Journal of
Applied Mechanics

Published Quarterly by The American Society of Mechanical Engineers

VOLUME 49 - NUMBER 3 - SEPTEMBER 1982

469 Reviewers
TECHNICAL PAPERS

471  Two-Dimensional Apparent Masses for Cross-Flow Sections of Wing-Store Configurations
M.-K. Huang

476 On the Mean Reynolds Equation in the Presence of Homogeneous Random Surface
Roughness (82-WA/APM-8)
N. Phan-Thien

481  Theory of Maximum Tensile Stresses in the Solidifying Shell of a Constrained Rectangular
Casting
R. H. Tien and O. Richmond

487  Relaxation of Thick-Walled Cylinders and Spheres
N. S. Ottosen

492  Transient Response of a Fluid-Saturated Poroelastic Layer Subjected to a Sudden Fluid
Pressure Rise
M. Kurashige

497  Gravity-Induced Density Discontinuity Waves in Sand Columns
S. C. Cowin and W. J. Comfort IlI

501 A Numerical Analysis of the Hydraulic Bulging of Circular Disks Into Axisymmetric Dies
E. Nakamachi, S. Takezono, and R. Sowerby

507 The Large Elastic-Plastic Deflection With Springback of a Circular Plate Subjected to Cir-
cumferential Moments
T.X. Yuand W. Johnson

516  Uniqueness for Elastic Crack and Punch Problems
R. T. Shield

519  One Solution of Three-Dimensional Boundary Value Problems in the Couple-Stress Theory of
Elasticity
M. Kishida, K. Sasaki, and H. Hanzawa

525 The Contact of a Cuspidal Crack (82-WA/APM-5)
C.H.Wu

531  Torsional Impact Response in an Infinite Cylinder With a Circumferential Edge Crack
A. Atsumi and Y. Shindo

536 Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites
(82-WA/APM-7)
Y. Takao, T. W. Chou, and M. Taya

541 Boundary-Layer Effects in Composite Laminates: Part 1 — Free-Edge Stress Singularities
S.S.Wang and |. Choi

549  Boundary-Layer Effects in Composite Laminates: Part 2 — Free-Edge Stress Solutions and
Basic Characteristics
S.S.Wang and |. Chou

561  On the Logarithmic Singularity of Free-Edge Stress in Laminated Composites Under Uniform

Extension
R.l. Zwiers, T. C. T. Ting, and R. L. Spilker

570  On the Stability of Waves in a Thin Orthotropic Spinning Disk
J. L. Nowinski

573  Efficient Pulse Shapes to Deform Beams With Axial Constraints (82-WA/APM-6)
W. J. Stronge

577 The Compressible Elastica on an Elastic Foundation (82-WA/APM-1)
A. M. Nicolau and J. V. Huddleston

584  Cable Kink Analysis: Cable Loop Stability Under Tension
T. Yabuta, N. Yoshizawa, and N. Kojima

589  AnImproved Semi-Implicit Method for Structural Dynamics Analysis (82-WA/APM-2)
K. C. Park

594  Finite Element Analysis of Vibration of Toroidal Field Coils Coupled With Laplace Transform
K. Miya, M. Uesaka, and F. C. Moon

601  The Dynamics of a Gyroscope Supported by a Flexible Circular Plate
J. S. Burdess

606  Bifurcations in Three-Dimensional Motions of Articulated Tubes, Part 1: Linear Systems and
Symmetry
A. K. Bajaj and P. R. Sethna

612  Bifurcations in Three-Dimensional Motions of Articulated Tubes, Part 2: Nonlinear Analysis
A. K. Bajaj and P. R. Sethna

619  Nonparametric Identification of Nearly Arbitrary Nonlinear Systems
S. F. Masri, H. Sassi, and T. K. Caughy

629 The Steady-State Response of a Class of Dynamical Systems to Stochastic Excitation
T. K. Caughy and F. Ma
(Contents continued on Inside Back Cover)

btribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm




CONTENTS

(CONTINUED)

DESIGN DATA AND METHODS

633

Estimation of Buckling Loads and Other Eigenvalues via a
Modification of the Rayleigh-Ritz Method
R. Schmidt

Laminar Flow in the Entrance Region of Circular Sector Ducts
H. M. Soliman, A. A. Munis, and A. C. Trupp

On Stochastic Dynamics of an Embedded Rigid Cylinder
A. Beltzer and R. Parnes

On the Flow of a Viscoelastic Liquid Past an Infinite Porous
Plate due to Fluctuation in the Main Flow
D. N. Mukhopadhyay and T. K. Chaudhury

Radial Nonuniformity of the Fields Near a Moving Crack Tipin a
Material With Linear Strain Hardening
V. Dunayevsky and J. D. Achenbach

Approximate Stability Criteria for Some Second-Order Linear
Differential Equations With Stationary-Gaussian Random
Coefficients

G. Ahmadi and P. G. Glockner

Edge Effect in the Bending of Inextensible Plates
E. N. Kuznetsov

676-681

Natural Frequencies of Thick Annular Plates

T.irie, G. Yamada, and K. Takagi

BRIEF NOTES

651 On Interactive Computation of Supersonic Boundary Layers With
639 Wall Mass Transfer
J. Brandeis
640 654 Vibration of a Rotating Orthotropic Disk
A. Rajguru and V. Sundararajan
642 656 On the Effect of Axial Force on Dynamic Fracture of a Beam or a
Plate in Pure Bending
C. Levy and G. Herrmann
644 658 Stress Fieid in Orthotropic Accelerating Disks
G. Genta, M. Gola, and A. Gugliotta
861 Boundary Layer Over a Rotating Disk Sector
646 M. Ungarish, A. Solan, and M. Toren
663 Plastic Torsional Buckling of Thin-Walled Cylinders
D.W. A. Rees
648 666 Axially Loaded Stiffened and Unstiffened Cylindrical Shells
I. Sheinman and G. J. Simitses
649 669 Coupled Flexural Torsional Vibration of an Eccentrically
Stretched Strip
S. Suryanarayan and A. Joshi
671 Higher Modes for the Compressible Elastica on an Elastic
Foundation
J. V. Huddieston
DISCUSSIONS

Discussions on previously published papers by S. Aoki, K. Kishimoto, and M. Sakata, P. J.

Yoder and W. D. lwan, P. S. Theocaris and N. P. Andrianopoulos

682
Belytschko

BOOK REVIEWS

Finite Elements, an Introduction by E. B. Becker, G. F. Carey, and J. T. Oden . . . Reviewed by T.

Seismic Migration—Imaging of Acoustic Energy by Wave Field Extrapolation by A. J. Berkhout . . .

Reviewed by Y.-H. Pao

683 Free Vibration Analysis of Rectangular Plates by D. J. Gorman ... . Reviewed by A. Leissa
Shock Waves and High-Strain-Rate Phenomena in Metals edited by M. Meyers and L. E. Marr . . .
Reviewed by U. S. Lindholm
Modern Fluid Mechanics by S.-l. Pai. . .Reviewed by J.S. Walker
684 Compressible Flow by S. Schreier . .. Reviewed by M. Morduchow
480, 486, 583 Worldwide Mechanics Meeting List
605 Applied Mechanics Symposium Proceedings
491 Announcement — Standard International Units
593 Special Notice — Mandatory Excess Page Charge for Transactions
548 Change of Address Form
540 A Symposium on ‘“Earthquake Ground Motions and Its Effects on
Structures”
535 Symposium on Advances and Trends in Structural and Solid

Mechanics

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Two-Dimensional Apparent Masses
for Cross-Flow Sections of Wing-

M.-K. Huang'

Associate Professor,

Nanjing Aeronautical Institute,
Nanjing, Jiangsu,

People’s Republic of China

Store Configurations

On the basis of the assumption that the external stores are small compared with the
wing, an approximate method has been developed for estimation of two-
dimensional apparent masses for the cross-flow sections of wing-store com-

binations. The results obtained may be applicable to the analysis of the effects of
the stores on the aerodynamic stability derivatives in slender-body theory. The
theory has also been applied to estimate the rolling moment due to sideslip for high-
wing configurations. The presented results are in agreement with those of other

investigations.

1 Introduction

In view of the increasing variety of stores used on current
combat aircraft, the problems of the interference among the
aircraft and the external stores have received considerable
attention in the last decade. Some of the recent investigations
were reported in [1-6]. It is well known that the estimation of
aerodynamic stability derivatives based on slender-body
theory is not very accurate except possibly for small aspect
ratio and low supersonic Mach number. However, other
methods to achieve quantitative results for wing-body store
configurations, such as the numerical methods based on
singularly distribution, would be considerably more com-
plicated. Moreover, a comparison of the various com-
binations on the basis of slender-body theory would possibly
still show the trend of their relative behavior.

As indicated by Nielson {7], in slender-body theory most of
the stability derivatives for certain classes of slender con-
figurations can be calculated by means of apparent mass
coefficients. The apparent masses for some simple cross
sections have been given by Nielsen [7] and Sedov [8]. Some of
the complex wing-body combinations were investigated by
Portnoy [9], Andrens [10], Crowell and Crowe [11], Keldysh
[12], and Huang [13]. However, the estimation of the ap-
parent masses for very complex cross sections, such as those
of wing-store configurations, is by no means a simple matter.
It is the purpose of this paper to consider these kind of cross
sections. The method is based on the assumption that the
stores are small compared with the wing, so that the stores in a
cross-flow plane can be simulated by two-dimensional
doublets. The result obtained is written as a ratio of the in-
crement of the apparent mass produced by the stores to that

1Currently, Visiting Associate Professor, Department of Aerospace
Engineering Sciences, University of Colorado, Boulder, Colo. 80309
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of the wing alone, which may be used to analyze the effects of
the stores on the aerodynamic stability derivatives for air-
crafts.

In addition, the two-dimensional apparent mass theory
relates closely to the least-induced drag theory. In many cases,
the results of these two theories can be applied to one another.
Some of the exact results calculated numerically by Jundry
and Lissaman [14] will be used for comparison with the
present approximate results.

2 The Analogy Between a Doublet and an Arbitrary
Cross Section

Let yoz be a cartesian coordinate system. With the same
notation as that of [7], we represent apparent masses by m;;,
i,j=1, 2, 3, where 1 and 2 denote, respectively, the y and z
directions, and 3 the rotation. The cross-sectional area is
denoted by S, and the density of the fluid by p. We have
m, =m, =0 if the cross section has at least one axis of
symmetry.

Suppose that there is an incompressible flow past a two-
dimensional body with oncoming velocity components U; and
U, along y and z directions, respectively. The complex
potential of the flow can be expressed by

A
W(Z) = (U, -iU)Z+ ), - )
n=1

where Z=y+ iz is the complex variable and A, is the complex
constant. The constant A, relates to the apparent masses of
the body section by (see {7])

T +Sa) +iU2(@ +sa) )
o o
It is-obvious that the term A,/Z of the expression (1) is
nothing else but the contribution due to a doublet, which may
be used to approximate the perturbation effect due to the
body if its cross section is small. The doublet strength A, is
determined once the apparent masses of the body section are
known.

27"Al =U1(
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Tabie 1 Doublet analogy and apparent mass increments for a variety of configurations
CONFIGURATION | 2 3 4 5
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Z=Y+iz _ | || D A |
PLANE C/;.”@; =12 * 4 ﬁ—iﬁ !
b5 —s | g | R ol
R 7 Y
O"=€+i77 m . ' '\”T | ]
PLANE = | | - | |
"oy )
tu, -2 4 fu 44 1 P
o=t+in | |
PLANE : |
DOUBLET
AN?\LéGY (VA 4 ' %
ATla, R h hey $2Y
e R. n Y EQ.(5) EQ.013)
Medure | 5 25 125()
AMas R h 1-2Y
8 g L0 hr Y
(Maz)wie S 45 43 (/—Y)
3 m,, for Wing-Body Store Configurations A
» g-Body Store Lontlgurati ' /s CONFIGURATION
We first consider the configuration 1, a wing carrying two ( m22>w1N 6
small stores of circular cross section at wing tips, shown in 20fF ——=— PRESENT THEORY .
Table 1. Suppose that there is an incompressible flow past the g 7/ } |
wing store in a cross-flow plane with oncoming velocity U, — EXACT Z

along the direction z. As shown in Table 1, the use of the
transformation Z=o+s%/4¢ turns the wing into a circle of
radius r, =s/2 in o-plane, where s is the local semispan of the
wing. The stores are turned into half circles with radius vr,R
under the assumption of small stores. It is obvious that in ¢-
plane the velocity of the local oncoming flow past the stores is
2U,. The strength of the doublets for simulating the stores in
o-plane can be determined by equation (2), so that the
complex potential can be written as

+

2
W(0)= iU, (a— 5‘1) +2iU2r0R( ! ) ®)

o atry
Turning back to the Z-plane and expanding in series, we can
find the coefficient of the term containing 1/Z. Then, m,, for
the combination is found by equation (2).

The same procedure has been applied to the configurations

2 and 3. The approximate formulas derived for estimating the
apparent mass increment Am,, due to the stores are given in
Table 1, where (m3,) e, the apparent mass for a single wing
alone, is equal to wos?. In derivation for the configuration 3,
the wing with winglets, it was required to know the apparent
mass for a V-form section in which each wing makes an angle
of ym with the symmetry plane. By using the conformal
mapping given in Section 39 of [15] and the equation (2), it
can be shown that the apparent mass for such V-form section

is
12
My, = Tps? (L> !
-y
where s, is the semispan measured in each wing plane,

Figure 1 presents the approximate results for three con-
figurations and the exact ones calculated numerically in [12,
14]. The comparison demonstrates that a correlation is
achieved even when the stores are small.

