 
on the end of the specimen by the bearing in the 100 kg sliding 
end of the torsion machine. Thus in this instance the free 
expansion of the cylinder during torsion is prevented by a 
frictional force that is the product of the coefficient of 
friction and the normal reaction at the sliding end of the test 
machine. This force produced a compressive stress of ac = 
3.8 X 10~2 N/mm2 and hence ac/k = 0.0042 for k = 9.2 
N/mm2 at the limit of elastic proportionality. Four tests were 
performed in which torques were applied incrementally 
through square-end registers and alignment plugs that 
maintained the condition of clamped ends during defor­
mation. Axial and shear displacements on a 50-mm gauge 

length were continuously monitored from displacement 
transducers. Full details of the extensometer and preparation 
of the test specimen are given elsewhere [6]. 

Test results, presented in Fig. 2, shows good agreement 
between the shear stress-strain curves for each specimen. The 
magnitude of the axial strain when plotted against shear 
strain, shows that initially the compressive force was of the 
order necessary to suppress axial strain since in each curve 
dy/de = oo. The degree of scatter indicates the sensitivity to 
slight differences in work-hardening characteristics where 
either tensile or compressive axial strain can result. Never­
theless a region of approximate isotropic hardening can be 
identified for plastic shear strains in the range 0 < y < 0.12. 
Thereafter an increasing compressive force would be 
necessary to maintain dy/de = oo. If the ends were completely 
restrained the associated build up of compressive end force 
that would begin around 7 « 0.12 would be expected to lead 
to buckling. It was at this point that buckling was judged to 
begin and this was confirmed from gauge diameter 
measurements that indicated ellipticity-of the cross section 
(inset Fig. 2). In one test (Fig. 3) a post-yield strain gauge, 
bonded to the outer diameter in a circumferential direction, 
confirmed that a second-order diametral contraction was 
present which is consistent with the prediction of de% from 
equation (3). The small magnitude of this strain (= 0.1 
percent) corresponding to 7 « 6 percent confirms that an 
approximate state of pure shear existed prior to buckling in 
each test. 

To examine the recoverable strain in this specimen it was 
unloaded at a forward shear strain of 16 percent when the 
cross section was only slightly elliptical. The corresponding 
recovered axial and shear microstrains are plotted inset to 
enlarged scales in Fig. 3. Nonlinearity in this plot implies that 
the small order of recovered strain was composed of elastic 
and anelastic components. The former are found from the 
elastic constants for the material. However, in comparison 
with the forward strain, it is seen from Fig. 3 that recovered 
strain is negligibly small which confirms the irrecoverable 
second-order nature of axial strain resulting from a torsion 
test. 

A prediction of the critical shear stress rcr at which elastic 
torsional buckling occurs is provided by Donnell's solution [1] 
to the associated equilibrium and compatibility equations. 
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For a hollow cylinder with clamped ends of length /, mean 
radius r, and wall thickness t that satisfies the inequality 50t/r 
< (IIf)1 < lOr/t then 

T„ = -
0.82E 

( T H T ) (6) 

where E and v are the usual elastic constants. Following 
Gerard [2], who extended the elastic solution to inelastic 
buckling through a plasticity reduction factor, £7(1 - e2)'7' is 
replaced by Es/ (1 - ij,)>A where vp = Vi and Es is the secant 
modulus at the point of buckling defined as 

E, = *a/?a (7) 
where a and <P are the equivalent stress and equivalent plastic 
strain, respectively. Neglecting a for simplicity, since a < < T, 
the isotropic hardening rule and equation (2) give 
a= Y= {3^/(1 +2p/9)} Yl. The work hypothesis for torsion, 
WP- oe» = TY yields e" = (72/3(l +2p/9)} Vl. Equation (7) 
becomes Es = 3 rcr/(l+2p/9)y£t and substitution into 
equation (6) gives the critical plastic shear strain expression 

26.5 / > \ 5/4 , ,. N K 

(9 + 2p) (T) (T) (8) 

where constant/? « 0.015 is estimated from ac/k = 0.0042 
and the solution to equation (5), which is shown graphically in 
Fig. 1. Then from equation (8) y£r = 0.098 which is in 
reasonable agreement with the shear strain in Fig. 2 for which 
buckling was judged to begin. It is concluded that inelastic 
buckling under a condition of pure shear deformation is 
expressed quite well by equation (8). A solution for the 
unrestricted tube must account for the axial strain that ac­
cumulates from the start (3). The onset of buckling can then 
be detected either by direct diameter measurements or, 
possibly, from a change in the characteristic second-order 
dependence relation e"a(yp)2. It is doubtful if the solution 
will depend wholly on specimen geometry in this case. 

References 
1 Donnell, L. H., "Stability of Thin Walled Tubes Under Torsion," NACA 

Rept. 479, 1933, pp. 1,24. 
2 Gerard, G., "Compressive and Torsional Buckling of Thin Walled Tubes 

in the Yield Region," NACA Tech. Note 3726, Aug. 1956, pp. 1,35. 
3 Billington, E. W., "Non-linear Mechanical Response of Various Metals II. 

Permanent Length Changes in Twisted Tubes," J. Phys. D: Appl. Phys,, Vol. 
9, 1976, pp. 533,552. 

4 Freudenthal. A. M., and Ronay, M., "Second-Order Effects in Dissipative 
Media," Proc. Roy. Soc, Vol. 292A, 1966, pp. 14,50. 

5 Betten, J., "Plastische Anisotropic und Bauschinger - Effekt; Allgemeine 
Formulierung und Vergleich mit Experimentell Ermittelten FliefiOrthkurven,, 
ActaMechanica, Vol. 25,1976, pp. 79,94. 

6 Rees, D. W. A., "Biaxial Creep and Plastic Flow of Anistropic 
Aluminum," Ph.D. Thesis, CNAA (UK), 1976. 

Axially Loaded Stiffened and Unstiffened 
Cylindrical Shells 

I. Sheinman1 and G. J. Simitses2 

Senior Lecturer, Department of Civil Engineering, Technion-Israel Institute 
of Technology, Haifa, Israel. 

Professor, School of Engineering Science and Mechanics, Georgia Institute 
of Technology, Atlanta, Ga, Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, March, 1981; 
final revision, December, 1981. 

666/Vol. 49, SEPTEMBER 1982 

Introduction 
In a previous publication [1], the present authors dealt with 

the same problem, but their objective was limited to finding 
critical conditions (limit point loads) only for imperfect 
stiffened cylinders under axial compression. The present 
paper extends the previous work and presents a solution 
methodology for finding not only the prelimit point behavior 
of the imperfect shell, but also its postlimit point behavior. 
This improvement leads to results, which explain very clearly 
the observed snapping phenomenon, including post-buckling 
strength and change of the mode during snapping. 

The mathematical symbols and formulation are the same as 
those of [1]. Therefore, they will not be repeated, herein. 
There is one minor change in connection with boundary 
conditions, equation (15) of [1]. It is stated in [1] that the 
general computer program was written for the end conditions 
listed as equation (15). The program has been modified to 
allow MM ?*0 at a boundary. This is done to accommodate the 
possibility of applying the constant axial stress resultant, Nxx, 
not only through the reference surface (in which case M^ = 0 
for simply supported and free boundary conditions), but also 
as a uniform stress (in which case Mxx = a3Nxx, for simply 
supported and free boundary conditions). 

Solution Methodology 

The solution methodology, employed herein, is an ex­
tension and modification of the one described in [1]. The 
changes allow one to obtain postlimit point equilibrium paths 
for every desired wave number, n (number of full waves 
around the circumference). The governing equations are 
expressed in terms of w (normal displacement component) 
and F(Airy stress function) (see [1]). 

For finding prelimit point equilibrium positions, the ap­
plied load level, Nxx, is taken as known, the linear (n=0) 
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Fig. 1 Response characteristics of the unstiffened geometry (£ = 0.5) 
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unrestricted tube must account for the axial strain that ac­
cumulates from the start (3). The onset of buckling can then 
be detected either by direct diameter measurements or, 
possibly, from a change in the characteristic second-order 
dependence relation e"a(yp)2. It is doubtful if the solution 
will depend wholly on specimen geometry in this case. 
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In a previous publication [1], the present authors dealt with 

the same problem, but their objective was limited to finding 
critical conditions (limit point loads) only for imperfect 
stiffened cylinders under axial compression. The present 
paper extends the previous work and presents a solution 
methodology for finding not only the prelimit point behavior 
of the imperfect shell, but also its postlimit point behavior. 
This improvement leads to results, which explain very clearly 
the observed snapping phenomenon, including post-buckling 
strength and change of the mode during snapping. 

The mathematical symbols and formulation are the same as 
those of [1]. Therefore, they will not be repeated, herein. 
There is one minor change in connection with boundary 
conditions, equation (15) of [1]. It is stated in [1] that the 
general computer program was written for the end conditions 
listed as equation (15). The program has been modified to 
allow MM ?*0 at a boundary. This is done to accommodate the 
possibility of applying the constant axial stress resultant, Nxx, 
not only through the reference surface (in which case M^ = 0 
for simply supported and free boundary conditions), but also 
as a uniform stress (in which case Mxx = a3Nxx, for simply 
supported and free boundary conditions). 