For configuration 4, the wing-pylon store combinations, we
first assume that the store pylons are not close to the wing
tips, and are very small compared. with the wing. It is well
known from the conformal mapping theory that the shape of
the store pylons in o-plane would be the same as that in Z-
plane, but their scale is changed by a factor of

o—ry

C)

4721Vol. 49, SEPTEMBER 1982

:I;ig. 1 Apparent mass increment Amo, for the configurations 1, 2, and

do _ 1
dz 2 2\J1-(/s)?
where /is illustrated in Table 1.

A similar procedure yields

Amy, =[(m22)slore (ﬁ)z +2(§>2]
s s

(m22)wing thz
R 2
-2(5)
N

where (7)o 1S the apparent mass for the section that
consists of the store-pylon section and its mirror image with
reference to the wing plane. The value of (m,;)q0. can be
found in Fig. 1.

If there are only pylons of height # beneath the wing,

equation (5) becomes
h 2
-(5)

Mzz
(m22)wing

This formula fails as s—/. In fact, ldo/dZ|,—o in this

extreme case.

12
§2 -2

()

12
s2 _ 12

©
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[ ———— PRESENT THEORY i 036l s
—— EXACT, REF.14 /, 5 —

EQ.(6)
EQ(7)

N

I

0,855

0 ] -

Fig.2 Apparent mass increment Amy, due to pylons and fences

By matching the expression (6) with that for the con-
figuration 3 with u=0, a unified approximation, valid for
both cases that the pylons are close to the wing tips or not, can
be obtained as

h\ 2 P
Trle)z_zg =<§) m ¢
4

Figure 2 shows the application of equations (6) and (7). The
first application is to the case where there are two pylons
mounted beneath the wing and two fences on its upper sur-
face. Suppose that they are not close to the wing tips, so that
equation (6) could be used. The total increment of the ap-
parent mass is a simple superposition of the contributions
from the pylons and the fences. The second example is the
case when the pylons are close to the wing tips, so that
equation (7) should be used. Both of the results are close to
the exact ones even if 4/s is as high as 0.5.

For a wing-body store combination, there may be some
cross-flow sections without pylons, which is the case named
by configuration 5 shown in Table 1. The complex coor-
dinates of the centers of the stores are denoted by Z; and -
Z,. o=f(z) is an analytical function mapping the region
outside the wing-body combination in Z-plane into that
outside the circle of radius 7y, in o-plane, which has the
property that (o) =1,

Let

2
Wo(2) = Woo)=~iU; (o 2)
g

be a complex potential of the flow past the combination
without stores, and the stores are replaced by two doublets at
a=0,=f(Z,) and o= — ;. The circle theorem [16] is em-
ployed to keep the transformed circle to be a stream line, so
that the total complex potential can be written by
2 B B
Q=Wy(ao)+ B _ B_ + - ®)
o—0gy 0+dp o r
— —0p -+ 0y
g o

where B, the strength of the doublets in o-plane, is to be
determined.

Note that
B 1

= E
o—0y S (Zy) Z-2Z,
The strength of the doublets in Z-plane is then B/f" (Z;). The
use of equation (2) yields
B - Vi [ (my1)a +Sa] _H.I_/g [ (my),
f(zy zxl Il
where the subscript a refers to a single store alone. ¥, and V,,

+s] ©

Journal of Applied Mechanics

2R
I(—ﬂ
3 O ‘0.6 O
| 10 J
————EQ.(14)
2r ————EXACT,REF.12
o1 2 5 4R

Fig. 3 The ratio of the apparent mass my, for the wing-necelle cross
section to the sum of the apparent masses for the wing and necelles as
they are alone

the local velocity components of the flow past the wing body
without stores, can be evaluated by

aw r3
i (),. =1 D)
1~ 1V, dz ) 7= iU, {1+ o f'(Zy) (10)
By applying equation (2) to the wing-body store com-
bination, the increment of the apparent mass, produced by
two stores located symmetrically, can be obtained as
2mp

Ay = T AA=208,
2

an
where AA is given by
1 az
AA = — (§ Q- —
27 J ¢ ( Wo()) dad‘I

Here the integration path C is around the wing-body store
section. The integral is then evaluated by the residue theorem.
We obtain

AA=2i Im[B(l—%Z—é)] (12)

0
where Im denotes the imaginary part. Substituting the
equation (12) into equation (11), the final result is

e ()" () 2]

V2\? Vi 2
w25, () +(g2) 1]
“L\U, U,
As a simple example, consider the case in which the stores
are of circular cross section. We have

Amy, Vy\ 2 Vi\?2
=E-wwx(z) +(g) -]
o " U, * U,

where R is the radius of the store sections.

In view of the fact that, according to slender-body theory,
the lift of a configuration is proportional to m,,, we conclude
from equation (14) that the maximum increment of the lift
would be achieved if the stores are located at the places where
the local cross-flow velocity is maximum. Another extreme
case is where the store is located just beneath the body, where
the cross flow is stationary. The lift increment would be a
minimum in this case. ’

Figure 3 presents an example for a particular wing-store
configuration in which the centers of the stores lie in the wing
plane. In the figure, J denotes the ratio of the apparent mass
for the wing-store combination to the sum of the apparent

(13)

(14)

SEPTEMBER 1982, Vol. 497473
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3 ] | 4 )
- (Cig)a=o £Q.(28) ,EQ.29)
(R/S?  2f ) el
/s REF.I8
1N _
VY
i [ 1
00— 2 3 4

ASPECT RATIO A

Fig. 4 High-wing configurations and their stability derivatives for the
rolling moment due to sideslip

masses for the individual wing and stores, the dashed line is
the result calculated by equation (14), and the solid line is the
exact one given by Keldysh [12]. It is shown that there is close
agreement when the stores are far from the wing tips.

4 m,, for Wing-Store Combinations

It is well known that in slender-body theory the rolling
moment in roll is proportional to the apparent mass m;;.
However, the evaluation of mj; is very difficult except for
some simple cases. An approximate method will be suggested
here for a wing carrying stores at its tips.

For a single wing alone, we have seen from [7] that

wos*
8

Suppose that the semispan of the wing has a small increment
6. The corresponding increments of the apparent masses can
be calculated to the first order by
_Amyn = ‘_S, _Amsy =4§ 15)
(m22)wing s (m33)wing §
An equivalent increment of the semispan can be found for a
wing with stores at its tips such that it has the same increment
of m,, as given by (15). Then the increment Am,,; follows
immediately from equation (15). The results obtained in such
a way are also shown in Table 1 for the three configurations
considered. Unfortunately, we have no other theories for
comparison.

5 m,, for Wing-Store Configurations

(m22)wing = Tpsz ’ (m33 )wing =

m 5 is another one of the apparent masses which is difficult
to evaluate. To begin, consider a high-wing configuration
shown in Fig. 4. According to [7], m,, is defined by

myy = —P§ ¢3_dt (16)
where ¢, and ¢, are the potentials due to the motion of the
cross section with unit velocities in translation along y and in
rotation, respectively. n is the outward normal. The in-
tegration path C is around the cross section of the wing-body
combination, and dt is the contour element. The boundary
condition shows that d¢,/d n=0 on the wing surface, so that
we need only to evaluate the integral around the body.

Let
3= 3+ Ad, an

where ¢, is the corresponding potential for the single wing
alone, and A¢, is the increment due to the body. Inserting
equation (17) into (16), we have -

dd,
#3 5 _pgbod Ads —?ldt

My = -
13 p.slbod an

4741Vol. 49, SEPTEMBER 1982

(18)

AL
= 1=;D"_)
v A bl/ Y

Fig. 5 Flow direction around the wing rotated with unit angular
velocity

The exact ¢; for a rotated plate has been given in [16]. The
corresponding tangential velocity of the flow on the lower
surface of the plate is thus obtained as

3¢3 1 S2 2y
V))yeog= —=— = 19
( I)z— 0 ay 2 \/S ( )
The flow direction around this plate is shown in Fig. 5, and we
have
K
(Vl)z=~0 = '2'

aty=0.

The assumption is made that the body section is much
smaller than that of the wing. As a consequence, ¢; can be
approximated by the potential of the flow with unit oncoming
velocity past the configuration consisting of the body and its
image with reference to the wing plane if the wing is con-
sidered as a reflected plate. A¢; can be considered as the
potential of the flow with oncoming velocity (V,) - _o past
such a configuration, so that y=0
2o
2%

The second integral of equation (17) can be evaluated as
follows

Ay = (V) = —0b1= —
y=0

d
¢, &) ——d _f (M1 pogy

_prody Ads Wdt=5pgbod 2

where (11))poqy i the apparent mass for the section that is
made up of the body section and its image. For the body of
the circular cross section, (my)peq, refers to eight-form
section. Using the complex potential given in Section 6.52 of
[16}, the apparent mass for this section can be obtained by the
use of equation (2) as

20

2
(mll)body=2<? '“1> TpR?

where R is the radius of the body section.
To perform the first integration in equation (18), we first
expand ¢; into Taylor series

gy =constant+ (V;) .- _oy+ -«
=

@n

.. = ...
By taking into account the boundary condition

% dt=cos(n,y)dt=dz,

we have

99, S 99, S _
Sy =0 0§ yha=|  ydr=5is

where Sy,,4y is the area of the body section.
Thus,

- S a—(lsldt— —-o(V,) S,
o body P3 an =V, f;o”o body
Substitution of equations (20) and (22) into (18) yields
(M 11)body ]
2

Two special cases will be considered. The first one is that
the body has a circular cross section. By using equation (21),
we have

22)

s
i =5 [ 9S00y + e5)

Transactions of the ASME
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TIsR?
12
The second one is that the body has a square cross section with
the width denoted by a. (rm,))peqy Of this case refers to a

rectangular section, which can be evaluated by the formula
given in [10}. Thus we have

my3=p (24)

1.2373sa?
12

The other cases, such as the wing mounted at any height
above the central line of the body, can be considered as the
superposition of the contributions from the portions of the
body above and below the wing.

This approach can be easily extended to configuration 4
shown in Table 1. We have

25

m;=

(mll)store]
2

where S, is the cross-sectional area for a single store,
(my))gore refers to the section that consists of the store-pylon
section and its image, and (V,),_ ., evaluated at y=1[/2 by
equation (19) is

mpy=—2(V;),=_o [PSstore+ (26)

1222
242
Since the assumption has been made that the planar wing can
be considered as a reflected plane, the results obtained apply

only to the case where the store pylons are not close to the
wing tips.

(Vi) z=—o @7

6 Applications

Two examples of application will be presented for their
practical interest.

As a first example, we consider a combination that consists
of a high delta wing and body of revolution. The angle of
attack is assumed to be zero («=0). Let Cj; be the stability
derivative for the rolling moment due to sideslip. By use of the
relationship given in [7] between the stability derivative Cyg
and the apparent mass m,;, we have

s R\?
c ~=———A(—)
(Cig)amo 24 s

where A is the aspect ratio. Unfortunately, this expression
applies only to slender configurations. As indicated by
Nielsen [71, lift-curve slopes are overestimated by slender-
body theory if the configurations are not slender. However,
this fact does not preclude the use of slender-body theory for
nonslender configurations since, in certain instances, the ratio
of the lift of the wing-body combination to that of the wing
alone can be accurately predicted by slender-body theory,
even though the magnitude of the lift-curve slope might be
incorrect. As a consequence, Piter et al. [17] proposed that the
ratio of the accurate lift-curve slope C;,, for the wing alone to
that predicted by slender-body theory could be used as a
modification factor to nonslender configurations. It is thus
proposed that, with the same modification factor for non-
slender configurations, equation (28) is modified as

w R\ 2
(Cigla=0 2 CLa( 5 )

Figure 4 presents the results given by equations (28) and
(29) and those by an empirical formula of [18]. In Fig. 4, the
calculation by equation (29) was carried out for delta wings at
low speeds because the empirical formula was demonstrated
by experiment in this speed range for such wings. The

(28)

29
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comparison shows that the modified results agree very well
with the empirical ones.

The second application is to the configuration 4. We know
from equation (27) that (V) .- _o =0 when //s=0.7. For such
a case, (Cjg) -0 is nearly zero according to equation (26).
Otherwise, the negative dihedral effect results when the store
pylons move inward and the positive effect results when they
move outward. The same tendency has been shown ex-
perimentally in [20].

7 Conclusions

The approximate formulas derived in this paper for
estimating the apparent mass increments due to stores
represent the leading approximations if the characteristic scale
of the stores is assumed to be a small parameter. These
formulas apply to cases where the stores are very small, but
the comparison with the exact results shows that the theory
provides a fair estimation of the apparent mass increments
even when the stores are not small.
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Random Surface Roughness

Assuming that the surface roughness is of small amplitude and can be modeled by a
homogeneous random function in space, the classical Reynolds equation is

averaged using a method due to J. B. Keller. The mean Reynolds equation is ac-
curate up to terms of 0(e’), where e is the dimensionless amplitude of the surface
roughness and has a nonlocal character. Furthermore, by exploiting the slowly
varying praoperty of the mean film thickness, this nonlocal character is eliminated.
The resulting mean Reynolds equation depends on the surface roughness via its
spectral density and, in the limits of either parallel or transverse surface roughness,
it reduces to Christensen’s theory.

1 Introduction

Thin-film hydrodynamic lubrication of rough surfaces has
been a subject of intense research during the past two decades.
A recent summary of the state of the arts can be found in
Wilcock [1] where two types of surface roughness are
recognized: the Reynold roughness and the Stokes roughness.
In the former case the classical Reynolds equation [2] applies
and in the latter case the full solution to the Stokes equations
must be sought.

Basically, a surface roughness is said to be of the Reynolds
type when its amplitude is considerably less than, and its
characteristic wavelength is considerably greater than the
mean film thickness [3]. More quantitatively, for a squeeze-
film [4] or a slider bearing [5] with parallel surface roughness
an error of about 10 percent is made when using the Reynolds
equation to correct for the presence of the surface roughness
provided that w,# =< 0.5, where w, is a characteristic
frequency of the surface roughness and 4 is the mean film
thickness. Furthermore if w,h > 2, the predictions of the
Reynolds equation cannot be trusted even qualitatively [4-5].

Most of the existing work in the lubrication of rough
surfaces concerns the Reynolds roughness where the Reynolds
equation is averaged using some heuristic or ‘‘dishonest’ (in
the terminology of Keller {6]) arguments. An ‘‘honest” [6]
approach using Keller’s [6] method has recently been ad-
vanced by the writer [7, 8] to obtain the mean Reynolds
equation which is correct up to 0(e?), where ¢ is the dimen-
sionless amplitude of the surface roughness. In [7] and [8] the
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mean Reynolds equation was used to correct the surface
roughness in a two-dimensional squeeze-film bearing and
slider bearing with exponential mean film thickness,
respectively. In particular it was shown in [8] that the theory
of Christensen [9] accurately predicts the load enhancements
when the surface roughness is either transverse or parallel to
the flow, the only two cases intended for the theory to apply
[9]. It was conjectured in [8] that Christensen’s theory is
correct to 0(¢?) for two-dimensional bearings with parallel or
transverse surface roughness.

One of the purposes of this communication is to prove this
conjecture. Furthermore, neglecting terms of the order 0(¢*,
e2h/l), a new mean Reynolds equation is derived which
correctly yields Christensen’s [9] theory when the surface
roughness is either parallel or transverse to the flow.

2 Surface Roughness

The geometry of any rough surface is so irregular that it
requires a statistical description [10]. In general, the
probability of the surface height must be known to fully
specify the surface roughness. However, in practice this
complete statistical information is expensive to obtain and
only the rms, or at most second-order statistics of the surface
roughness are measured. Partly to reflect this practice and
partly to simplify the analysis we assume a homogeneous
surface roughness with the consequence that only second-
order statistics enter in the calculations. That is, the only
quantity that we need is the spatial correlation of the surface
roughness or equivalently its Fourier transform, commonly
known as the spectral density of the surface roughness.

Specifically we . consider the quasi-static and isothermal
flow of an incompressible viscous fluid in a bearing whose
surfaces are described by

zy =eam(x,y); zp=h(x,0)+eam,(x,y), (8]

where «a is a length scale, ¢ is the dimensionless amplitude of
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the surface roughness, A is a given function of x and time ¢,
my (x,¥); k = 1, 2 are surface profiles and x, y, z are cartesian
coordinates, with x being the primary direction of flow. In
writing (1), we wish to leave e and m, dimensionless; a is thus
a dummy length scale.

As a consequence of adopting the Reynolds equation as our
starting point, only the total film thickness

H=z,—z,=h+eam; m=m,—m, )

enters in the governing equation. From now on we call m the
total film roughness, or simply the surface roughness.

Without loss of generality m,, (x,y) are assumed meanless;
the mean film thickness is <H> = h, with the angular
brackets denoting either an ensemble average or a spatial
average if m, are ergodic or periodic in space.

As mentioned previously, m, (and thus m) are assumed to
be homogeneous in space when the film roughness can be
represented as (the spectral representation of m [11])

L)

m(x,y) = S S:ﬂ el O Z(dNdp) = Se“"Z(d)\). 3)

In (3) r and A are two-dimensional vectors (x, y) and (A, p),
respectively, and, in the interest of brevity we write the double
Fourier-Stieltjes integral as indicated in the second equality of
(3) where Z(dM) is an interval random function of dA = d\du
which satisfies

<Z(dN> =0, 1G]
<Z(d;N Z*(d;N) > =6; 2(X;) d; M (not sum) 5)

Here x* denotes the complex conjugate of x, d;A, a two-
dimensional interval center at A;, §; is the Kronecker delta,
and Q(A) is the spectral density of m(r), defined by the
Wiener-Khintchine relations [11]:

R(s)= <m(r+s)m@x)> = Se""sﬂ()\) ah, 6)

QN =

G Se“”“sR(s) ds Q)

3 Christensen’s Theory

Consider a bearing whose surfaces are given by (1) and the
upper bearing plate moves with velocity (U(x), 0, V(9).
Assuming that the surface roughness is of the Reynolds type,
the pressure distribution obeys the following Reynolds
equation [2]

9 9 d
v . (H? vP)=6na(UH)+12nV, vsia +j5, @)

PO,y)=P(ly)=0, ®

where 7 is the fluid (constant) viscosity.

Owing to the stochastic nature of H, equations (8)-(9)
become a stochastic differential equation. Since only mean
bearing performance is required, various aitempts have been
made to average (8). A notable success is due to Christensen
[9] who was concerned with two special cases of surface
roughness:

For a parallel surface roughness, where m = m(y),
Christensen [9] gives
9 < I<P> 9 I<P>
—(<H*> )+—(<H—3>f1———)
ax ax ay ay
I<H> I<H>
=6q9U- +129 % 10)

and for a transverse surface roughness, where m = m(x),
Christensen’s theory gives

d ( I<P> i) I<P>
— <H—3>“‘—-—> —( H? )
ax x )T\t T
d/ <H?> I<H>
=6qU— ——— ) +1
6’7Uax< <H > )+ 25 ()
In both cases the boundary conditions are
<P0,y)>=<P(Ly)>=0 (12)

For the film thickness given by (2), and keeping only terms up
to 0(e?) it can be easily shown that (10) and (11) reduce to,
respectively,

a
— [<h3 +3e2a’h <m? >)
ax

3<P>]

8 a<P
+5[(h3—-662a2h<m2>> ===

3
=6n—
n5- (UR) +1247, (13)
and
3
— [(h’ —6e2a*h<m? >> d<P> ]
ax dax
a <P
+ — [<h3 +3e2a’h<m? >> > ]
ay a
—6p [U(h—3 i <m2>)] T2V (14)
= ox % K

Nomenclature
a = length scale
G(r,r’) = Green function of the operator L, defined
in (17)
h = mean film thickness
H = total film thickness, & + eam
I,, I, = defined by (20)-(22)
L,L,,L, = differential operators defined by (15)
= bearing length
m,;, m, = surface corrugations on the bearing plates
m=m,—m; = total film, or surface roughness
P = pressure distribution
P, = pressure distribution if the surface
roughness was not present (¢ = 0)
R(s) = correlation of the surface roughness,
<m(r) m(r +s)>
U, V = bearing velocities
r,r’ = two-dimensional vectors (x, ») and (x’,

yh
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x,¥,Z = Cartesian coordinates, with x being the
primary direction of flow
Z(dN) = random interval function of dA = dA\dpu
v = two-dimensional gradient operator, i 3/9x
+ ja/ay
6; = Kronecker delta
¢ = dimensionless amplitude of the surface
roughness
A=(\, w = two-dimensional Fourier wavenumbers;
they take values in (real numbers)?
w, = a characteristic frequency of the surface
roughness
Q(A) = spectral density of m(r), defined in (7)
¢, ¢ = functions defined in (23)
n = lubricant constant viscosity
<e+> = ensemble average of ()
0(¢) = order symbol
1 = unit tensor
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4 Mean Reynolds Equation

4.1 Two-Dimensional Bearing. The mean Reynolds
equation, which is correct up to 0(¢?), has been derived in [7].
For continuity we record the éssential steps leading to the
final result.

First we denote by L, L, L, the differential operators

L=v o p3v, Ly=3av » B>mv, L,=3a*v - m*hv.
(15)

then (8) is formally equivalent to, in symbolic notation,
a
P=P,+6eqaL"! o (mU) =LY (eL, + eL,)P+0(e%), (16)

where P, is the pressure distribution if the film roughness was
not present (e = 0) and by L ' we mean the integral operator

L1/ =[G, )y e’

with G(r, r’) being the Green function of the self-adjoint
operator L which has the relevant boundary conditions (9)
embedded in it.

A successive iteration can be made on (16) and we have

(L+el;+€e2L,+0(e®)) P
(17)

Noting that <L, > = 0 we find that <P> = Py + 0 (¢?).
Equation (17) is then averaged. Also in any term of 0(¢?),
< P> may be replaced by P, with a resulting error of 0(¢*).
We finally obtain [7]

v o [(F? +3ahed <m?>) v <P>]

d a
=6y— (hU) + 129V + 6nea — (mU)
ox ox

~9e2g*> < v o [B2m v SG(r,r’)
v o (Rx)m(r')v <P(x')>)dr']>

d
=6n— (Uh) + 129V
ax
~18629a2 < V o [hzmv SG(r,r’)

(18)

(m(r’)U(x’))dr'] >
ax’

where the relevant boundary conditions are (12) and, as
before, we have written r, ¢’ for (x, y) and (x’, y'), respec-
tively. It should be noted that (18) is correct up to 0(¢?).
Alternatively, noting that <P> can be replaced by P, in any
term of the order 0(¢?) we have, in place of (18)

v o [(h% +3a’he? <m?>)v <P>]
—9e%a’< v » (BPmvi)>

ad
=6n& (Uh) + 129V —18e29a2 < v o (Wmv1)>, (19)

where, using the definition of G(r, r’) and noting that P, =
Py(x), I, and I, are given by

) dpP,

° 3 - 2 v

veh’ vl 6x(h m dx)’ (20)
v BV, = % (mU), @1

L0,9) =L,(hy) =5,0,9) =1,(1,y) =O0. @2)

Equations (19)-(22) and (12) are the mean Reynolds equations
and boundary conditions.

We now show that the mean Reynolds equation (19) in-
cludes as special cases Christensen’s theories (13)-(14), if

4781Vol. 49, SEPTEMBER 1982

terms of order 0(A/[) are neglected in I, and I,. (This leads to
an error of 0(¢*A/)) in the final results because terms involved
I, and I, in (19) are of order 0(¢%).)

Since m can be represented by (3) and in anticipating that I,
and I, are stationary in y we write

1= [ews, 0 z@v; k=1,2, @3)
where a direct substitution of (23) into (20)-(22) yields
i 3001\ _ 50 __‘_1_ 2i)\xc_i£)_9
dx(h dx> ”hqsl_dx(he dx)’ 24
$1(0)=¢,()=0, (25
and
..‘.1.7. 3 % — 2B, = fz_ hee
& (PG ) -wwe= g (ve). e
$2(0)= 9,()=0. (27)

In (24)-(27) we note that A(x), dP,/dx and U are slowly
varying functions of x (otherwise Reynolds equation will not
be applicable); and exp(ihx) is a fast varying function of x.
The latter is due to the fact that M2 = 0.5 and thus Ax ~
0(x/h). These suggest that we should look for a solution of the
form

=0+ + ..., k=1,2, 28)

where 6§ = O(h/l) is the slope of the bearing (say & = hye®x®
for some function x(x)).

Neglecting terms of 0(k//) (that is, treat all slowly varying
functions of x as constants) the solutions to (24) and (26) are

1 1d< arP,\ iNdP,

- - h2___> _____] iNx
o )\2+u2[h3 AN R
cosh u(/—x)
"sinhu/ ' coshpl

4 - 1 [1 dU+i}\U] N
2= T2 ler ax T ¢

sinh px

+0¢h/1D), 29

sinh ux cosh u(/—x)
Sinhg/ % coshpul
where 4, B,, k = 1, 2 can be found from (25) and (27); but
we have no need of them here. This is because the terms in-
volved A, and B, are also slowly varying functions of x; they
only contribute to the mean Reynolds equation through terms
of O(h/1).

Now we are ready to calculate the terms involving I, and I,
in (19). First we have

+A +0(h/0), (30)

<v -hzmv1k>=<SSv

[R2e=" " v e Z(dN) Z* (dN')> +O(h/1),
which gives, owing to (5),
d .. do
<V eh? 1>=S~—<2—"“—") :
mv I, . h%e 2k QN dA+ 0/ o

Next, using (29) and (30) in (31) we obtain

‘ﬁj—q)yl—-ﬂ(k)dk

d
< vehimvl, 2=—(}z
! dx /J N+ p?

dx
S A (G g %) [ D
= (GawZh o A N+ 0/, ()
and

. d /U A2
<V "’2’”"’221;(;)572:,7“‘”"*
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d r1dU iN
dx (h dx ) S N+ 2 + u? 2N dA+0k/D.
In deriving (32) and (33) we have used the result that the x-
derivative of a slowly varying function of x is of the order
0(h/D (i.e., the slope of that function). Furthermore the
second terms on the right-hand sides of (32) and (33) vanish
because Q(A, p) is even in its first argument.

Thus the mean Reynolds equation (19) becomes, noting that
<P> = <P> (x),

g
dx

(33)

d<P
[(h3 +3a2he<m?>) <x> ]

L0 o

]
=6n— (Uh)+ 129V
"ax( )+ 129

—9¢e2q?

d /U N
~18¢ 2_( )S
8¢“na =\ Nr Q()\)d)\ (34)

1t should be noted that the error in (34) is of the order 0(e*,
¢2h/D). Finally, in place of P, we can write <P> + 0(¢*) and

recognizing that
<m?>= S Q(N) dA,

we obtain

d o 3 2)\2
L (P-seen) [ S

3
=6n— (Uh)+ 129V
nax( ) ]

d<P>]

9(>\ u)d)xdﬂ) —

3 UNG® (= N
- 22 (2
18¢%a ax<h)5 wS . e 0w D

+0(e*, Eh/). (35
Subjected to the boundary conditions (12), this is the mean
Reynolds equation that is sought.