Solution Methodology 

The solution methodology, employed herein, is an ex­
tension and modification of the one described in [1]. The 
changes allow one to obtain postlimit point equilibrium paths 
for every desired wave number, n (number of full waves 
around the circumference). The governing equations are 
expressed in terms of w (normal displacement component) 
and F(Airy stress function) (see [1]). 

For finding prelimit point equilibrium positions, the ap­
plied load level, Nxx, is taken as known, the linear (n=0) 
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Fig. 2 Response characteristics of the unstiffened geometry ({ = 4.0) 

solution is taken to be the approximate solution, and the 
small corrections (in 1*7 s, and/,'s) are obtained through the 
solution of the linearized (with respect to the corrections) 
differential equations. Note that, in this range, the stiffness 
matrix is positive definite. 

For finding postlimit point equilibrium positions (in a range 
of negative stiffness matrix), the numerical scheme is 
modified. The load parameter, N^, is taken to be unknown, 
and one of the displacement parameters Wt replaces it as a 
known parameter. Great care must be exercised in choosing 
this W;. Thisis done by observing how the various W,'s 
change with N„ changes in the prelimit point range, and 
choosing a Wt that tends to increase in a smooth and con­
tinuous manner, but most importantly is one of the most 
dominant displacements terms. In this postlimit point range, 
the last converged, prelimit point solution is used as an initial 
estimate for finding the first postlimit point solution. From 
there on, in this same range, the previous solution is utilized 
as an initial estimate. 

Numerical Results and Discussion 

Numerical results are obtained for two geometries, one 
unstiffened and one stiffened. The geometry for both is 
described in the following: 

(a) Unstiffened Cylindrical Shell. 
R = 10.16cm(4in.);/! = 0.01016cm(0.004in.); 

L = 10.16 cm (4 in.); 

E = 7.24 x 106N/cm2(10.5 x 106 psi); p = 0.3; 

[ 2/TTX TTX 

-cos—— +0.1sin —cos 
Ri' 

and S5-3 boundary conditions 

(ft) Ring and Stringer-Stiffened Cylindrical Shell 
R = 10.16 cm (4 in.); h = 0.1016 cm (0.04 in.); 

Fig. 3 Effect of imperfection parameter £, = on critical loads (un­
stiffened) 

L = 10.16cm(4in.);£'=7.24 X 106 N/cm2(10.5 x 106 psi); 

p=0.3; ex = ±0.6096 cm (0.24 in.); 
ey= ±0.3048 cm (0.12 in.); (+ for internal stiffeners) 
X„ = 0.910; X^ = 0.455; p„ = 100, pyy = 20; with 

irx fiy 
w°(x,y) = h!- sin — cos —; 55-3 boundary conditions 

L R 
Before discussing the results, a few more clarifying remarks 
about the geometry are needed. The unstiffened geometry is 
taken from [1] and [2]. Note that in these references only the 
critical load is given and not the complete behavior. The 
classical load for this case is 44.52 N/cm. Moreover, in this 
geometry, £ is varied from zero to four, in order to study the 
effect of imperfection amplitude, £ (tv°mas/A = 1.1 £). Finally, 
results are generated for several values of n (number of cir­
cumferential full waves). This is needed to obtain a clear 
picture of the complete response, since the shell is very thin 
(R/h= 1000) and from experimental evidence the response is 
expected to be nonaxisymmetric. 

The stiffened geometry corresponds to examples 14, 16, 18, 
19, and 21 of [1]. Again, note that in [1], only limit-point 
loads were obtained. Moreover, in [1] S5-3 boundary con­
ditions are used, but_S5-3 with M^ = 0. In the present work, 
5S-3 with Mxx = a3Nxx boundary conditions are employed. 
The most important results are presented in graphical form. 
In the ensuing discussion, including conclusions, the 
statements are based on all generated data. 

Figure 1 is a plot of N„ versus average end shortening for 
£ = 0.5 (unstiffened geometry). These data are generated for 
several values of full waves, n, around the circumference. 
From this figure, it is clear that, as the system is loaded quasi-
statically from zero, the load-deflection curve is the same and 
independent of n. The limit-point load, NXXcr is definitely 
^-dependent. It is observed that the value of the total 
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Fig. 4 Response characteristics of the externally stiffened geometry AV 
(£ = 1) Fig. 5 Response characteristics of the internally stiffened geometry 

potential corresponding to the lowest limit load (and 
associated «) is the smallest of all values corresponding to the 
same load and different n's (at an equilibrium position). For 
this value of £ (which corresponds to w°max = 0.55 h), the limit 
point occurs at Nxx = 29.07 N/cm [X' = (NXXcr /NXXd) = 0.653]. 
In the postlimit point region, the unstable branch shows 
several changes from n = 13 to n = 12 to « = 11. These 
changes occur at the unstable portion of the curve. The 
change from n = 11 to n = 10, etc., to n = 8, occur at the 
stable portion of the curves. This implies that // one can 
transverse the postlimit point branches), he would move 
along the n = 13 (with decreasing load) curve, then along the 
n = 12 and n = 11 curves (with decreasing load). Then along 
the n = 11 curve, the system moves with increasing load until 
it reaches the n = 10 curve. Then it moves along the n = 10 
curve until it intersects the n = 9 curve, etc. In reality, 
though, under dead weight loading, the system reaches the 
limit point, and then it snaps through (violent buckling) 
towards far stable equilibrium positions. During the snapping 
process, it is clear from this figure that the shell experiences 
changes in the circumferential mode, corresponding to 
various //-values. 

For £ = 1 and 2 the behavior is similar to that of Fig. 1. As 
£ increases, changes in behavior take place, which behavior 
becomes similar to the one corresponding to £ = 4, and 
plotted on Fig. 2. Note that for n > 10, there is no limit point 
instability, but for n = 9, 8, 7 there exist limit points. The 
response, though, as the system is loaded quasi-statically from 
zero, is along the n = 10 path and snapping takes place at the 
load level corresponding to unstable bifurcation (the n =10 
and n = 9 paths cross). Even for this imperfection amplitude 
(£ = 4), violent buckling is predicted with change in cir­
cumferential mode. Finally, for the unstiffened geometry, 
Fig. 3 presents the effect of the imperfection amplitude, £ on 
the limit point load, \' = NXX /NXX(./, and on the minimum 
load, Xm = Nja ^ !Nxxd. Note that Nxx • corresponds to the 
minimum equilibrium load in the postlimit point region. 

According to this figure, for £2:4, there is no possibility of 
snap-through buckling. The cylindrical shell simply deforms, 
with bending, from the initial application of the load. 

For the stiffened geometries, the results are presented in 
Figs. 4 and 5. The classical values for A^ are 61,680 N/cm 

for external positioning of the stiffeners and 34,660 N/cm for 
internal. 

The results, for the external positioning of the stiffeners, 
are presented in Fig. 4. It is seen from this figure that the 
response is similar to the unstiffened geometry (Figs. 1 and 2), 
but the number of full waves is smaller (this is an effectively 
much thicker thin shell). Note that the lowest limit point 
corresponds to n = 4 for £ = 1. Similar changes in behavior 
(to the unstiffened) are observed as £ increases. Another 
important similarity to the unstiffened shell behavior, is that 
this configuration is also sensitive to initial geometric im-

that w° .=h), perfections. When £ = 1 (which means 
X' = 0.77 and when £ = 4, X' = 0.46. 

The results, for the internally stiffened configuration, are 
shown in Fig. 5. The dashed lines correspond to n = 4 and the 
solid lines to n = 3. Data for other «-values need not be shown 
on this figure. The three sets of curves correspond to £ = 0.5, 
1, and 4. Note that, for £ = 0.5, limit-point instability occurs 
at N^ = 31,170 N/cm with n = 4. Also note that, during snap-
through buckling, a change of circumferential mode occurs 
(to « = 3). The minimum equilibrium load in the postlimit 
point region corresponds to n = 3. On the other hand, for 
£=1, snap-through buckling occurs at Nxx = 2%,120 N/cm 
because of the existence of an unstable bifurcated branch 
(corresponding to n = 3). The minimum equilibrium load, for 
£ = 1 also, corresponding to n = 3. Finally, there is no 
possibility of a snapping phenomenon, for £ = 4, neither 
through the existence of a limit point nor through the 
existence of an unstable bifurcated branch. It is observed that 
this configuration is not very sensitive to initial geometric 
imperfections. For £ = 0.5, X'=0.9 and for £=1.0. X'=0.84. 
This is attributed to two reasons: (a) internally stiffened 
configurations are less sensitive than externally stiffened ones 
and stiffened configurations are less sensitive than unstiffened 
ones, and (b) for this reported case, SS-3 with Mxx=a^Nxx 
boundary conditions are used, which has a stabilizing effect. 
The primary reason, though, is the former. 
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Where E is the Young's modulus, G the shear modulus, A the 
area of cross section of the strip, 1^ and Iyy the second 
moments of the area about the x andy axes, respectively, J the 
Saint Venant torsional stiffness, Nz the net axial load, e its 
eccentricity, p the density, and T the time variable. 

Solution and Discussion 

For simply supported edges, u0 and 6 can be assumed to 
vary sinusoidally along the span and the governing equation 
(1) simplified to 
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Introduction 

Flat rectangular strips subjected to an eccentric axial load 
exhibit coupled flexural torsional modes of vibrations. The 
coupling between the flexural and torsional modes depends on 
the axial load and the amount of eccentricity. Their effect is to 
increase the torsional frequency and decrease the flexural 
frequency. 

Figure 1 shows a flat rectangular strip of uniform thickness 
on simple supports and stretched by an eccentric axial load 
which results in a linearly varying axial stress distribution. 
When (L/b) is sufficiently large, fibers normal to the z-axis 
can be assumed to remain straight and the transverse 
displacement "v" in the ^--direction of any point on the strip 
can be given in terms of v0, the lateral displacement of the 
cross section as a whole, and 8, its rotation, as v0 +x8. The 
lateral force in the ^-direction on an elemental fiber of length 
"dz" and area tdx, produced by the axial stress o^ is ozz 

(d2v/dz2) tdxdz. Integrating this term over the cross section, 
the net transverse force and torque which couple the trans­
verse ^-flexural and torsional motion, can be obtained. 
Taking these into account besides inertia, Euler bending, and 
St. Venant torsion of the strip, the governing equations can be 
written as, 
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Fig. 2 Variation of A with 6 and a 

where \( = pk2L2/Em2ir2e0) is the dimensionless frequency 
parameter, e0 the average axial strain, e ( = e/b) the ec­
centricity ratio, k the circular frequency, m the wave number 
and L>0 and d are the maximum amplitudes of v0 and 6, 
respectively. A/o and A,0 are the values of X for uncoupled 
flexural and torsional vibration, respectively, when the ec­
centricity is zero and can be expressed as 

m2Tr2EIrr . 7T2Q:6 
A / 0 = l + 

N7L
2 = 1 + 

= 1 + 

12 

GJA 

~NJyy~ 
= 1 + 

2d 
1+|U (3) 

where n is the Poisson's ratio of the material, 5( = (mb/L)2) is 
a slenderness parameter and a ( = (t/b)2/e0) is a dimen­
sionless parameter representing the relative significance of 
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Fig. 3 Positions of the axes of rotation for the coupled transverse 
lateral and torsional modes, i) versus eccentricity parameter e for & = 0, 
0.01,0.4, and 2.5. 

thickness effects (Euler bending and St. Venant torsion) with 
respect to the membrane effects produced by axial tension. 
The characteristic equation for X can be obtained by setting 
the determinant of the square matrix in equation (2) to zero. 
This is quadratic in X and can be solved for various values of 
d, 5, and e. The two roots of X in general represent a 
predominantly torsional (X,) and a predominantly flexural 
(\f) mode. 

For the case of zero eccentricity, the vibration modes are 
uncoupled and the two roots are \f and X,0 respectively. 
Their variation with d is given by the curves in Fig. 2 for 
which e is zero. When d is zero we have, X, = Xy = 1, which 
corresponds to the strip vibrating like a membrane. When the 
average axial strain e0 (or the tension in the strip) tends to 
zero, i.e., d~oo, we get X,0 = 2d/(l + /*) and X/0 = ir2a5/12, 
which are the St. Venant torsion and Euler bending frequency 
values of X. 

The effect of a typical eccentricity ratio e of 0.25 is also 
shown in Fig. 2. The effect of eccentricity is to raise the 
torsional frequency and to lower the flexural frequency. This 
effect is a maximum when the strip is a membrane (d = 0) and 
reduces as thickness effects represented by nonzero values of 
d become significant. It can also be seen that the slenderness 
parameter 8 has got a significant effect on the flexural 
frequency but its effect on the torsional frequencies is felt 

only when eVO and is marginal. For the case of d = 0, the 
solution for the coupled frequenceis can be obtained as 

X, = 1 + 2V3e; Xf = 1 - 2vle. (4) 

For nonzero values of a the solution of X, and \f can be 
written as 

^ , 2d 
X, = l + _ _ + c; 

1 + /JL 
Af- 1 + 

7T25d 

T2~ C. (5) 

„ 7 IY, 48(e)2 \ Vl 1 / 2 7T25\ 

It may be noted that for d = 0, C=2VJe as in equation (4). 
This explains the linear variation of X with e in Fig. 2. The 
reduction in \f is same as the increase in X,. For large values 
of d the effect of the axial strain and consequently the effect 
of eccentricity diminishes and X, and X/ remain almost 
constant with e. This is shown for d=10 in Fig. 2. The 
variation of X with e for a = 0.4 is also shown in Fig. 2. 

When the vibration modes are uncoupled, the cross section 
of the strip rotates about the z-axis for the torsional mode and 
about an axis parallel to the z-axis at x= oo for the flexural 
model. When the modes get coupled because of the eccentric 
axial load these axes shift. The distance r\ of the axis of 
rotation from the center of the cross section can be obtained 
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from any one of the equations (2) as equal to -u0/6. Figure 3 
shows the variation of i? ( = y/b) for various values of a. 
When a = 0 we have 

fif =oo and rj, = 0 for e = 0 
and 

i j / = -r), = 1/2V3) for eVO 
Thus there is a step discontinuity at e = 0. This fact manifests 
itself in a very interesting manner in practice. When long and 

very thin strips loaded by uniform axial tension are tested for 
vibration, though one can get the pure flexural and torsional 
frequencies, pure torsional and flexural mode shapes as 
signified by ij, = 0 and % = oo are difficult to achieve: Even a 
small error* in the symmetry of loading causes a large shift in 
the axes of rotation as by the large slope of the f/ curve near 
e = 0 in Fig. 3. For large values of a, the variation of % with e 
becomes a rectangular hyperbola and that of ?j, becomes a 
straight line. 

Higher Modes for the Compressible Elastica 
on an Elastic Foundation 

J. V. Huddleston1 

Introduction 

The paper by Nicolau and Huddleston [1] used a set of 
nonlinear differential equations and a numerical method to 

solve the problem of buckling of a compressible elastica on an 
elastic foundation. It assumed foundation moduli in the 
relatively compliant range where the first or critical mode of 
buckling is a single-half-wave configuration. As the foun­
dation enters a stiffer range, however, multiple-half-wave 
buckling becomes critical. This Brief Note uses the theory of 
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[1] to correctly find the higher buckling loads and critical 
mode shapes and compares them with the classical predic­
tions. It also uses the method of [1] to analyze the post-
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buckling behavior for different numbers of half waves and, 
for one combination of system parameters, traces the post-
buckling process through its entire range. 

The Linearized Problem 

The boundary-value problem represented by equations (A), 
(B), and ( Q of [1] can be linearized for the purpose of finding 
the buckling loads, as was done previously for the com­
pressible elastica without reactive foundation by Huddleston 
[2]. This is achieved by replacing sin0 by 6 and cos0 by unity in 
the differential equations: 

(1) 
dd 

~dV 
M 

EI 

duv 

V-S<^EA>-

(3) 
dx = ! + • 

N 
EA 

t ^ d s 1 N 

dx EA 

(5)^£ = 4__1, 
dx dx 

,~ dN „ dd , n 

dx dx 

md2-NJ»—k,u. 
dx 

dM 

dx 

W ^ - ( | ( l + —) EA) ' 

(A) 

Next assume that N = constant = —P (this additional 
assumption was not necessary in [2]), so that, from (7), 

and, from (8), 

dQ 
dx 

dM 

dx 

-P-
de 

~dx 
' fCy Uy , 

-e('-s)-

(B) 

(O 

Now assume that EA is a constant, say EA0, and combine 
equations (B) and ( Q : 

cPM / P \ dd / P \ 

"-K1-^)-*--*^1-!^)"'- (Z?) 
dx2 

From (2), 

1 
^ M v 

p C?X2 (£) 

£«40 

and hence, from (1), 

EI 

1 -
dx2 

£^o 

= M. ( f ) 
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Now assume that EI is a constant, say EI0, differentiate 
equation (F) twice, and substitute equations (D) and (E) to 
obtain: 

Eh 
-—- + P—r£ +kv dx4 dx2 (1-]£>'=0-

i 
EAn 

Introducing the compressibility measure C defined by 

A0L>' 

one can rewrite equation (G) as follows: 

d*Uy 

'dxT EI0\ 
1 - C -

PL2 

~~Eh dx2 

PL2 

EIn 
/ PL* \ 2 

(G) 

tfO 

(V) 

Equation (I) is the linearized fourth-order differential 
equation that reduces to the classical form for C = 0. 