For a parallel surface roughness Q(\, ) = 6(N\) @(p) and
(35) reduce to equation (13) of Christensen’s [9] theory. On
the other hand if the surface roughness is transverse to the
flow Q(A, u) = 8(u) Q(A) and (35) reduce to equation (14) of
Christensen’s [9] theory. Thus Christensen’s theory is correct
to 0(e?).

In a squeeze-film bearing, h = A (¢) and (35) reduce to

2)\2 _”2
(h3 —362(12}15 —)\-2-:—;4,—2-

Q(A)dk) ;—27 <P>

=129V +0(e*, e2h/1) (36)
thus the effective gap thickness H. is given through
a® 2N —u?
Hgff—h3<1—3 2 W g NrZ Q(A)dk) 37

Since the normal load is proportlonal to H#, there will be a
load enhancement factor of

2 o« o0 2
143 a—g S N -

. 5T Q00 N d

which was found in [7] using equation (19).

4.2 General Bearings. If the mean film thickness is a
function of x and y and/or the boundary ds of the bearing is a
closed curve in x-y plane, then instead of (13) the relevant
boundary condition for the mean pressure is

<P@r)>=0 for reds (38)

Journal of Applied Mechanics

Also the boundary conditions for (22) I, must be replaced by
I,(r)=0 for reads, k=1,2.
Thus 7, are not homogeneous in y anymore and the

representation (23) is not appropriate. Instead one can only
write that

1= o6 9 z(am, 39

with ¢, (x, ¥) now being functions in both x and y. The
equations for ¢, (r) read

Ve(h3v )= ve(h2e™ vP,); ¢ =0onas (40)

v o (R} v ¢,)=0(Ue™")/dx; ¢,=0onds 41)

Again exp(iA-r) is a fast-varying function of x and y while A,
v Py, and U are slowly varying functions of x and y. Thus
regarding the slowly varying functions to be constants, the
solutions to (40) and (41) are

1
(N + p)m?
+ homogeneous slowly varying terms,
1 U
= — + }\U) fAex
& ()\2+;42)h3( nvje
+ homogeneous slowly varying terms,

¢y =— (v sh? VP +ik o Pyh?)e

42)

42)

where the homogeneous terms in (42)-(43) satisfy the
homogeneous equations (40)-(41) where the right-hand sides
are zero. Thus we obtain instead of (32) and (33)

<V e Rmvi>=

v -(hS )\ZM‘ Q(MN dA VPO) +0(n/l) 44)

and

Ur m
<v -hzmv12>=v-<;l‘g)\2+ ZQ(A)a')\>+O(h/1) @s)

Then the mean Reynolds equation becomes

v .([(m +32?h<m?>) 1

—9e2a2hS S Q(\p) d)\dp.] .V <P>>

)\2+2

d
=69— (Uh) + 129V
ax

Ure = A
—18e2a%yv .(Z S_w S . )\ZA Q(N\p) d)\d,u.) 46)

with an error of the order 0(¢*, e24/1).

Again, for a transverse surface roughness we can integrate
w out in (46) and obtain (14). On the other hand, for a parallel
surface roughness we integrate A out in (46) and obtain (13).
That is, Christensen’s [9] theory is correct to the order 0(e2) in
the surface roughness amplitude. For a surface roughness of a
general two-dimensional form a naive approach of combining
(13) and (14) additively will not yield the correct answer,
which is equation (46).

5 Conclusions

In summary, we have derived a mean Reynolds equation
that is accurate to terms of order O(e?), where ¢ is the
dimensionless amplitude of the film roughness defined in (2).
The final result is given in (46) and is dependent on the
spectral density Q of the surface roughness defined in (6)-(7).
It is noteworthy that the new mean Reynolds equation reduces
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to Christensen’s theory in the appropriate limits where either
the film roughness is parallel or transverse to the flow
direction. In these cases only the mean square of the film
thickness, <m?>, enters in the final equation, cf. (13) and
(14).

The mean Reynolds equation (46) is intended to be used for
small-amplitude surface roughness. This is not seen as a
stringent restriction since the application of the Reynolds
equation requires that eaw, < < 1 (ratio of surface roughness
amplitude to wavelength). Also from the Stokes solutions to
squeeze-film and slider bearing with parallel surface
roughness [4-5] we require that w,h < 0.5. This means ea/h
< < 1orthat e < < 1, which was assumed in this paper.
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Theory of Maximum Tensile
Stresses in the Solidifying Shell of
suen § @ COnstrained Rectangular Casting

Associate Research Consultant.
A theoretical model is derived for determining the stresses that develop during the

early stages of solidification in flat-sided ingot molds. The model requires flatness

0. Richmond of the solidifying skin and is strictly valid only up to the time when an air gap begins

to form at the corners. Here it is argued that the model continues to provide a valid

U.S. Steel Corporation, estimate of the maximum stresses in the central portion of the flat sides, where mold
Research Laboratory, contact is maintained long after the first appearance of an air gap at the corners.
Monroe, Pa. 15146 This argument is supported by the fact that the lateral contraction of this portion is

inhibited both by mold friciton and by tensile forces transmitted through the
contracted corners from adjacent faces of the skin. Specific calculations are made
for low-carbon steel by using physical property data from the literature. The
maximum tensile stresses occur at the outer face and have values between 500-1500
psi, depending on the cooling rate. The theory is believed to be relevant to the in-
terpretation of “‘center-line’’ cracking.

Introduction > N
The stresses that develop in the solid shell during
solidification are of considerable practical importance ;///// Ll é §
because when sufficiently large, they may cause longitudinal N 2 Z T, (CONSTANT)
cracking. It is the objective of the present work to describe a é P=0 é (
method for estimating such stresses and to give some actual g f S SOLIDIFYING SHELL
numerical results for the solidification of steel in a mold with T ) AIR GAP
flat sides. \
If the solidifying shell is subjected to uniform but non- \
steady surface temperature and pressure, and if it remains flat A) WEINER-BOLEY PROBLEM

during solidification, then the theoretical problem in the early
stages reduces to a one-dimensional nonsteady problem on
each side of the ingot except for small corner effects. Weiner

and Boley [1] have considered such a problem for a square Z//// LA AU /é T
mold. They assumed that the newly formed solid behaved as a 7 7 )

. . . . . / T ety gemmctmemcsen, P (1) %
rate-independent elastic-plastic material. This led to con- é Z
traction immediately upon cqoling, caqsing an ‘‘air 'gap” D y
between the mold and the solid shell (Fig. 1{(@)). Continued &

flatness of the skin was nevertheless assumed on the basis that B) RICHMOND-TIEN PROBLEM
fluid pressures and inelastic corner rotations were negligible.
The resultant lateral strain in the shell was negative (con-
tracting) and the resultant lateral force was zero.

Richmond and Tien [2] took a different approach. They
assumed that the newly formed shell behaved as a viscoelastic
material and that the fluid pressure was not negligible. This
caused the shell to remain in contact with the mold for some

T,

Contributed by the Applied Mechanics Division for publication in the T
JOURNAL OF APPLIED MECHANICS, ’ ¢
Discussion on this paper should be addressed to the Editorial Department, C) PRESENT PROBLEM

ASME United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 5 . . .
ASME Applied Mechanics Division, October, 1981, final revision, March, ~ time after cooling began (Fig. 1()). The fluid pressure forced
1982. the shell against the mold, causing the resultant lateral force

Fig.1 [Hlustration of solidification problems
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to be compressive in the early stages and the lateral strain to
be zero. If the cooling rate was sufficiently rapid, however,
the lateral force changed in time from compressive to tensile,
and the time of this transition was taken as the beginning of
air-gap formation at the corners. After this time the solution
was considered invalid because the shell would no longer
remain flat. .

It is the contention of the present work, however, that the
approach of Richmond and Tien can be used to obtain an
estimate of the stresses in the central portion of the face of the
ingot even after the air gap begins to form. As illustrated in
Fig. 1(c), the air gap is visualized as growing from the corners,
but the central portion of the skin is kept flat against the mold
by the fluid pressure. Furthermore, lateral contraction of this
portion is inhibited both by mold friction and by the tensile
forces transmitted through the contracted corners from
adjacent faces of the skin. Thus, continued application of the
solution is believed to give a reasonable estimate of the
stresses at the center of the faces even after air-gap formation
at the corners, and up to the time of complete breakaway of
the faces from the mold. These stresses are probably
significant for the understanding of the formation of center-
line cracks. The formation of corner cracks, on the other
hand, is probably intimately associated with the occurrence of
the air gap itself.

In the next section, the rheological model of Richmond and
Tien is reviewed and compared with specific experimental
results on the mechanical behavior of low-carbon steels at
very high temperatures. Then the theoretical problem for flat-
sided molds is reviewed and the method of solution briefly
described. Finally, actual results for the solidification of low-
carbon steel are presented and discussed.

The Rheological Model Compared With the Behavior of
Low-Carbon Steel at High Temperatures

A general viscoelastic model for solids at temperatures that
are high relative to their melting points was proposed by
Richmond and Tien [2], and is used here. In Cartesian
components it is given by,

éU=(1+V)(%> + [(1—32”> (—‘—%") +o¢'T]5ij+ S—Z, ¢y

where the strain-rate components ¢; are related to the velocity
components v; by

. 1
4= iy +v50), 2

and the deviator stress components s; are related to the full
stress components g;; by
1

S =05 — '5- okkéij. (3)
The thermal-expansion coefficient « and Poisson’s ratio v are
assumed to be material constants, whereas Young’s modulus
E is taken to be a function of temperature, and viscosity pis a
function of both temperature and stress. The dot operator,
although generally a Jaumann rate [3], is taken as a simple
time derivative d/0¢ because convection terms are assumed to
be negligible.

The thermal expansion coefficient o used in the present
model is assumed to be constant. This is justified by the
experimental measurements obtained by Tammann and
Bandel {4] which indicated the linear relationship between
temperature and specific volume at temperatures up to the
melting point.

No direct measurements of Poisson’s ratio have been
reported for low-carbon steels at high temperatures.
However, Garber and Kovalev [5] did measure both Young’s
modulus and the shear modulus in an 0.04 percent C steel at
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Fig.2 Companion with Feltham’s* data for 0.05 percent C Stael

temperatures below 1000°C and inferred from these data that
Poisson’s ratio increases with increasing temperatures from a
value of 0.28 at room temperature. Because this result was
obtained indirectly and at temperatures considerably below
the melting point, and because the maximum possible value of
v is 0.5, it has been assumed for the purposes of this work
simply that » has a constant value of 0.3.

The dependence of Young’s modulus on temperature
appears to be linear from the measurements on iron by Koster
{6] and by Hub {7] and is represented by

E=F-GT, @
where F and G are material constants. It should be noted that
atomistic theories [8] also generally agree with equation (4) at
high temperatures.

The temperature and stress dependence of viscosity are
assumed to be given by

zeC/T J
A Al LT ? (5)
34" sinh(BJ)

where A’, B, and C are material constants and where the
second stress invariant J is given by

3 .
J=4’*2“SUS,‘J'. (6)

For a simple tension test under a stress, o, it is readily seen
from equations (3) and (6) that J = ¢. If the test also is
conducted at constant stress and constant temperature,
equations (1) and (5) show that the strain rate ¢ in the tensile
direction is given by

é=A'e~“Tsinh(Bo). ¢

n=

Comparisons of this equation with creep-test measurements
on an 0.05 percent C steel by Feltham [9] are shown in Fig. 2,
and the agreement is seen to be quite good. It should be noted
that this equation can be derived from absolute reaction-rate
theory [10, 11], in which case A" is proportional to 7. This is
the form that was proposed in 3], and it would provide even
better agreement with Feltham’s data. However, the simpler
form (7) with A’ as a constant is considered to be adequate.

The Solidification Problem and Method of Solution

The problem is illustrated at a general stage of
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Fig. 3 Physical representation of the problem and the coordinate
system

solidification in Fig. 3, where x represents the space coor-
dinate normal to an ingot face. Initially the melt is assumed to
be at a uniform temperature, T,,, just above the melting point
and at a uniform pressure, P, caused by the liquid head.
Subsequently, the surface temperature of the ingot is
decreased uniformly over the entire ingot surface while the
melt pressure is held constant.! The problem is to calculate
the thickness of the solid shell and the temperature, stress,
and strain distributions within the shell during solidification.
The thickness and the temperature distribution are obtained
from the heat conduction equation

T=KkT,; ®)

where k is thermal diffusivity, assumed to be a material
constant. The stresses must satisfy the equations of
mechanical equilibrium

0;;;, =0 &)

as well as the rheological equations (1), (4), and (5).