Next assume that ky = constant = kf to facilitate the 
solution of equation (I), and introduce the following 
dimensionless variables: 

[/„ 

X = 

Kf = 

ZL 
L ' 

X 

~L 

PL2 

~~E~h 

Eh 

(/) 

The dimensionless fourth-order differential equation is then 

d4U d2U 
y +T{\-CT)--^ +Kf(l-CT)2Uy=0. (K) dX4 dX2 

Solution of equation (K) and use of boundary conditions on 
Uy and Uy " at X = 0 and X = 1 gives the following eigen­
values: 

For zero C: 

r' = 7 r 2 ( / 2 + 7&) ' i=1'2 (£) 
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and, for nonzero C: 

(/2 7T2 + 2CK/) ± V(/2 7T2 + 2CKff - 4C(/2 TT2 + CKf)(i* it4 + Kf) 
J . — 

2C(pTr2 + CKf) 
i = 0,1,2, . (M) 

Equation (L) agress with the eigenvalues found by by equations (X) and (M) for C = 0.001 (a moderately 
Timoshenko and Gere [3], and equation (M) reduces to that compressible elastica) and various values of Kf (ranging from 
found in [2] for the case Kf = 0. compliant to very stiff). The value of i, of course, is the 

Table 1 gives a comparison of the eigenvalues as determined number of half waves into which the member buckles, and the 
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1.2 1.4 

critical value is the lowest one given by each equation 
(denoted by an asterisk in Table 1). Already for Kj = 400.0, a 
case considered in [1], the classical theory predicts that the 
switch in the critical mode from one half wave to two half 
waves has occurred, but the corrected theory shows that the 
single half wave is still critical. Similarly, for Ks = 4000.0, 
the classical theory predicts three half waves but the corrected 
theory predicts two. Finally, for Kf = 40000.0, the classical 
predicts five and the corrected three. 

Solutions of the Nonlinear Problem 

Two cases have been selected from Table 1 for further 
study. One is the case of C = 0.001 and Kf = 400.0 con­
sidered in [1]. By means of the numerical algorithms used in 
that reference, the initial postbuckling curves for one, two, 
three, and four half waves have been determined from the 
nonlinear boundary-value problem. The curves of dimen-
sionless force versus end rotation are plotted in Fig. 1, and the 
curves of dimensionless force versus dimensionless end 
reaction are plotted in Fig. 2. The one-half-wave curves, of 
course, reproduce results already reported in [1]. The reaction 
RA in this Brief Note is the same as that symbolized by R VA in 
[1]. 

A second case selected for further study is that of C = 
0.001 and Kf = 4000.0, for which the exact theory predicts 
two half waves as the critical mode. The complete buckling 
and postbuckling process has been examined in this case, and 
the results are shown in Figs. 3,4, and 5. As the displacement 8 
of the movable end of the strut is increased, the force P in­
creases, with 6A and RA remaining zero, until bifurcation 5, 
(P= 133.362) is reached. At that point the member will buckle 
into either of two antisymmetric shapes each having two 

symmetric half waves. Assuming that the buckling begins with 
a positive 8A, as shown in the figures, P decreases while 6A 
and RA increase. At point B2, the system will bifurcate again 
into either of two antisymmetric shapes each having two 
unsymmetric half waves, but which of the two directions on 
the new paths it will take depends, as at Blt on the im­
perfections of the particular system. If it branches with 
decreasing 6A and RA, another bifurcation point B3 will be 
encountered shortly where totally unsymmetric shapes will 
become possible equilibrium configurations. It is apparent 
from Fig. 5, however, that unless compelled otherwise by 
external influences the system will continue on the an­
tisymmetric path. If, at B2, the system branches with in­
creasing 6A and RA, the solution does not show another 
bifurcation point until BA, which is in the negative-P regime, 
and it appears from Fig. 5 that the system would tend again to 
remain on the antisymmetric path. After returning to zero 
force, where the shape is symmetric with respect to the x-axis 
on either of the antisymmetric paths, the rest of the post­
buckling process will follow along paths that can be inferred 
from the existing results by the kind of global analysis in­
volving reflections and inversions that was carried out in [1]. 
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Energy-Release Rate in Elastic-Plastic 
Fracture Problems1 

A. G. Herrmann2 and G. Herrmann.2 It is believed that 
the analysis and results presented in this paper cannot be 
correct for several different and independent reasons. 

1 So-called path-independent integrals can be meaningfully 
discussed only for closed paths enclosing a defect. They are 
derived via Gauss theorem which requires closed surfaces or 
contours. The authors, however, consider an open path. The 
same inadmissible consideration is also applied, incidentally, 
in references [5] and [6] of the paper by the same authors. 
This renders their proof of path-independence invalid. 

2 Path-independence of an integral means that the path can 
be absolutely arbitrary as long as it is closed. But the authors 
are not able to let their path enter or cross the process zone 
and thus the very foundation on which the / , L, and M in­
tegrals are based, as discussed in references [2] and [3] of the 
paper, are violated. The decomposition (equation (20) of the 
paper) implies that all integrals involving Ja, L3, M, and /are 
taken around a crack tip. Even for a straight crack in static 
elasticity the contours for L and M are taken around the 
whole crack. (See e.g. reference [3] of the paper.) 

3 Rice's / integral is based on the translational invariance 
requirement. In the purely elastic body, as a plane crack 
grows, the stress field around the crack moves with the crack 
tip. In the case of elastic-plastic fracture, however the plastic 
deformation (or process region) is left behind (as a wake) and 
thus translational invariance is violated. 

4 For a curved crack considered by the authors, trans­
lational invariance is again obviously violated as the crack 
grows, which renders their results invalid. 

5 It has been shown [1] that even for a plane crack only one 
component of the so-called /-vector (namely Rice's integral) is 
path-independent, while the other is indeed path-dependent. 
Thus authors' proof concerning path-independence is again 
invalid. 

By S. Aoki, K. Kishimoto, and M. Sakata, and published in the December, 
1981, issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 
825-829. 
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Authors' Closure 

We appreciate the discussers' interest and comments. Their 
remarks are thought to come from the difference in the in­
terpretation of the crack model adopted in the paper. The 
authors have considered that the fracture process region is of 
a finite size. Since the usual continuum mechanics cannot be 
applied to this region where microstructural processes take 
place, an attempt has been made to relate * (i.e., the time rate 
of the energy change referred to the fracture process region 
Aeai near a crack tip) to the physical quantities in the regular 
region A, where the continuum mechanics work. 

1. The fact that the values of Ja, Lit and M do not 
depend on the choice of T + Ts for a prescribed rend is proved 
by using a closed contour (r + rs)> and Gauss theorem in the 
Appendix of the paper. 

2. It is noted that the J, L, and M integrals are thought to 
be defined using a model with an infinitesimal fracture 
process region. In the fracture process region with a finite size 
as considered in this paper, the usual continuum mechanics do 
not work; therefore one cannot consider a path entering or 
crossing the process region. 

We have focused our attention on one crack tip. If we 
consider both crack tips simultaneously, it would be possible 
to take Tend as the sum of rend of each crack tip plus the path 
along the crack surfaces, and T as a contour surrounding the 
whole defects, i.e., a crack and both process regions (Ts is not 
necessary here because the crack surfaces are included in the 
rend). In the case, the path T is the same as the path for L and 
Min[3]. 

3. It is obvious that the assumption of translational in­
variance does not hold in the case of elastic-plastic fracture. 
Therefore, the authors have considered deformation of the 
process region during crack extension. This fact reflects that * 
cannot be presented only by the translation component Ja (see 
equation (20)). The I includes the energy change associated 
with the nonsteady deformation and contributes considerably 
to*. 

4. The authors have also thought that translational in­
variance is violated for a curved crack. This is why * includes 
not only Ja, but also L3, M, and / as shown in equation (20). 
It is thought that L} is important in this case. 

5. By introducing r s , i.e., the path along the crack sur­
faces, we have obtained the path-independent (in the sense of 
the first comment of this Closure) Ja integral. 
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DISCUSSION 

On the Formulation of Strain-Space 
Plasticity with Multiple Loading Surfaces1 

J. L. Kauschinger.2 The authors are to be congratulated 
for their valuable contribution to the knowledge of con­
stitutive modeling of nonlinear materials. It is clear that a 
formulation in strain space has important numerical ad­
vantages over a classical stress space model. It would appear 
that the authors next line of attack should be to present an 
approach for obtaining the appropriate material parameters 
from laboratory tests, and to propose functional relationships 
for modeling various materials. 

While in general, a stress space formulation will require an 
inversion of the compliance matrix to obtain the stiffness, 
many times this inversion can be performed algebraically, as 
in the case of Prevost [4]3, and thereby the computational 
expense needed to obtain the stiffness is alleviated when 
performing finite element calculations. 

When selecting the nesting rule used to harden the active 
yield surface, the only strict requirement is that the con­
sistency condition be upheld. Although Prevost has arbitrarily 
selected a Mroz-type rule for use in his stress space for­
mulation, the possibility of using Prager's Kinematic Rule is 
not excluded from his model [13]. It is true on the other hand, 
that when implementing Prager's Rule in a nested surface 
theory in conjunction with a Von Mises-type failure criterion, 
there must be a coupling between the translation of the 
present active surface and the next outer one, thereby in­
creasing the computational effort. It should be emphasized 
that even in a strain space formulation the user must select 
some nesting rule. It is hoped that the hardening rule selected 
will portray the actual behavior of the material as measured in 
the laboratory. Undoubtedly, this comparison will represent 
the ultimate test of any functionals selected for use in a 
model. 

Thus, while the advantages of a strain space formulation 
are many, particularly for monotonic loading, backtracking 
errors that develop during reversals when modeling an 
elastoplastic material cannot be eliminated when using either 
formulation. Therefore, it appears to this writer that the 
problems associated with implementing a classical stress space 
model are not as serious as the paper under discussion would 
seem to indicate. This conclusion was reached by this writer 
after implementing the Prevost Model [4] in a computer code 
for the purposes of simulating soil behavior. 

Authors' Closure 

The authors appreciate Kauschinger's interest in the subject 
paper and find themselves in general agreement with many of 
his observations. However, his comments about nesting rules 
deserve some further discussion, as does the question of 
backtracking error. 

By P. J. Yoder and W. D. Iwan, and published in the December, 1981, issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 773-778. 
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Although it has become customary in stress-space plasticity 
to require the various surfaces to nest as loading proceeds, 
this practice does not appear to stem from phenomenological 
considerations. Given the current stress and stress increment, 
after all, there is never any difficulty in determining the 
corresponding strain increment. Even if the stress happens to 
lie at a point where several yield surfaces cross, one simply 
finds the plastic contributions from each and sums them. 
However, when one is given the strain increment and needs to 
compute the corresponding stress increment, as typically 
happens in finite element programs, there arises a problem in 
determining which of the potentially active surfaces are in fact 
producing plastic strain. This difficulty comes about because 
the traditional loading criteria are based on the unknown 
stress increment. It was primarily to sidestep this issue that 
nesting rules were introduced in the first place. If one 
somehow contrives to force the yield surfaces to touch 
tangentially whenever they intersect, then at any given instant 
either all of the surfaces passing through the stress point will 
be active or else none of them will. 

These considerations led Pre'vost [4, 13]' to incorporate a 
nesting rule into his models for soil mechanics. Based on 
stress-space yield surfaces, these models lead directly to ex­
pressions for the elastoplastic compliance, which in turn are 
inverted through recourse to the nesting rule. This nesting rule 
has other ramifications, though, some of which are hard to 
conceptualize physically. For instance, if one tries to preserve 
Prager's kinematic hardening law by requiring each surface 
being loaded to move parallel to its own local normal, the 
surfaces outside of it must all somehow be made to move out 
of its way. 

An alternative approach, as outlined in the subject paper, is 
to abandon nesting rules altogether. It should be emphasized 
that neither the stress nor strain-space models discussed 
therein make use of any such rule. Even so, it remains possible 
under fairly general conditions to obtain the elastoplastic 
stiffness. One particular class of models stands out among all 
those considered, namely, the ones based on uncoupled, non­
nesting, strain-space loading surfaces. For models of this 
type, the loading surfaces act independently of one another 
and the stiffness is found quite simply by adding the con­
tributions from each. 

An additional advantage of these strain-space models is 
that the loading criteria are based on strain rather than stress. 
Thus one can determine whether there has been a loading 
reversal directly from the strain and strain increment, which 
can readily be calculated at the close of each time step. Stress-
space models, on the other hand, require one to guess whether 
there has been a loading reversal before updating the stress. 
For this reason, the strain-space models should be somewhat 
less prone to backtracking error. 

This promise of improved performance under loading 
reversals, while not compelling in and of itself, does lend 
support to the arguments in favor of the strain-space for­
mulation. So, too, does the added flexibility that results from 
being able to use non-nesting loading surfaces. Of course, as 
Kauschinger intimates, a plasticity model is useful in any 
particular application only to the extent that its predictions 
agree with experimental results. The authors anticipate that 
the strain-space models will indeed prove useful in describing 
the constitutive behavior of real materials. 

Numbers in brackets refer to references in the subject paper. 

SEPTEMBER 1982, Vol. 49/677 

Copyright © 1982 by ASME
Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



DISCUSSION 

A Modified Strain-Energy Density Criterion 
Applied to Crack Propagation1 

G. C. Sih2 and E. E. Gdoutos3. First of all, the discussers 
wish to thank the authors for their candid view on applying 
the strain-energy density criterion to the angle crack problem. 
The selection of a suitable failure criterion to examine 
material damage caused by fracture and/or yielding is 
problematic, because the process can often be prejudiced by 
the investigator(s) on the basis of how well his or their ex­
perimental data agree with the theory. Generally speaking, it 
is not difficult to show that several competing failure criteria 
can be made to agree equally well with the data of a single 
physical problem but it becomes much more demanding to 
have a single criterion that can consistently explain a 
multitude of physical phenomena. Of equal importance is that 
approximations introduced through stress analysis should not 
be attributed to limitations of the failure criterion. This point 
was discussed in detail in 1974 [1] with reference to fracture 
experiments on beryllium. Needless to say, better accuracies 
are obtained when the complete strain-energy density ex­
pression is used rather than just the singular terms. Although 
the choice of number of terms affects the end results, it has no 
bearing on the original failure criterion. The so referred to 
"thinking ability" must indeed be left to the investigator.4 

The versatility of any criterion can only be judged by its 
consistency and generality in application. 

More specifically, this discussion is intended to clarify the 
basic ideas behind the strain-energy density theory which 
apparently have escaped the attention of the authors. The 
concocted modifications outlined in the paper are found to be 
groundless and serve no useful purpose. Ironically, the 
authors' criticisms apply quite appropriately to their own 
work. For instance, the mean strain-energy density factor S as 
defined by equation (8) in the paper can hardly have more 
physical meaning than the strain-energy density factor S itself. 
For a linear elastic material, S can be written as [2] 

S = Sv+Sd (1) 

in which Sv corresponds to the dilatational component and Sd 

to the distortional component. The former is assumed to 
govern fracture while the latter to yielding. More details on 
this will be given subsequently. In general, S is associated with 
the strain-energy density function dW/dVby the relation 

dW S 
Hv=T (2) 

with r being the linear distance locating a possible failure 
site.5 Only in the case of a linear elastic material can S be 
computed from the stress-intensity factors. The expression in 
equation (2) applies to a typical material element at a 
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Even in solving a quadratic equation involving two roots, the analyst must 
have the capability of recognizing that only one of them may be physically 
admissible. 

Failure does not necessarily initiate from an existing macrocrack. It can 
occur anywhere in the solid depending on the conditions assumed by the 
criterion. 

distance 6 r0 from the site of failure initiation, say a crack tip. 
The angular position of the element, denoted by 6, determines 
the direction of fracture or yielding. It suffices to use the 
singular term in the expansion of dW/dV if information is 
required only on failure inititation [3], Of course the entire 
dW/dV field must be considered for determining the crack 
trajectory [4]. There is no sense to investigate one additional 
term at a time unless the truncation error is evaluated. The 
direction of the element that initiates fracture is assumed to 
correspond with Smin or (dW/dV)min for a fixed r and the 
direction of the element that initiates yielding with Smax or 
(dW/dV)mm. In this connection, the hypotheses A and B 
posed by the authors are inconsistent. One refers to the 
position of a specific element for which S possesses a relative 
minimum and the other considers the values of S for all the 
elements averaged from 0 = 0-360 deg. It is inconceivable how 
S could be claimed to have more physical meaning than S. 
What the authors have failed to recognize is that both Smin 

and Smax attain different critical values: one for the initation 
of fracture and the other for yielding. In a given problem, 
there may exist a number of Smin. It is the maximum of Srain or 
S™fn

x where fracture will first initiate. Furthermore, the 
critical value of S or Sr can be related to Kx, as 

Sr = 
{\ + v)(\-2v) 

2lriE Kl (3) 

where E is Young's modulus and can be determined by the Kic 

tests recommended by ASTM. While Sc can be interpreted as 
the fracture toughness of the material, S has no such 
meaning. 

To be emphasized is that the strain-energy criterion as used 
by the authors in a concocted fashion represents only a special 
case of the more general theory [5] based on 

d w Vu
 J 

In equation (1), dW/dV applies to all materials, either linear 
[3, 6]) (nondissipative) or nonlinear [7, 8] (dissipative). ay and 
ey are the stress and strain components referred to the rec­
tangular Cartesian coordinates. It is worthwhile to review the 
following basic assumptions [5]: 

(1) Yielding and fracture are assumed to coincide with 
locations of maximum of the local maximum and minimum 
of the strain-energy density function (dtV/dV)mBX and 
(dW/dV) min, respectively. 

(2) Yielding and fracture are assumed to occur when the 
maximum of (dW/dV)mBX and (dW/dV)min reach their 
respective critical values. 

(3) The amount of incremental growth r,, r2, 
. . . ,rJt . . . ,rc is governed by 

\~d~v~)c ~TX ~T2 ~~ ' ' ,j 

if the process of yielding and fracture leads to global in 
stability,7 i.e., 

-1= . . .= — =const. (5) 
r, rc 

rx <r2< • • - < 0 < .<rc (6) 

and rc corresponds to the critical ligament size of the material. 