In general, even though the surface temperature and
pressure are uniform, the shell will become distorted during
solidification, leading to a difficult three-dimensional
problem. For a viscoelastic material, however, and a rigid
mold, the newly formed shell will be pressed against the mold
in the early stages, preventing distortion and allowing a much
simpler solution. For this case the only nonzero velocity
component is v, = v (x,f), and the only nonzero stress
components are o,, = — Pand g,, = 0., = — P + 7 (x,0).
The temperature, too, is a function only of x and ¢, and
consequently the entire problem becomes one dimensional.
The heat-conduction equation (8) then reduces to

oT *T
at " oxt’
or, if a modified heat of fusion is used (12), an approximate
solution can be obtained from the still simpler equation
a?T
ax?
The accuracy of this approximation was discussed in a
previous paper [12]. The equilibrium equation (9) is iden-
tically satisfied and the rheological equations (1), (4), ,and (5)
give

(10)

=0, an

I The more general case of uniform but nonsteady pressure was treated in [2].
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ar 1-2y G F—GT)q T
‘57=[<(1—p)P“T)F—GT_( 1—» )] at
- f“é%‘jfl ~CITsinh(Br) (12)
and
o 20-2) a1 [(I—ZV)G (27—3P)+3a] aT
ax _ (F-GDZ at (F—GT)? a
(13)

Equations (11)-(13) are the three field equations for the three
dependent variables, 7, 7, and v, in the resulting one-
dimensional, nonsteady problem.

Initially, v = 7 = O and T = T,,. The boundary conditions
on temperature are given by the circumstances that the outer
surface of the skin is subject to a specified temperature
history, while the inner surface remains at the melting tem-
perature, and also that heat is generated at the inner surface in
an amount required by the modified heat of fusion [12]. More
precisely,

T(x=0)=T, — T,(1—e-®?)

T(x=X())=T, (14)

and

ol dX

k dt’
where X (¢) is the thickness of the solid shell and /’ is the
modified heat of fusion. These boundary conditions are
sufficient to determine T(x,f) from equation (11). Once
T(x,t) is determined, 7(x,r) can be determined from equation
(12) and the condition that it is zero at the solidifying in-
terface. Finally, v(x,7) can be determined from equation (13)
and the condition that it is initially zero and remains zero at
the outer surface of the shell. Actually, v(x,?) is not computed
here because it is of no particular interest, but 7'(x,r) and
7(x,f) are computed from the reasonable cooling history given
by the first part of equation (14).

The problem is first restated in dimensionless variables by

using the following substitutions:

aT
a—(X=X(t))=
2

t = Rt, #=x/D, X=X/D, T=T/T,,, =Bt

_ _ oD?RI' . _

T, = Ty/T,, L=" , P=BP, F=BF, G=BT,G
KT,

& = aT,, A'=A"/R, C=C/T,

(15)
where D is unit length. The thermal problem then becomes
*T )
a2
subject to the boundary conditions
T(x=0)=1-T,(1—e~"")
. oo - (16
T(x=X(H)=1
and
o7 . . dX
— (x= =]
Py (Xx=X(1)) i’
where
X(t=0)=0. )

And the mechanical problem becomes

SEPTEMBER 1982, Vol. 491483
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a7 _[ (1—2»)15_?) G _ a(F—GT)] aT
ar 1—» F-GT 1—v» at
A (F-GT)e T

sinh#

2(1-v) an

subject to the condition that 7 is zero at the solidification

front.
It is readily verified that the solution to the thermal

problem is given by

484/ Vol. 49, SEPTEMBER 1982
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- - X 2
T=1-T, (1~—.) 1-¢
1))

where (18)

2T, . Vr .
X \/ T (t ) erft)
The mechanical problem is solved by using this result in the
right-hand side of equation (17). Specifically, the dimen-
sionless stress 7 is computed at various specific positions, X,,
by using the simple but reliable Runge-Kutta [13] integration
procedure with the condition

F(f=1,)=0, 19)
where ¢, is computed from the second part of equation (18)
when x, = X.

Numerical Calculations and Figures

The following data that are appropriate for 0.05 percent C
steel were used in equations (17) and (18) to calculate the
stresses developed during solidification:

A’ = 1.55x10° (1/sec)

B = 2.05x107° (cm?2/gr)
C = 32x10¢(°C)

a = 1.8x107%(1/°C)
G = 0.88x10°% (gr/cm?°C)
F = 0.002 (gr/cm?)

v = 0.3

T, = 538(°C)
T, = 1550(°C)

= 8(gr/cm?)
I’ = 65(cal/gr)
k =.0.07 (cal/sec°C cm)

The development of stress at various positions is shown in
Fig. 4 by using R = 1.4 x 1073 (1/sec), which corresponds to
the case where surface temperature decreases from melting
temperature to 1100 °C within 16 min. It is seen that at any
position the stress starts to build up when solidification begins
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Fig.7 Effect of cooling rate on maximum stress

because of thermal contraction. During the initial stages, the
temperature is high and the stress is low. Hence the inelastic
strain rate is low, and the stress accumulates from thermal
contraction at a rate faster than stress relaxation from the
inelastic behavior. The overall stress is therefore increasing.
At a later stage, the temperature is Jow and the stress is high,
and the inelastic effect overpowers that of thermal con-
traction. Then the stress is gradually relaxed. The overall
maximum stress occurs at the cooling surface (¥ = 0), but at
any particular instant the stress may be higher elsewhere. This
is shown in Fig. 5, where the stress distribution within the
solidifying shell is given at various times. The maximum stress
is at the surface up to ¢t = 2.0, but then the stress level
decreases and the location of the maximum stress moves
inward toward the liquid side. The stress history at the surface
X = 0is given in Fig. 6 for various values of R, which implies
different rates of cooling. It is seen that the maximum stress
can be three times higher when the time required to drop the
surface temperature to 1100°C decreases from about 16 min
to 2.7 min (R = 1.4 x 1073 to 8.4 x 1073 sec™!). The
maximum stress and the time ¢* when it occurs are plotted
against R in Fig. 7. This plot indicates that the maximum
stress is very sensitive to R only when R is small than about
0.005.
The integration of stress

Se od
0

is equivalent to the total transverse force in the shell. It is also
the force required at the ends and by friction buildup to
prevent overall contraction. This force obtained from
graphical integration of the curves in Fig. 5, is shown in Fig. 8
as a function of R. The total force, like the stress at a par-
ticular location, increases, reaches a maximum, and then
decreases. In a recent publication by Frober and Oeters [14],
the forces in a solidified shell are directly measured through
an experimental setup. Some typical results shown in Fig. 9
are consistent with present predictions.

Concluding Remarks

The maximum transverse stress that can occur in the center
of a flat face of a solidifying steel casting has been estimated
by examining the case when the ferrostatic pressure and the
mold-friction forces completely inhibit contraction. For
normal cooling histories the maximum tensile stress occurs at
the outer surface of the solidifying shell, next to the mold
face. This stress first increases because of the effect of the
thermal contraction coefficient, but later decreases because of
inelastic (creep) effects. The maximum stress is, as expected,
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Fig.9 Experimental measurement of forces in a solid shell

very sensitive to cooling rate. These results should be useful in
interpreting the effect of cooling history on center-line
cracking when accurate yield stresses at elevated temperatures
becomes available.
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Cylinders and Spheres

Using the nonlinear creep law proposed by Soderberg, closed-form solutions are
derived for the relaxation of incompressible thick-walled spheres and cylinders in
plane strain. These solutions involve series expressions which, however, converge
very quickly. By simply ignoring these series expressions, extremely simple ap-

proximate solutions are obtained. Despite their simplicity these approximations
possess an accuracy that is superior to approximations currently in use. Finally,
several physical aspects related to the relaxation of cylinders and spheres are

discussed.

Introduction

Creep problems are encountered in many situations, in
particular when high temperatures are present. When the
creep strains depend nonlinearly on stresses, the solution
becomes complex and numerical solutions are most often
necessary. This also applies to relaxation problems, where
displacements are known in advance. Often, however,
relaxation problems are somewhat simpler than the
corresponding creep problems, as the constitutive conditions
become differential equations in which all terms are known
explicitly. This situation arises for incompressible cylinders
and spheres.

However, only a few closed-form solutions are known for
such thick-walled structures. For an arbitrary Poisson ratio,
solutions have been obtained by Davis [1] for the linear
viscoelastic cylinder, and by Wierzbicki [2] for the linear
viscoplastic sphere, but apart from these solutions all other
contributions seem to resort to numerical solutions. This
applies, for instance, to the investigation of Davis {3] dealing
with incompressible cylinders and to the work of Spence and
Hult [4] treating incompressible spheres. To avoid the tedious
numerical calculations, the latter two investigations also
discuss several simple approximations to the considered
problems.

The present paper deals with relaxation of thick-walled
cylinders in plane strain and with thick-walled spheres. The
material is considered incompressible and the creep strains are
assumed to follow Soderberg’s [5] creep law, which involves
nonlinear stress dependency. From this basis, closed-form
solutions are derived. Even though these solutions are quite
easy to work with, extremely simple but very accurate ap-
proximate expressions are suggested and compared with the
exact solutions. Moreover, the exact closed-form solutions are

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion of this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, August, 1981; final revision, January,
1982.

Journal of Applied Mechanics

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subjectctco)%érl\l/%nitcg

applied to discuss physical aspects related to relaxation
problems.

Constitutive Equations

Assuming small strains and deformations, the total strains
are composed of the elastic and the creep strains, i.e.,

E=¢+ ¢ (1)
where a dot indicates the time rate. The elastic strains follow

from Hooke’s law. The creep strain rates are assumed to be of
the usual associated von Mises type, i.e.,

) 3¢
=25, @
e

where €, =(2¢5¢f;/3)" and 0, =(3s;;5;/2)" are the effective
creep strain rate and effective stress, respectively, whereas s
=0, —8;0,/3 is the deviatoric stress tensor. Usual tensor
notation is applied.

Due to its simplicity we will adopt time hardening here and
express the time dependence in terms of a power function. The
stress dependence is frequently assumed to be of the Norton
power law type. Here, however, we shall make use of the

exponential form proposed by Soderberg [5], i.e.,
&, =mA (e e —1)m-! 3)

where A, B, and m are parameters and ¢ is the time. Ac-
cording to both Soderberg [5] and Popov [6], this expression
provides close fits to experimental data. Moreover, for
practical purposes, it gives almost identical results as the
hyperbolic sine relation suggested, for instance, by Nadai [7].
Nadai and McVetty [8] and McVetty [9] found that the
hyperbolic sine relation provides a better fit to experimental
data than the power law, whereas Pickel et al. {10} found
almost the same accuracy. Here, we could also make use of
the hyperbolic sine relation, but the results are somewhat
more complicated and will therefore not be given.

Thick-Walled Cylinder

Consider a thick-walled cylinder in plane strain with inner
radius r; and outer radius r,. The condition of plane strain
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provides é, = 0. Therefore, as the inner surface is given a
specific fixed displacement, it follows from the assumption of
material incompressibility that

in familiar notation. Incompressibility implies that Poisson’s

ratio equals Y2. Therefore, from ¢, = 0 follows o, =
(0, + 04) /2 which results in )

V3
O'e=T7(0'g'—0',-) : o)
where T = 1 or T = -1 holds, if the inner surface is ex-

panded or contracted, respectively.

By the preceding observations we are left with only one
constitutive equation of interest which, using equations
(1)-(5), reads

5, +mAE(e"7e — 1)1 =0 6)

where E is Young’s modulus. This equation together with the
equilibrium equation
do
r-57r+o,~ag=0 )
constitute the governing equations of the problem.
The cylinder is loaded by a constant external pressure and
the inner surface is given a fixed displacement, i.e., the

boundary conditions are
r=ry; u=u; =constant ®)

r=ry; o,=—p,=constant ®

Using the transformation y=e_B"", the solution of (6)
follows straightforward. This solution involves an arbitrary
function f(r), which is determined so that for t=0 the
isothermal elastic solution follows. The result is

M
1 -5
ae=—§1n(a+be ; ) (10)
where the two time-dependent functions @ and b are defined
by
a(t)=1~b(t); 0O=ax<i
b(ty=e M"; 0<b=<l
and where the positive parameters M and N are defined by

2
M= T\/—gEBulrl;

Inserting (10) into (7) and integrating from r to r, gives

M
In (a+be # )
2T (n

"B T
where the boundary condition (9) has been used. Integration
of this expression is performed after the numerator of the
integrand has been expanded into a Taylor series. However,
this expansion depends on the magnitude of the positive term
M

be ¥

N=ABE

g, dx—p2 (11)

/a, and it becomes convenient to define the time-
M

dependent radius , so that be 5 /a=1,i.e.,
172

M

Iné
a

Iy =

This expression can be used only for b/a>1, otherwise ry is
defined to be infinitely large. Depending on the value of r, we
are now in a position to determine the radial stress using (11).

If ry <ry then
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M 0
ln<a+be 2 ) =/na— E

Equation (11) now becomes Mn
2T N1/ byn(n X
G’zﬁ[lna lnr—z—— E (— —) S e — dx] — D>

r n=1 N a r X

Using the transformation z=Mn/x? this expression yields

T ’_2_°°l_’_’)"[ (_Af_)
0= 5 2inain— ( B (3

ro f=n a

()

where Mn/r? is a positive quantity and the exponential in-
tegral is defined by

Ei=|

and is extensively tabulated, for instance, by Abramovitz and
Stegun [11].
Similarly, if ry <r then

(12)

0 H—U

dv
v

4

n

M &1 a
-Xal-—r

M
ln<a+be— —2> =Inb—
X X n=1

be

Use of this expression in equation (11) and proceeding as in
the foregoing yields

T ry (l 1)
—— M= - =
o, B3 {21nb in p + 77

_ g % <_ g) ’ [Ez(%n) —Ei(%n)]} -p, (13)

where the exponential integral is defined by
Ei(z) = S

and is tabulated, for instance, by Abramowitz and Stegun
[11]. The initial elastic solution follows from (13) with a=0,
b=1 and therefore ry =0.
Finally, if r=rg<r,
calculations we obtain

T ro s 1 b\ " M
r= 21 1—_ _(__) [ (— )
7 B\/§[ nain-, Z:n a Es r20n

z e"
—dv
v

then by completely analogous
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Fig.1 Development with time of effective stress in cylinder
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The closed-form solution for ¢, given by either (12), (13), or
(14) is very easy to work with noting that only a, b, and rq
depend on time. Moreover, the series present in the solution
converge very quickly. In addition to that, these terms are
small compared to the other terms. This means that in
preliminary calculations the radial stress can be determined
with close accuracy by completely ignoring the series ex-
pressions and considering just the first term in the series will
raise the accuracy to a very high level. These important
aspects are demonstrated in the section on applications.