This is a limiting distance within which the influence of material 
microstructure must be accounted for. 

For a process that leads to arrest in yielding and/or fracture, the ratio Sc/rc 

in equation (3) is replaced by S0/rQ such that rt >r2>. . . >rj> . . ->r0. 
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DISCUSSION 

In contrast to the introductory remarks in the paper, the 
strain-energy density criterion is fundamentally different 
from the von Mises yield condition as it attempts to address 
material damage due to the simultaneous influence of yielding 
and fracture. The proportion of the distortional and 
dilatational energy component is weighed automatically by 
the stationary values of dW/dV regardless of whether the 
crack is in the elastic portion of the elastic-plastic material [8] 
or in the fully plastic material8 [9]. The critical values of 
dWIdV for yielding and fracture are obviously different and 
they occur at different locations. This interpretation is per­
fectly clear and requires no modification. In fact, in the 
neighborhood of any point in a stressed solid, there exists a 
local (dW/dV)mm and (dW/dV)min. Their maximum values 
(dW/dV)™™ and (dW/dV)™fZ corresponds to locations of 
yielding and fracture initiation. For the case of a crack in 
uniform tension, the former occurs at 0max =cos" ' ( l -2i>) 
where v is the Poisson's ratio and the latter at 0 = 0 deg. The 
important point is that for ductile materials, yielding and 
fracture have to be addressed simultaneously.9 The critical 
values of (dW/dV) ™* and(drV/dV)ZZ denote the initiation 
of local yielding and fracture. There exists another pair of 
global stationary values of (d\V/dV)m!ix and (dW/dV)min 

whose critical values govern the global instability of the solid 
or specimen due to yielding and/or fracture. This condition 
corresponds to 

\ dV J c rc (7) 

where (dWldV)c can be measured experimentally from the 
area under the true stress-strain curve [10]. Note that from 
equations (3) and (7), rc can be determined. Hence, for any 
fracture process that involves crack initiation, slow growth, 
and termination at least two of the parameters in equation (7) 
will have to be specified for a given material. This procedure 
has been applied to a number of problems involving ductile 
fracture [11, 12]. 

Contrary to one's physical intuition, the authors' claim that 
the lowest applied stress for initiating fracture corresponds to 
/3 = 72 deg rather than /3 = 90 deg when the load and crack 
plane is normal to one another. This was based on S 
possessing a weak maximum at 0 = 72 deg. They attempted to 
explain this effect by the influence of Mode I and II in­
teraction for which the discussers cannot comprehend. Mode 
II prevails only because /3^90 deg. With reference to the work 
of Sih and Kipp (reference [13] in the paper), the /3 — 70 deg 
phenomenon was clearly explained and attributed to the two-
term approximation in the stress expression. The S-criterion 
cannot correct numerical inaccuracies. Sih and Kipp showed 
that the lowest failure stress indeed occurred at /3 = 90 deg 
when the exact stress expansions were used while no change 
was made on the S-criterion. This serves as an excellent 
example of the danger of concocting analysis and forcing the 
results to agree with unexplained experimental data. Indeed, 
the experimental data of Williams and Ewing (reference [5] in 
the paper) exhibited the /3 —70 deg phenomenon. This effect 
was due to the Mode I and III interaction and not that of 
Mode I and II as claimed by the authors. In tensile specimens, 
there is the tendency for the crack to deviate from the plane 
normal to the specimen surfaces resulting in the additional 
influence of Mode III. In such a case, indeed, an exact three-

It has been shown that the condition (rfWVdV)min still governs the direction 
of crack growth when yielding at large takes place [9]. This result is shown 
numerically from the finite element solution of a crack in a fully plastic 
material. 

The modifications in the paper failed to recognize the simultaneous 
treatment of yielding and fracture and provided no improvements of any kind. 

dimensional analysis of the embedded flat elliptical crack 
solution confirmed [2] that the lowest failure stress 
corresponded to a Mode I and III loading situation rather 
then Mode I. This has been known in the open literature for 
some time. 

Somewhat disconnected from the main body of the paper, 
the authors further concluded a paradox in the S-criterion 
that was concerned with predicting crack bifurcation [13] due 
to the dynamic effect of running cracks. Reference was also 
made to the /3 = 72 deg phenomenon which, as explained 
earlier, refers to crack initiating under static loading. These 
two situations are clearly not the same and should not be 
confused with one another. In fact, it was shown in 1976 [14] 
that for v = 0.21-0.24, the Smin condition did predict the range 
of half bifurcation angle of ±18.84-±15.52 deg. The results 
for p = 0.25 was given in [13] and agree well with the S-
criterion prediction. Again, it serves only a necessary con­
dition but not sufficient to justify the verification of the 
criterion. 

In conclusion, the discussers failed to see the advantage of 
the S approach which, in fact, tends to confuse the issue and 
leads to false conclusions. The semilobes represent no more 
than the graphical display of results and yield no additional 
information other than the location of Smin. The three 
assumptions stated earlier for dW/dV are sufficiently general 
to describe the complex behavior of the damage process by 
fracture and/or yielding provided that the appropriate stress 
and/or strain analysis is performed. 
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DISCUSSION 

Authors' Closure 

The authors wish to thank the discussers for the chance 
offered to clarify some basic ideas which drove to one 
essential modification of the S-criterion, introduced by Sih. 

Before that, we have to clarify a few topics of secondary 
importance raised in the discussion. 

1. We never attributed any limitations of the S-criterion 
to numerical inaccuracies introduced by the singular stress 
expressions. We just used the exact expressions, instead of the 
one, two-term, etc. approximations, usually used, which 
sometimes drive to a "personalization" of each term and to 
conclusions of the kind: "The first term affects the crack 
initiation, the second controls the crack direction . . ." [1]. 
There are no individual terms in nature. There are only in­
dividual stress fields represented algebraically by expressions 
more or less accurate. Thus, the senior of the discussers 
should not feel disappointed, if the singular predictions differ 
from the exact ones. 

2. The versatility of a criterion is judged primarily by its 
rationality and then by its consistency and generality, as 
stated by the discussers. From a number of existing failure 
criteria, having the property of rationality, the best will be the 
criterion that also possesses consistency and generality. In our 
opinion, the original S-criterion seems to lack the property of 
rationality. 

3. Thinking ability is asked from the crack, according to 
the original S-criterion. It does not answer the question 
"which minimum?" as misleadingly claim the discussers, but 
answers the question "why and how a minimum?" To the 
former question a good answer was given by Swedlow [2], the 
answer being independent of the thinking ability of the crack. 
The second discusser used this answer in at least one of his 
papers [3]. 

4. ATn-mode does not prevail for P^O deg. It just exists 
for /3^0 deg, 90 deg. It prevails for /3<45 deg, where all the 
criteria are (incidentally?) more or less problematic. 

5. The discussers propose an experimental method for the 
determination of rc. We have been waiting for it since 1974 
[4]. Experimental results for the value of rc will be helpful, if 
available, to compare them with the radius of the initial curve 
of the caustics, which was rationally proposed by us as the 
boundary of the core region [5,6]. 

6. One's physical intuition is useful and productive but 
also dangerous. Intuitively, we agree with the discussers that it 
seems unphysical for a crack to propagate easier when (3 = 72 
deg than when 13 = 90 deg; we were compelled by the results of 
extensive experiments performed in PMMA, PCBA, and 57-S 
Aluminum alloy. In all cases, this extremum was always 
present, stronger in the brittle PMMA and weaker in the other 
two ductile materials. We do not accept the discussers' ex­
planation that this extremum is due exclusively to the presence 
of Km. The contribution of Km to the total strain-energy 
density is independent of angle j3 and, either S does not play a 
role in the fracture process (a fact that we do not believe), or 
the new explanation of the discussers is groundless. 

7. Concerning the explanation given by Sih and Kipp 
(reference [13] in our paper), they explained the theoretical 
extremum of fracture load and not the experimental as the 
discusser's claim. Their statement that the extremum is due to 
the influence of the second term of the stress expressions is 
answered in our first remark. They surely know that this 
extremum in fracture-stress was also predicted [7] some years 
before the introduction of a,,-criterion [8], although a 
completely different algebraic description (by means of an 
asymptotic expansion) of the stress-field was used. However, 
the situation is somewhat confusing. Predictions of ad and S-
criteria show an extremum somewhere around 70 deg, con­
trary to the S-criterion predictions. Experimental evidence is 
in favor of this extremum and the discussers felt obliged to 
fight this remarkable coincidence. 

680 / Vol. 49, SEPTEMBER 1982 

8. Sc is equally well connected with the toughness Klc of 
the material, as is Sc. Integration of equation (8) of the paper 
for /3 = 90 deg, immediately gives: 

(1 +,0(3-4,,) 

Having finished with the stuffing material, we will try to 
explain again our basic ideas that resulted in the introduction 
of the modified or S-criterion. Let us consider a simple 
example. A specimen with a crack at 0 = 90 deg is loaded 
uniaxially in tension (Fig. 1). It is assumed that the critical 
value Sc of the strain-energy density is known. It is also 
known that i?0 =0 deg. In the plane of energy-density, Sc is 
represented by a circle of constant radius Sc. As the external 
load increases, we consider an instant when the level of S-
distribution around the crack tip is as shown in the figure. It is 
a possible situation since Smin <SC. The elementary volume^ 
ahead of the crack tip, where the crack is expected to 
propagate, can bear higher strain densities, according to S-
criterion. But, what happens with the elementary volume at 
Bl It, exactly, bears the critical density, but, still, denies to 
fail. Why? Other elementary volumes, corresponding to arcs 
DE and FG, are more stubborn. How can one accept such a 
behavior? There are two answers. Either the elementary 
volumes are entities that possess a thinking ability and they 
know that they have to fail only when they are in the "right" 
direction, or S, having an angular character, cannot serve as 
the critical quantity. At present, we cannot accept the first 
alternative. On the other hand, the second alternative (that S 
is irrelevant) can hardly be believed. Thus, we have modified 
the S-criterion, replacing Smin by the mean value S in the role 
of the decisive quantity for crack initiation and keeping Smin 
as the decisive quantity for crack direction. This modification 
removes the fundamental irrationalities of the original S-
criterion, leaving its predictions unaffected. 

G 

Fig. 1 
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How does the modified or S-criterion work? At each load 
step the mean value of the strain-energy density stored around 
the crack-tip is geometrically represented by a circle. The 
crack initiates when the radius of this circle is greater or equal 
to the radius of the critical S, i.e., S= Sc. When this relation 
is fulfilled, the crack propagates to the direction of the 
minimum energy-density (Smin) according to the fundamental 
laws of mechanics [9]. 

From a physical point of view, the introduction of S implies 
the necessity of the existence of a low-elastic, strain-energy 
density level in the neighborhood of the crack tip, which when 
achieved, permits the initiation of the various fracture and 
yielding mechanisms. 

From the algebraic point of view, S is a positive quantity, 
increasing with the external load. Thus, S can reach a positive 
critical value (say Sc) only from below, and this obviously is 
first reached by the maximum value of S. Therefore, symbols 
like S™f* have only a formal value, not interpretable 
physically. 

Let us return, again, to Fig. 1. Concerning the behavior of 
the elementary volumes corresponding to S-values between 
DE and FG, the discussers may say that these volumes are at 
the direction of yielding and thus they do not fracture, being 
already yielded. But, according to their words " . . . yielding 
and fracture have to be addressed simultaneously" not only 
for ductile materials, as they say, but for all materials. 
Perfectly brittle materials do not exist. Simple, the brittle or 
ductile part of the whole failure character of an individual 
material predominates more or less in each case. This 
situation is clearly exemplified in Fig. 1 where, at the given 
load-level, elementary volume A is still unaffected, B is a little 
yielded and a little fractured, and C is yielded, according to 
original S-criterion. 

We feel that, exactly, such conclusions are "concocted." 
The problem asks for a more brave confrontation, where the 
fundamentally different influence of the two density com­
ponents Sv and SD on the failure process must be in­
corporated. In our opinion, this has already been done by the 
introduction of a new criterion, the r-criterion [10-12]. 
According to this criterion the distortional part SD of the total 
strain-energy density is responsible for the creation of a 
yielded zone around the crack tip, as is described by the Mises 
yield condition, SD= const. Outside the yielded area, 

dilational component Sv, being a module of normal stresses, 
initiates fracture processes like cleavage or hole growth and 
coalescence, according to modern concepts of fracture 
mechanics [13-15]. This approximation accurately describes 
the simultaneous but qualitatively different influence of SD 

and Sy to the failure processes, and includes S or S-criteria as 
limiting cases for purely brittle materials. 
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Finite Elements, An Introduction. By E. B. Becker, G. F. 
Carey, and J. T. Oden. Prentice-Hall, Englewood Cliffs, 
N.J., 1981. 258 Pages. Price/24.95. 

REVIEWED BY T. BELYTSCHKO1 

The finite element method has been the topic of ap­
proximately 30 books and monographs that have been 
published over the last 15 years. Nevertheless, many in­
structors still have difficulties in finding a text for advanced 
undergraduate or beginning graduate courses which will 
develop a sound, fundamental understanding of the method. 
This book presents a significant advance in that direction for 
those who wish a more rigorous, mathematical development. 

The book consists of six chapters. The first two are devoted 
to one-dimensional problems, emphasizing the development 
of a symmetric variational formulation for second-order, 
two-point boundary value problems and the smoothness 
required in the space of approximating functions. In the third 
chapter, a finite element program for one-dimensional 
problems is described, including the FORTRAN statements. 
Chapters 4 and 5 repeat the same material for two-
dimensional problems, including shape functions for triangles 
and quadrilaterals and numerical quadrature. Chapter 6 
presents an introduction to three-dimensional problems, 
fourth-order problems, and time-dependent problems. 

A notable feature of this book is that it develops the weak, 
or variational form, from the partial differential equations, 
rather than simply presenting the variational form as given; 
the latter approach bothers many of the better students who 
usually wonder where the variational form comes from. The 
concepts in this book are all developed with rigor, clarity, and 
conciseness. Once a student has mastered this book, he will 
certainly have a broader understanding of the mathematics of 
the finite element method than would be obtained from more 
conventional treatments. 

In using this book in my class, I found two types of 
response. Engineering students with a modest mathematical 
background found the book a little difficult as an in­
troduction; it requires simultaneously tackling the concepts of 
the weak form, finite element approximations, and notation 
and concepts to which they are unaccustomed. On the other 
hand, mathematically inclined students tend to find this book 
delightful. In addition to its value as a text, it is also 
recommended to finite element specialists who wish to 
familiarize themselves with the more recent developments in 
the mathematical aspects of the method. Even recently I have 
received papers submitted to the ASME JOURNAL OF APPLIED 
MECHANICS that deal with the continuity requirements and 
natural boundary conditions in the Galerkin method; this 
book presents an unambiguous, consistent development at an 
introductory level. 

Professor, Department of Civil Engineering, The Technological Institute, 
Northwestern University, Evanston, 111. 60201. 

This book is the first volume of a series of six on finite 
elements. If the quality of this volume is maintained in the 
forthcoming volumes, it should prove a valuable contribution 
to the finite element literature. 

Seismic Migration—Imaging of Acoustic Energy by Wave 
Field Extrapolation. By A. J. Berkhout. Elsevier, Am­
sterdam, 1980. pp. xii-339. Price $51.00. 

REVIEWED BY Y.-H. PAO2 

The purpose of this review is not to criticize Berkhout's 
book. Instead, it is intended to acquaint readers of the 
JOURNAL OF APPLIED MECHANICS with this seemingly 
mysterious topic. 

Seismic migration is the construction of a vertical cross 
section of the ground from the time traces of signals recorded 
along a line of receivers. The signals are generated by either a 
single source, or a distribution of sources along the line of the 
receivers. Mathematically, the problem is formulated as the 
determination of the wave speed c(x, y, z) and mass density 
p(x, y, z) of an inhomogeneous half .space z > 0, —oo < x, y 
< oo, from the known input at the surface, P0(x0, .Fo. 0, t), 
and the output P(x, y, 0, t). The P(x, y, z, t) satisfies a linear 
wave equation with a variable coefficient c2 V 2P = d2P/dt2. 

The complexity of the problem apparently is far beyond the 
mathematical and computational tools currently available. In 
fact, this mathematical inverse problem may be ill-posed, for 
which the solutions are not stable, nonunique, or even 
nonexisting. Nevertheless, oil companies have to find oil, and 
do find them underground by seismic prospecting. 
Geophysicists specialized in this area have developed various 
approximate methods to map geological cross sections from 
records of map-generated seismic waves. The Migration is one 
of these methods. 

A crude model for the cross section is a half space com­
posed of many parallel layers, each having a constant wave 
speed cfZj), and density p (z,). A more refined model is to have 
nonparallel layers, and to allow c and p to vary laterally in x, y 
directions. Methods of seismic migration are developed to 
improve the lateral resolution of the data gathering and 
processing. 

In this book, which is the first one devoted to the topic of 
seismic migration, the theory of migration is derived from 
first principles. Therefore, it contains some basic mathematics 
(Chapters 2-4) which are familiar to readers of the JOURNAL 

Professor, Department of Theoretical and Applied Mechancis, Cornell 
University, Ithaca, N.Y. 14853. 
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OF APPLIED MECHANICS. The ensuing chapters discuss three 
methods to extrapolate downward wave fields, and the 
imaging of the cross sections (the inverse techniques). Chapter 
11 compared different approaches to migration. To readers of 
the JOURNAL OF APPLIED MECHANICS, it would be benefical 
reading Chapter 11 first before reading Chapter 1, as the 
latter is incomprehensible to anyone outside the field of 
seismic prospecting. The last chapter (Chapter 12) discusses 
the limits of lateral resolution. 