Thick-Walled Sphere

Consider now a thick-walled sphere of incompressible
material and with inner radius r, and outer radius r,. The
boundary conditions are again given by (8) and (9). The
calculations are completely similar to those of the cylinder
problem and we shall therefore merely state the final results.

Define the positive quantity Q by

Q=T2EBu,r}
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where T=1 or T= —1 if the inner surface is expanded or
contracted, respectively. The effective stress is then given by

Q2
1 _2
we=Tlm=o) == gin(a+se 7) a9

el d

Define the time-dependent radius r, so that be -

m:(%)m
In-

a
This expression applied only so long as b/a>1; otherwise r, is

/a=1,1i.e.,
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defined to be infinitely large. Depending on the value of r_ the
following expressions hold for the radial stress.
If r, =r, then

2T o w1 b\" Q
g, = 51—?{3111(2 n—=— E - (— ~) [El(r—3n)

r n=1 M a b3
If r, <rthen

GO

2 r ( 11 )
= — l —_— e —
0=z [3lnb nr+Q i

_ ZZ % (_ %) ! [Ez(%n) —Ei(%n)]} -p,  (17)

The initial elastic solution follows from this equation with
a=0, b=1, and therefore r, =0.
If r=r,<r, then

2T r, o 1 b\" Q
o,=§3[3lnaln———z —(—~> [E,(wa:n)

r =) N a

Q r 1 1
_E, (Fn>] +3inb In > +Q(E - 71—)

_ i‘l ’11(_ o' [Ei(% )—Ei(%n)]} —py (18)

Applications and Approximations

(16)

Consider an austenitic stainless steel at a temperature of
around 600 deg C. In the secondary creep range, where m=1
applies, typical parameters in the creep law, equation (3),
might be 4 ="7+10"7 [1/h] and B=5.4+10"2[1/MPa}. For a
stress range between 50-150 MPa, this B-value corresponds to
an exponent of around five in Norton’s creep law. Young’s
modulus is assumed to be E=1.5+10° MPa.

The first applications concern a thick-walled cylinder and
sphere both with r;, =0.01 m and r, =0.04 m, and with ex-
ternal pressure p, =0. The initial internal pressure in both
cases is 100 MPa. Assuming a rigid mandrel this pressure
corresponds to the shrink-fit pressure.

Figures 1, 2, and 3 show the development with time of the
effective, radial, and tangential stresses, respectively, for the
cylinder. Figures 4, 5, and 6 provide the corresponding results
for the sphere.

It appears that the stresses decrease considerably with time
especially immediately after the initial loading and adjacent to
the inner surface in particular. As the driving force in the
creep process is the effective stress, the decrease of the stresses
as well as the zone affected by relaxation is smaller at a given
time for the sphere than it is for the cylinder due to the more
favorable structural behavior of the sphere.

In addition to the decrease of stresses, a considerable stress
redistribution takes place. This is especially pronounced for
the tangential stress, cf., Figs. 3 and 6. The stress
redistribution is a result of creep being a nonlinear function of
effective stress. To illustrate this effect, consider a cylinder of
incompressible viscoelastic material, where creep depends
linearly on stress. This case arises from equation (3), when B
is very small resulting in ¢, =mABo,t™~!. Within the same
approximation e =/ e 1 —M/r?* applies, which, by means of
(10), vyields o, = —In(1—bM/r*)/B. As 0<b=1 holds, this
expression can be approximated by g, =0, . D(f) where
b(t) is equal to e~N" ag before. For secondary creep, where
m equals unity, the equation for o, corresponds to uniaxial
relaxation of a Maxwell material. Now, using this expression
in the equilibrium condition given by (7), we derive
0, = 0,00, D(I) and similarly for the tangential stress.
Therefore, when creep depends linearly on stress, the stress
distribution itself is similar to that of an elastic material,
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Fig. 8 Development with time of shrink-fit pressure in different
spheres

whereas the stresses decay as if uniaxial relaxation were in-
volved. These conclusions were originally derived by Davis
[11.

Let us now consider the item of most practical interest,
namely the development with time of the shrink-fit pressure p
at the inner surface. For thin-walled vessels very simple ex-
pressions can be derived directly from the equilibrium con-
ditions resulting in ¢,= —p= ~2T/V30,h/r—p, for the
cylinder and o,=-—p=—2Tg,h/r—p, for the sphere.
However, when the wall thickness increases, the problem
becomes much more complex.

Figure 7 gives the development with time of the shrink-fit
pressure for three different cylinders with r,/r; =1.2, 2, and
4. The material properties are identical to those previously
used and the initial shrink-fit pressure is again 100 MPa.
Figure 8 provides similar results for the sphere.

It appears that the wall thickness has a considerable in-
fluence on the results and in accordance with the previous
discussion, this influence is a result of creep being a nonlinear
function of stress, Physically, as the inner region is most
subject to creep and as the outer region tends to restrain these
creep deformations, it is obvious that the thicker the vessel the
slower the loss of shrink-fit pressure, Similarly, the shrink-fit
pressure decreases more slowly for the sphere than for the
cylinder.
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Different attempts to approximate the development with
time of the shrink-fit pressure have been proposed in the past.
When creep depends linearly on stress, the previous discussion
shows that this development is identical to that of uniaxial
relaxation. In [3] Davis proposed to also apply this concept to
nonlinear creep. The approximation leads to the conclusion
that for a given initial shrink-fit pressure, the development
with time should be identical for all wall thicknesses. Com-
parisons with Figs. 7 and § discourage such an approach.

More recently, Spence and Hult [4] investigated the ap-
proximations currently in use, namely the Kachanov ap-
proximation and the reference stress concept and compared
them with the exact, numerical solution for relaxation of
incompressible spheres consisting of materials in which creep
follows Norton’s law. Here, we make use of the extremely
simple formulas, which follow if we ignore all series terms
present in equations (12), (13), and (14) for the cylinder
problem and present in equations (16), (17), and (18) for the
sphere problem. The resulting approximations are shown in
Figs. 7 and 8. It appears that the predictions of the ap-
proximations become better the more thin-walled the vessel is.
Compared with the approximations currently in use, cf.,
Spence and Hult [4], the approximations suggested here
provide a much closer and even simpler estimate to the exact
solution.

Apart from these advantages, the approximations shown
here also demonstrate that the exact solutions are very easy to
work with as the series converge very quickly. Indeed, if only
the first term in the series is considered, the accuracy obtained
is close to the drawing accuracy. The exact solution in all the
figures shown is that obtained using the first four terms in the
series.

Conclusions

Considering incompressible material behavior and
assuming that creep is determined by the exponential ex-
pression proposed by Soderberg [5], closed-form solutions for
the relaxation of thick-walled cylinders and spheres have been
derived. These solutions contain terms in the form of series

Journal of Applied Mechanics

expressions. Approximative formulas that simply ignore these
series have been proposed and have been demonstrated to be
in close agreement with the exact solutions.

Apart from providing extremely simple and even more
accurate predictions than approximations currently in use, the
effectiveness of the proposed approximations also demon-
strate that only a few terms in the series present in the closed-
form solution have to be considered to obtain a solution close
to the exact one. In addition, several physical aspects related
to the relaxation of cylinders and spheres have been discussed.
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The transient response of a fluid-saturated poroelastic layer resting on a very
porous rigid foundation and subjected to a sudden fluid pressure rise on its upper

surface is analyzed on the basis of Biot’s theory of poroelasticity. Compaction of
the layer and fluid outflux from its botfom surface are calculated for five typical
poroelastic materials: alundum and Ohio sandstone saturated with water, compact
bone, and Albany felt and polyurethane foam filled with silicone fluid. For each of
these materials, the numerical results are compared with those estimated by the

“incompressible model’’ as well as the

“rigid skeleton model’ in order to examine

the validity of these models.

1 Introduction

There are many mathematical formulations describing the
mechanical behaviors of a fluid-saturated poroelastic body,
taking into account various aspects of its behavior. Among
these formulations, Biot’s linear one [1-3] is one of the
simplest theories and it suffices to describe various
phenomena in various real situations.

Regarding experimental data on several material constants
appearing in the Biot theory, Fatt [4] reported in 1959 his
experimental results for Boise sandstone saturated with
kerosene. After a long absence of reports on the material
constants, some reports [5-7] were published for poroelastic
materials such as bone, sandstone and sinter containing
water, and foam rubber and felt filled with silicone fluid.

On the other hand, there are also a number of papers
dealing with mathematical analysis of the mechanical
response of a fluid-saturated poroelastic body. Many of these
papers, however, do not base their numerical calculations on
the experimental data of material constants but on assumed
values. Furthermore, many of them base their analysis on a
simplified model in which both the matrix material of the
poroelastic body and the contained pore fluid are assumed to
be incompressible so that the volume change of the body is
equal to the amount of the pore fluid squeezed out. (We refer
to this simplified model as the ‘‘incompressible model.’’) This
incompressible model is supposed to be suitable for describing
the consolidation of soil.

In the present paper, we consider the transient response of a
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fluid-saturated poroelastic layer resting on a very porous rigid
foundation and subjected to a sudden fluid pressure rise on its
upper surface. Because of the reasons mentioned in the first
paragraph, we adopt the Biot theory. This theory contains the
“incompressible model’” as well as the ‘‘rigid skeleton
model’’ as special cases. (The latter model has been used to
examine the flow through porous media in various fields [8].)
Our numerical calculations are based on the experimental
data for five selected typical kinds of poroelastic materials.

Our main objectives are as follows: (1) to make clear
qualitative distinctions, if any, in the transient response of the
layer between the five typical poroelastic materials; (2) to
determine which of the five allows us to estimate the com-
paction (consolidation) of the layer and the outflux of the
pore fluid by the incompressible model; and (3) to make clear
whether or not it is appropriate for each of the five to estimate
the fluid outflux by the rigid skelton model.

It should be added that another objective at the outset of
this research was to explain by the Biot theory of
poroelasticity the decrease in the fluid flux with the progress
of compaction (consolidation) of a reverse osmosis membrane
when sea water is desalted by the reverse osmosis method [9].
However, this attempt was not successful. We conjecture that
we should take into account the finite deformation (com-
paction) of the membrane and/or its viscoelastic nature.

2 Basic Equations

Let us begin by summarizing Biot’s linear theory of
poroelasticity which takes into account the compressibility of
both the matrix material and the contained fluid. We shall
refer to this theory as ‘‘Biot’s full model.”’

Equilibrium equations and modified Darcy’s law are, in
Cartesian tensor notation,
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(0;; +0d;),; =0, n

U:i=b(Ui_ui)s @)

where o; and od;; are the solid and fluid partial stress tensors,

respectively, and u; and U; the solid and fluid displacement

vectors. Flow resistance coefficient b in equation (2) is related
to permeability k and fluid kinematic viscosity u by

b=uB/k, 3)

with 8 denoting the porosity. The following shows relation

between o and pore pressure p:
o=—~0p. )

Solid strain tensor e;;, solid dilatation e, and fluid dilatation
eare expressed in terms of u; and U, as follows:

1
e,»j=5(u,-,j+uj,,<), €=U;;, €=(J,-’,'. (5)
Constitutive equations are given by
oy =2Ne; + (Ae+Qe)§;, o=Qe+Re, (6)

where N, A, Q, and R are the elastic constants. The first one is
the shear modulus and the other three are expressed in terms
of measurable parameters as follows [10]:

A=(v/k+82+(1 =281 -8/K)}/(y+86—8*/k) — (2/3)N,
O=B(1—-B—056/k)/(y+6—86*/x), R=B/(y+86—8*/x), (7)

where « and 6 are the so-called ‘‘jacketed’’ and ‘‘unjacketed’’
compressibility coefficients, respectively. Parameter vy is a
coefficient of fluid content and is given by

v=B(c—9)
with ¢ being the fluid compressibility.

@®

3 Problem Formulation and Results of Analysis

A fluid-saturated poroelastic layer of an infinite extent and
having thickness 4 is laid on a porous rigid foundation which
has very large permeability compared with that of the layer.
Fluid pressure is suddenly applied on the upper surface of the
layer and thereafter varies according to time-dependent
function 7 ().

If we take the x-coordinate downward and its origin on the
upper layer surface, it is clear that

Ul = U(x)t)y
and that all other displacement components vanish.

®

U = u(x;t)s

Table 1 Initial and final values of layer compaction and
fluid outflux

Biot's Full Model

Rigid Skelton Model | Incompressible Model

a for viw

3

Since the fluid-saturated poroelastic layer is completely at
rest before the fluid pressure is applied, the initial conditions
are

u=U=0 at ¢=0. (10)

From the condition of a sudden fluid pressure rise on the
upper layer surface follow

p=w(t) at x=0. (11)

Assuming for simplicity’s sake that the layer rests on the bed
that has very large permeability and very large rigidity
compared with those of the layer, we can write the boundary
conditions on the bottom layer surface as follows:

o,+o=—mx(f),

u=0, p=0 at x=h. 12)

In order to solve the preceding one-dimensional con-

solidation problem, we have introduced the following non-
dimensional quantities and material parameters:

(8y,0,0,%) = (0x,0,0,7) /Do,

4, 0y=(u,U)/ (poh/K), (13)
x=x/h, t=t/(bH*/K),
ap=(P+Q)/H, o;=(Q+R)/H, oy=K/H, (14)

where P=A +2N, H=P+2Q+R, and K= (PR—Q?)/H. In
the first and second equations of (13), p, stands for the
reference pressure. For simplicity’s sake, the bars on the
nondimensional quantities are omitted in the following.