Most of the book is confined to two-dimensional scalar 
wave field P(x, z, t). The three-dimensional case of scalar 
waves, P(x, y, z, t) apparently is still not within the reach of 
prospecting seismologists, let alone the case of vector elastic 
waves, including P and S-wave conversions, in 
inhomogeneous media. This points a direction of research of 
a literally very rich area for readers of JOURNAL OF APPLIED 
MECHANICS who are well versed in the subject of wave 
propagations in solids. 

Free Vibration Analysis of Rectangular Plates. By D.J. 
Gorman. Elsevier, North Holland, 1982. 324 Pages. Price 
$60.00. 

REVIEWED BY A. LEISSA3 

This work is a summarization and generalization of a 
number of previously published papers by Professor Gorman 
dealing with the free vibrations of rectangular plates. It 
presents the most comprehensive set of published analytical 
results to date for rectangular plates governed by classical 
plate theory; that is, the plates are limited to be homogeneous, 
isotropic, and thin, undergoing vibrations of amplitude less 
than the thickness, and free of inplane initial stresses. The 
book makes no comparisons with the voluminous numerical 
results found elsewhere in the literature, but stands upon the 
author's own accurate calculations. 

Chapter 2 presents comprehensive eigenfrequencies for the 
six cases of rectangular plates having two opposite sides 
simply supported and the others simply supported, clamped, 
or free. These problems have "exact" solutions in the sense 
that the eigenfrequencies are obtained from frequency 
determinants of finite size, in this case having orders no larger 
than four, arising from the well-known Voigt-Levy solution 
of the equation of motion. For each of the six cases, 64 
frequencies are presented for alb and bla = 1, 1.25, 1.5, ,2, 
2.5, and 3 where a and b are the plate dimensions. For plates 
having free edges (3 cases), results are given for two values of 
Poisson's ratio (0.333 and 0.5). 

Chapters 3-7 deal with the remaining 15 cases of plates 
having combinations of clamped, simply supported, and free 
edges. The method of superimposing infinite series of Voigt-
Levy solutions previously developed by the author and others 
is utilized to solve these problems. Convergence studies were 
made to establish the accuracy of the frequencies to four 
significant figures. Numerical results for frequencies are given 
typically for the first 10 modes in each case, for values of alb 
and bla as listed in the foregoing. Where free edges are in­
volved, Poisson's ratio is set at 0.333. 

The last chapter is devoted to a series of problems involving 
rectangular plates having added point masses or supports, or 
line supports. Again the superposition procedure is used to 
solve the problems and results for frequencies are given. 

Although the results for frequencies given throughout the 
book are typically quite comprehensive, considerably less 

Department of Engineering Mechanics, Ohio State University, Columbus, 
Ohio43210-1181. 

information is supplied about the corresponding mode 
shapes. 

The reviewer recommends the book highly to individuals 
who are interested in applying the superposition method to the 
analysis of eigenvalue problems for rectangular regions 
and/or who desire extensive, accurate numerical results for 
the free vibration of rectangular plates governed by classical 
theory. 

Shock Waves and High-Strain-Rate Phenomena in Metals. 
Edited by M. A. Meyers and L. E. Marr. Plenum, New York, 
1981. pp. xiii-1101. Price $95.00. 

REVIEWED BY U. S. LINDHOLM4 

This large volume (1100 pages) constitutes the proceedings 
of an international symposium held in Albuquerque, N. Mex. 
in June, 1980. There are a total of 58 papers divided into 
topical areas titled: High Strain Rate Deformation; Dynamic 
Fracture; Adiabatic Shearing; three sections on Shock-Waves 
Experimental Techniques, Fundamentals, and Microstruc-
tural and Mechanical Effects; Dynamic Compaction of 
Powders; and Explosive Metal Working and Welding. The 
editors have done an exceptionally fine job of editing and 
organizing the diverse papers in such a format that the volume 
presents a comprehensive state-of-the-art review of the 
subject while fulfilling the editors objective of making it a 
lasting reference and potential text for graduate education. 
The latter objective is achieved by a number of chapters 
contributed by the editors themselves as well as seven ap­
pendices providing supplemental basic information required 
for the design of shock-loading systems. The volume also 
achieves a balanced perspective for each topic from the points 
of view of physics, metallurgy, and mechanics. 

In summary, this reviewer feels that this is perhaps the best 
collection of papers on the subject matter seen in recent years 
and reflects considerable extra effort by the editors to make it 
a self-contained treatise. It is well worth examination by all 
those active or interested in dynamic deformation or fracture. 

Modern Fluid Mechanics. By Shih-I. Pai. Science Press, 
Beijing; distributed by Van Nostrand Reinhold Company, 
New York, 1981. pp. xx-570. Price $37.50. 

REVIEWED BY J. S. WALKER5 

This book on theoretical fluid mechanics falls into the large 
gap between the teaching textbooks on classical fluid 
mechanics and the research-oriented monographs that 
summarize recent developments in specific fields. The four 
chapters on basic concepts assume a knowledge of the 
traditional treatment and provide a novel and unifying ap­
proach to fluid properties, statics, dynamics, and dimensional 
analysis. The kinetic theory of gases is used to link continuum 
and molecular models. Throughout these chapters the author 
prepares the reader for the specific topics that follow. 

The four chapters on specific areas of research treat gas 
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dynamics with chemical reactions, electromagnetic effects 
(plasma dynamics), radiation effects, and low densities 
(rarefied gas dynamics). A final chapter focuses primarily on 
continuum models for mixtures (two-phase flows and 
multiple-species models for plasmas). It includes brief 
mentions of non-Newtonian fluids, superfluids, biofluid 
mechanics, and relativistic fluid mechanics. 

This book presents the basic concepts and equations of 
certain topics in modern theoretical fluid mechanics and 
provides insights and understanding so that the reader knows 
when and how to use these tools. The book should prove 
extremely valuable for both technology transfer and research 
preparation. From this book someone who wants to apply 
recent advances in fluid dynamics and who has a good 
background in classical fluid dynamics can obtain the 
knowledge and understanding of concepts and equations 
needed to apply results in the research literature. The 
researcher can also turn to this book as the first step toward 
original research in a new area. This book could be used as a 
text for an advanced course for graduate students who are at 
the transition point between course work and thesis research. 

Compressible Flow. By S. Schreier. Wiley, New York, 1982. 
577 Pages. Price $60.00. 

REVIEWED BY M. MORDUCHOW6 

A number of well-known and notable texts dealing 
specifically with compressible flows have appeared in the 
past. Mention may be made, for example, of the general 
compressible-flow texts of Shapiro, and of Liepmann and 
Roshko among others, of Ferri's book on supersonic-flow 
aerodynamics, of Stewartson's text on compressible laminar 
boundary layers, of the text of Hayes and Probstein, and of 
that of Dorrance, on hypersonic flow, and of the book of 
Vincenti and Kruger on physical gas dynamics. Due to the 

Professor, Department of Mechanical and Aerospace Engineering, 
Polytechnic Institute of New York, 333 Jay Street, Brooklyn, N. Y. 11201. 

broad scope of compressible fluid dynamics, however, there 
remains of course room for further good texts on the subject. 
The book under review may be considered as in this category, 
its subject being primarily classical compressible flow. It is 
claimed on the book cover that this is the "first major new 
work" on compressible flow since 1972. Assuming that 
"work" here means "textbook" this may be close to true, but 
note must be made here at least of the 1976 text of Zucrow 
and Hoffman (Gas Dynamics Vol. 1, admittedly based at least 
in part on a well-known 1958 book of Zurcrow) and of the 
quite recent (1982) text of J.D. Anderson (Modern Com­
pressible Flo w, With Historical Perspective). 

Although there are various ways, depending on individual 
tastes and interests, of treating the subject of compressible 
flow, the 577-page text of Schreier's can serve quite well as the 
basis of at least a one-year graduate course on compressible 
flow. It could also be used for self-study. In fact, the ex­
planations here are sufficiently detailed so that the text may 
be considered as essentially self-contained, although a 
knowledge of vector analysis is assumed and a previous 
knowledge of basic incompressible fluid mechanics and 
elementary thermodynamics would be desirable. An ap­
preciable variety of topics is covered, including: the Navier-
Stokes equations; sound waves, shock waves, and expansion 
waves; steady and unsteady one-dimensional flows with and 
without shock waves; two and three-dimensional steady 
subsonic and supersonic flow; characteristics; transonic flow 
(in unusual detail); (classical) compressible laminar and 
turbulent boundary layers; real gas effects, especially 
dissociating boundary layers; and computational methods, 
with emphasis on numerical solution of ordinary differential 
equations and finite-difference solutions of the standard 
partial differential equations, with the addition of a more 
complicated example, involving supersonic flow. A set of 241 
references and certain working tables for compressible flow 
calculations are included. Moreover, a set of useful and in­
teresting exercises for each chapter is given at the end of the 
book. 

In summary this book may be regarded as a quite useful 
addition to the textbook literature on compressible flows. 
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