In the course of the analysis, the applied fluid pressure has
been specified to have the form

w(t) =1—exp(— vf), (15)
with » being the parameter of the pressure rise rate. The
analysis is very easy. We shall present only the results for the

compaction, u(0,f), of the layer and the fluid outflux,
v, =UQ,0):

u(0,0 = {a; — 0y 2ax, — B)(cosVy— 1)/(VsinVp) J(1 —e ™)

+20,20; — B) Y v/ (nm) {v— (nm)* )] X

n=1

X (1= (="} {1-e~ o}, (16)
V(1,0)=8— (Vo/sinVp) { acosv— (», — B) )"
+2 i (=1"p/{v— (noP }{ap(— 1)
" ~ (o~ B)Je~ . (an

4 Rigid Skeleton and Incompressible Models

For the layer whose porous skeleton has very large rigidity,

OO T for tamite v ) ° we may estimate the fluid flow through the layer by the rigid
w(0,®) | ayte,(ay-B/2) 0 82/2 skeleton model. This model is a limiting case of Biot’s full
o | fer v \ ® for v model. For the rigid skeleton, it follows from their definitions
! 0 for finite v 0 for finite v that
V1, 8 8 B N—ow, -0, 6—0, y—g8e. (18)
Table2 Material constants
N (Pa) | A (Pa) [Q (Pa) |R (Pa) | B |b(N.s/m]

Alundum/Water 2,5E10 l.SEIU 5.7E08 | 6.3E08 | 0,32 3.7E07

Ohio Sandstone/Water 6.8E09 |{ 6.7E09-| 9.5E08 | 3.3E08 | 0.19 6.6E09

Compact Bone ‘ 6.2E09 | 2,2E10 | 4,4E09 ( 1.7809 | 0.14 2.7E13

Albany Felt/silicon; Fluid 5.3E05 | 2.4E06 | 6.3E06 | 2.1E07 { 0.70 6.5E10

Polyurethane Foam/Silicon- Fluid | 3,1E03 | 3.2E03 | 9.4E04 | 8.7E06 | 0,93 4.4E07

Water: ¢ = 5.1E-10 (Pa 1) Silicone Fluid: c = 1.0E-09 (Pa 1)
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In these limits, we find
19

On the other hand, both the matrix material of porous body
and the contained pore fluid are often assumed to be in-
compressible so that the volume change of the body is equal to
the amount of the pore fluid squeezed out. This is the case for
soil. This incompressible model is also obtained as another
limiting case of Biot’s full model. For the incompressible
matrix material and the incompressible pore fluid, it follows
from their definitions that

al—vl, (12“’0, (13—’0.

6-0, ~—0. (20)
Jacketed compressibility x remains finite. Thus, we obtain
a—~1-8, w—B o-0, 21

for the incompressible model.

The layer compaction and the fluid outflux can be
evaluated by equations (16) and (17). Especially, those at
t=0+ and at t—oo can be expressed in closed forms by
recourse to the mathematical formulas in [11, p. 36]. Those
are shown in Table 1 for Biot’s full model as well as for the
rigid skeleton and incompressible models. The latter two may
serve the purpose of comparison.

For v—oo, that is, for the step pressure load, #(0,0)=q;.
This means that the layer has ‘‘instantaneous elasticity’’ and

presents a striking contrast to the incompressible model for
which #(0,0)=0 even for »—oo. That is, not to mention the
rigid skeleton model, the incompressible model is not ap-
propriate to estimate the compaction of the layer immediately
after the application of the step pressure, unless the layer
material has a negligible value of ;.

The layer compaction in the steady state is given by
#(0,00) = a3 + o, (o, — 8/2), which reduces to u(0,00)= (/2
for the incompressible case.

For yv—o, V(1,0)—c for both Biot’s full model and the
incompressible model, while V(1,0) =0 for the rigid skeleton
model. This means that the deformation of the skeleton due to
instantaneous elasticity causes a very large fluid outflux. This
phenomenon will be discussed again in terms of the pore fluid
pressure gradient in the next section.

The fluid outflux in the steady state is the same for all the
models, that is, V(1,00)=g.

5 Numerical Examples and Discussion

To cast further light on the transient response of the layer,
we carried out some numerical computations for the five
typical kinds of fluid-saturated poroelastic materials;
alundum and Ohio sandstone saturated with water, compact
bone, and polyurethane foam and Albany felt filled with
silicone fluid. For these five materials, we summarized the

x 10_2r“

1.2+

u(0,t)

T T T T 7

LA B A i B | Y T

Blot’s Full Model

0.0

0 102 10l 1 1
t
Fig. 1 Compaction history for Ohio sandstone and alundum layers
containing water
rf f——r—r—rrr Ty —
0.5 [ Polyurethane Foam/Stlicon Fluld

Biot’'s Full Model
—-—-— Incompressible Model
0.4}

0.3

u(0,t)

0.2}

0.1}

0.0-é

Fig. 2 Compaction history for pblyurethane foam layer containing

silicone fluid
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Fig.4 Outflux history for water from Ohlo sandstone layer

values of material constants, N, A, Q, R, 8, b in Table 2.
Some of these values were computed from those of other
material constants. Units were reduced to SI units, when
necessary.

The values of b in the last column of Table 2 are not
necessary in computing the layer compaction and fluid
outflux in the nondimensional form, but they are tabulated
for the convenience of calculating real time from non-
dimensionalized time through the last equation of (13).

In Figs. 1-6, the solid curves correspond to Biot’s full
model, the chain curves to the incompressible model, and the
dashed ones to the rigid skeleton model.

5.1 Compaction of the Layers. Figure 1 shows the
compaction histories of the alundum/water and Ohio sand-
stone/water layers subjected to fluid pressure. For the larger
v, the compaction increases up to its peak and then goes down
asymptotically to its steady state value oy + ay(a; —(/2)
(Refer to Table 1). Especially for the step pressure rise
(v—o0), compaction happens instantaneously. That is, both
the layers present a distinct ‘‘instantaneous elasticity.”’ This
instantaneous compaction is significantly larger than that in
the steady state.

No curves of the estimates by the incompressible model are
depicted in Fig. 1, because there is too much difference from
those of Biot’s full one.

Although not depicted for the sake of space saving, the
compact bone layer also presents distinct instantaneous
elasticity, but its instantaneous compaction is a little smaller
than that in the steady state. The whole aspect of the com-
paction variation is similar to that of applied pressure for all
v. The estimates of the layer compaction by the in-
compressible model are far from being a good approximation.

The instantaneous compactions of the Albany felt and
polyurethane foam layers containing silicone fluid are
calculated at u(0,0+)=0.024 and 0.00092 (v— ), respec-
tively. Therefore, their instantaneous elasticity is negligible.
For the larger » (including the case of v— o), the response of
both layers is delayed compared with the applied pressure rise.
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This is shown in Fig. 2 for the polyurethane foam layer. This
figure also shows that the incompressible model gives a rough
estimate of the compaction, although there is considerable
discrepancy in the steady state compaction. This is the case
also for the Albany felt layer.

5.2 Outflux From the Layers. Regarding the fluid outflux
from the layers, its estimates by Biot’s full model are com-
pared with those by the incompressible model as well as by the
rigid skeleton one in Figs. 3-5. It follows from the bottom
row of Table 1 that the steady outfluxes estimated by the
latter two models are the same as that calculated by the
former one.

The chain curves in Fig. 3 are far from the solid curves for
v=1 as well as for »= 100, so that the incompressible model is
useless to estimate the outflux from the alundum layer.
However, the rigid skeleton model gives fairly good ap-
proximations except for »=100 and for <0.1.

For the Ohio sandstone layer, neither of the simplified
models yields good approximations, especially for the rapid
pressure rise, as seen in Fig. 4.

Figure 5 shows that, in contrast with the rigid skeleton
model being useless, the incompressible model gives very good
approximation for the fluid outflux obtained by Biot’s full
model for the compact bone. This holds true also for the
Albany felt and polyurethane foam. This approximation is
good for all » and from the outset of fluid pressure loading to
the steady state.

5.3 Pore Pressure Distribution. In Figs. 4 and §, the
dashed curves are far from the solid curves except in the
steady state. Especially for the compact bone and for »=100
(Fig. 5), the rigid skeleton model indicates almost zero outflux
in the early stages, but Biot’s full model predicts such a large
outflux that the curve extends out of the diagram in Fig. 5.
Figure 6 is devoted to an explanation of this essential
discrepancy between these two models.

Figure 6 designates the spatial distribution of pore pressure
p{(x,t) for the various times for the compact bone. The left
half is by Biot’s full model and the right one by the rigid
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Fig. 6 Pore fluid pressure distribution for compact bone layer for
various times using Biot’s full model (left) and the rigid skeleton model

(right)

skeleton model. Since the former model allows the skeleton to
deform elastically and the elastic deformation propagates at
infinite velocity in the case of quasi-static analysis, the pore
pressure instantly penetrates into the layer near its bottom
surface, as seen in the left half. In contrast to this, the latter
model suppresses any skeleton deformation and the pore
pressure gradually penetrates into the layer from the top
surface that is suddenly subjected to the fluid pressure, as
shown on the right. Therefore, near the bottom surface, the
pore pressure gradients for Biot’s full model are very steep in
the early stages. These steep gradients result in a large fluid
outflux. the circumstances for the rigid skelton model are
completely contrary to this.
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Discontinuity Waves in Sand
Columns'

Formulas are obtained for the speeds of propagation of gravity-induced rarefaction
and condensation density discontinuities in vertical sand columns. A rarefaction
wave is induced in a column of sand at rest by removing the support at the bottom
of the column. A condensation shock is induced by reintroducing the support,

which stops the sand from falling. The theoretical prediction of the speed of
propagation of the leading edges of the rarefaction wave corresponds well with the
speed measurements obtained in a preliminary experiment.

Introduction

We are concerned here with the dynamics of sand columns.
A sand column is a volume of sand contained within a rigid
right cylinder of arbitrary cross section. The long axis of the
cylinder is coincident with the direction of gravity, and the
internal surface of the cylinder is rough. We use sand in a
generic sense and we thereby include all dry, cohesionless
granular materials in which pneumatic effects are not
significant. Examples of sand columns satisfying this
definition include hopper sections of bulk material handling
equipment, silos for the storage of bulk agricultural products,
and standpipes that supply granular materials to certain
chemical production processes.

In the next section we briefly present the well-known
formula of Janssen for the equilibrium intergranular stress in
a sand column. In the following three sections, formulas are
obtained for the speeds of propagation of rarefaction waves
and condensation shocks in vertical sand columns. The
formula for the speed of propagation of the leading edge of a
rarefaction wave is of greatest interest. Although speed of
propagation varies with the depth of the rarefaction wave in
the sand column, the predicted speed of propagation of the
leading edge of a rarefaction wave agrees well with the speed
measured in a preliminary experiment.

The Sand Column in Equilibrium

We consider the column of sand illustrated in Fig. 1. The
sand is in equilibrium in a cylinder of arbitrary cross section.
It is subjected to a surface surcharge stress of magnitude P.
The sand is supported from below by a piston. The cross-
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sectional area of the cylinder is denoted by A and the
perimeter of the cross-sectional area by L. A coordinate axis z
with positive direction upward from the free surface is used,
as shown in Fig, 1. This selection of coordinate direction
means that the sand column is located along the negative g
axis; thus all material stations are located by negative z
coordinates. The bulk density p of the sand is written as a
product of the density of the sand grains y and the solid
volume fraction » of the grains,

p="w. ey
The average value of a quantity f(x,y,z) over the cross section
z = constant is denoted by f(z) and is defined by:

z 1
F@= 3 | roor) dvay. @
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The average value of f(x, y,z) over the perimeter L of the
cross section is defined by:

1
r@=: | s s @)

A formula for the stress in the sand was obtained by Cowin
[1], improving the well-known formula of Janssen [2]. This
formula involves the Janssen coefficient K defined by

T *
K= = nn , )
¥ @

2z

where T, is the stress acting normal to the column boundary
at the perimeter and 77, is the average perimeter stress. T, is
the cross-sectional average of the vertical stress T,,. We are
denoting tensile stresses as positive in this work. The coef-
ficient X is constant for many granular materials. A summary
of K values is given by Sundaram and Cowin [3}; see also
Cowin and Sundaram [4].

The improved formula of Janssen (see Cowin [1]) gives the
following bound on the average vertical stress 7,,:

= To = yvglo + (P—yrglo)eb, %)
where
/ 4 6
0= [.LLK > ( )

g is the acceleration of gravity, and p is the static coefficient
of friction between the cylinder and the sand. This bound on
— T, becomes an equality when the friction between the sand
and the cylinder wall is fully mobilized. It should be kept in
mind that the last term in equation (5) represents an ex-
ponential decay because the admissible values of z are all
negative.

Conservation of Mass and Momentum Across the
Discontinuity

Statements of the conservation of mass and momentum
across a one-dimensional discontinuity obtained in this
section are well known. Our derivation, which is based on
Lamb’s [5] presentation of the original results of Rankine [6],
emphasizes the applicability of these classical results to void
volume changes in sand as well as to density changes in gases.
The notation we introduce is generally that of Truesdell and
Toupin [7].

Consider a discontinuity, for example a rarefaction wave
moving up the sand column as illustrated in Fig. 2. The
leading surface of the discontinuity is denoted by s* and the
trailing surface by s~ . Let the normal stress, solid volume
fraction, and particle velocity at the leading surface be
denoted by T %, »*, and Z*, respectively. At the trailing
surface the same quantities are denoted by T, »~, and z-,
respectively. The spatial velocity of the wave is denoted by u.
The material speeds of propagation of the two surfaces s+
and s, denoted by U+ and U, respectively, are related to u,
z*t,andZ- by

i

Ut=y—-z*, U =u—-3" @)
To obtain the desired statement of mass balance, the wave
velocity u is superposed on the two surfaces s* and s~ to
reduce the problem to one of steady motion. Since the same
amount of mass crosses the surfaces s* and s~ in unit time:

wt(u=2*)=yr~ (u—2") ®
which, using (7) can be rewritten as
wtUr =y~ U~ =M ©)

where M is the mass per unit area entering or leaving the wave
front per unit time. Rankine [6] called M the ‘‘mass velocity’’
of the wave. Equation (9) is the desired statement of mass
conservation across the discontinuity. It can also be written in
the form
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[»U1=0 (10)
where the square brackets denote the jump in the indicated
quantity across a shock; i.e.,

[pUl=v* Ut —p~U~. 63))]
To obtain a statement of momentum conservation across
the discontinuity, the change in normal stress, given by
[T l=T} — T, is equated to the rate at which the mass is
gaining momentum:
[T ]=Mu—z*)-M(u—2z")=—-Mlz].
Thus, from (12) and (7), momentum balance requires that

[Ty ]=M[U]. (13)
An expression for (U*)? is obtained from (13) using (11) and

®,

(12)

v™ [Tyl

wt bl
Thus, using (9) and (14), the speeds U+ and U~ of the shock
surfaces are determined by the normal stress jump [7,,] and

values of the solid volume fractions »* and »~ at the shock
surfaces, and are independent of other factors.

(U*y =~ (14)

The Rarefaction Wave

We consider now what happens when the piston in Fig. 1 is
suddenly dropped at an acceleration greater than that of
gravity. Such an action leaves the bottom level of the sand
unsupported. The sand will become less densely packed and
begin to fall freely, creating a rarefaction wave. The surface
st is the lowest surface that is still in static equilibrium.
Below the surface s*, the shear stress sustained by friction
between the sand and the wall diminishes in a short distance to
zero. The surface s~ is defined to be the sand plane where the
sand has become sufficiently disperse that it can no longer
sustain intergranular stresses.

At the surface s*, the stress is given by the equality in
equation (5), which assumes that the full friction force is
mobilized; thus,

— T =798l +(P—Ni,log) &b, (15)

where 7, is the reference value of the volume fraction
established by the initial packing. At the surface s, the
normal stress T is zero and the reference volume fraction »~
is py, the value of » at which intergranular stress disappears.
When appropriate values for [T], [»], »*, and v~ are
substituted into (14), the square of the material speed of
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propagation of the leading surface of the shock is given by
(U*) =0} + (v} - v)e/lo

where vy and v, are velocities defined by

/ glo 7 P
Vo=ol > V1= —-
Vr—"vo v (9, — 9p) Y

Equation (16) shows that far away from the free surface, the
material speed of propagation of the leading edge of the
rarefaction wave is vy, where

an

(18)

The result also shows that very near the free surface of the
material, the material speed of propagation of the leading
edge is v;, where

lim Ut =v,.

-~ —

lim Ut =v;.
7=0
In particular, if the free surface has no surcharge (i.e., P =
0), the material speed of propagation of the leading edge of
the shock (i.e., the velocity of the wave relative to the
material) will go to zero as the free surface is approached.
The time for a shock wave to travel from a location —z, to
the free surface can be calculated using the formula (16).
From (16) we write that

19

dz
Ut = — =[v} + (v} —vf)e”0]'/2.

- 0)

TS [T puh el - e @1
Integration yields

(e )@

and, in the special case when the free surface is unstressed (P
= 0, hence v; = 0),

t= 1—°1n(2ez0/’0 -1).

4
Equation (22) is a general expression for the time # that it
takes a rarefaction wave to travel from a depth z, to the free
surface. Equation (23) is an expression for the same time ¢ in
the special case of an unstressed free surface.

The Condensation Shock

Suppose now that the piston is suddenly stopped. The
piston surface will be covered by sand rather quickly, and
sand that has come to rest will be separated from the still-
falling sand by an interface. This interface, which moves up
the sand column, is here considered as a condensation shock.
This situation is illustrated in Fig. 3. The leading edge of the
condensation shock, s*, is defined as the horizontal plane
where the intergranular stress T, changes from zero to some
nonzero value; hence, by definition the solid volume fraction
is ;. Sand grains crossing the surface s * have a velocity —v.
The surface s~ is the surface where all motion of the sand
grains vanish; the value of v~ is denoted by »,. To determine
the speed of propagation U™, the mass fluxes at the surfaces
st and s~ are set equal:

(23)

pyAU ™ dt = — vy Addt. (24)
Thus U-=— Yo .. 25)
”S

An expression for the stress at the surface s~ can be obtained
from (14) using (25), T = 0, »* = yy, and v~ = p; thus

)’Yl_lo 152.

Equation 26 shows that the jump in intergranular stress across

7—'zzz_(l_ 1jo

Vs

(26)
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Fig. 3 The sand column containing both a rarefaction wave and a
condensation shock

the condensation shock is proportional to the square of the
velocity of sand grains entering the shock.

Comparison of Theory With Observations

Several years prior to the development of the theory
reported here, a small-scale experimental investigation studied
the movement of voids of a sand column. We will here report
the results of this early experiment and compare them with the
theory. In the experiment, a vertical, rough-walled cylinder of
rectangular cross section was filled with sand. The cylinder
was fitted with a piston that could be displaced downward a
specified distance with an acceleration greater than that of
gravity. Moving the piston downward by a specified amount
created a void whose magnitude and dimensions were known.
Static radiographs of the cylinder were taken before and after
each downward displacement of the piston. Microswitches
and an electronic timer were used to measure the time lapse
between the beginning of downward movement of the piston
and the initiation of downward movement of the free surface
of the sand.

The test cylinder had a rectangular cross section 152.4 mm
by 76. 2 mm and a height of 990 mm. The walls were made of
perspex (plexiglass), and were covered internally with burlap
to produce high friction surfaces. Both 76.2 mm perspex walls
were perforated with many holes to eliminate pneumatic
effects from the air entrained in the voids. The piston was
released with a solenoid, was driven downward with a spring,
and was stopped hydraulically. The mechanism was designed
so that the piston could be moved up to a maximum of 76.2
mm.

The first step in the experimental procedure was to load the
test device with dry sand. The sand was discharged from a
loading hopper through a plastic tube into the cylindrical
chamber. The flexible plastic tube was moved about to keep
the free surface of the sand horizontal. A slow loading rate
ensured that the sand would be densely packed in the cylinder.
This method of loading the sand is described in detail by Lee,
Cowin, and Templeton [8]. The total length of the completed
sand column was 908 mm.

Next, the cylindrical chamber was placed in position and
leveled. Three overlapping static x-rays were taken of the
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cylindrical chamber on Kodak type M film (SM3M10), which
was attached to one of the wider external faces of the
chamber. A 2.44 m source-to-film distance was used. The
bottom x-ray included the piston, the second one the middle
region of the cylinder, and the top one the upper region and
free surface of the sand. A tube voltage of 150 KV with a tube
current of 4 mA and exposure time of 5 minutes was used.
The system was then ready for use in studying the effect of
piston motion.

In the first experiment, the piston was dropped 19.1 mm,
after which three more static x-rays of the cylinder were
taken. During this experiment the timer, which was designed
to be activated by a microswitch associated with the piston
and stopped by a microswitch measuring the beginning of
motion of the free surface, did not stop because the free
surface did not move. We feel that the free surface failed to
move because the rarefaction wave was diffused to an am-
plitude below that which is required for propagation before
reaching the free surface.

The static x-rays taken before the first experiment showed a
smooth layering structure in the sand, characteristic of the
manner in which the sand was deposited. Static x-rays taken
after the first movement of the piston looked essentially like
those taken before, even though the volume fraction of solids
had changed from the initial packing fraction of #* to 0.98 p*,
The initial packing fraction 7* is unknown; the packing
fraction after the movement of the piston, 0.98 »*, is
calculated from the change in the total volume of the sand.
Because the x-ray tube had to be moved to take the upper two
x-rays after the first experiment, it was repositioned at the
lowest position and another static x-ray was taken. This was
done to obtain a before and after x-ray of the second ex-
periment with the x-ray tube in the same position. This same
process preceded the second and third experiments. )

In the second experiment, the initial positions of the sand
column and piston were their final positions at the end of the
first experiment. The second experiment consisted of drop-
ping the piston an additional 38.2 mm. The timers (a second
one was employed as a backup) measured 0.182 s in both
cases. The free surface was estimated to have dropped only 19
mm during the experiment. The static x-rays taken after this
experiment showed changes to be more pronounced than for
the first experiment. Recall that in the second experiment the
piston dropped twice as far, 38.2 mm. In the second ex-
periment, sand in the first 500 mm directly above the piston
and the top 150 mm directly below the free surface of the sand
appear on the static radiographs to be undisturbed by the
piston motion. However, in a region about 300 mm long
between these two undisturbed regions there is an interesting
change. The region contained many rupture zones, that is,
zones of increased porosity or reduced solids volume fraction
from 1 to 8 mm wide and from 50 to 100 mm long. These
rupture zones made angles of 25-30 deg with the horizontal
and tended to cross at the middle of the cylinder. Patterns in
the radiograph were very similar to those of Luders bands
observed in metals. The average solid volume fraction in the
second experiment was 0.98»*, as compared to 0.95»*, in the
first experiment. The volume of 0.95»* was calculated from
the change in total volume occupied by the sand.

We now compare the results of the second experiment with
the theory presented. By using equation (23) and numerical
values associated with the experiment, we determined a
theoretical transit time ¢/, To make these calculations, values
of p = 0.5and K = 0.6 were chosen as being representative of
the sand used. A survey of K values for various materials is
given in [3]. Values directly related to the physical dimensions
of the experimental equipment were:

A=0.0116 m? L=0.045Tm 20=0.927 m.
Using these values and equation (15), the value of /; = 0.0846
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was calculated. With g = 9.81 m/s? and the values of 5, =
0.98 »* and », = 0.96 »*, equation (17) yielded v, = 6.31
m/s. Substitution of z,, /y, and vy into equation (23) gave a
transit time of 0.156 s. The agreement between this theoretical
value of the transit time and the experimentally measured time
of 0.182 s is quite acceptable when experimental precision is
conside..d. In the experiment, the values of 5, and », were
determined froin the changes in total sand volume as a result
of the wave passage and the values of x4 and K were estimated
from other data [3].

In the third experiment the initial positions of the sand
column and piston were their final positions at the end of the
second experiment. The third experiment consisted of
dropping the piston an additional 19.1 mm. The timers
measured 0.0885 s in both cases during the third experiment.
Again, the free surface was estimated to have dropped 19 mm
during the experiment. Static x-rays taken after the third
experiment showed only slight changes from those taken after
the second experiment. The principal change was that the
rupture zones generated in the second experiment, which are
still present, had become slightly diffuse and less distinct. A
few new rupture zones were generated below the previously
formed ruptured zones during the third experiment. The
average solid volume fraction did not change noticeably from
that after the second experiment.

The fact that measurements were not sufficiently precise to
determine a change in the solid volume fraction in the third
experiment prohibit the calculation of a theoretical transit
time to compare with the experimental transit time.

Conclusion

The theoretical formula developed for the leading edge of a
rarefaction wave up a sand column appears to be consistent
with a preliminary experiment. The factors influencing the
speed of propagation near the free surface of the sand column
are different from the factors influencing the speed deep in
the column. Deep in the column, the speed is determined by
the cross sectional area, the perimeter of the cross section, the
coefficient of friction between the wall and the sand, Jassen’s
coefficient K, the acceleration of gravity, and the volume
fractions in front and behind the wave. Near the free surface
the speed is determined by the surcharge stress on the free
surface, the weight density of sand grains, and the volume
fraction in front and behind the wave,

Both theoretical and experimental results suggest that the
speed of propagation of the leading edge of a rarefaction
shock is faster in looser sands.

Acknowledgments

The authors thank K. R. Johnson, R. N. Prudencio, R. D.
Rikard, L. E. Sandy, and L. I. Starrh for assistance with the
preliminary experiment reported in this work, and H. Keedy
for his editing of this manuscript.

References

1 Janssen, H. A., “Versuche uber Getreidedruck in Silozellen,”’ Zeitschrift
Verein Deutscher Ingenieure, Vol. 39, Aug. 31, 1895, pp. 1045-1049,

2 Cowin, S. C., ““The Theory of Static Loads in Bins,”” ASME JOURNAL OF
AprrLIED MECHANICS, Vol. 44, 1977, pp. 409-412.

3 Sundram, V., and Cowin, S. C., ““A Reassessment of Static Bin Pressure
Experiments,”’ Powder Technology, Vol. 22, 1979, pp. 23-32.

4 Cowin, S. C., and Sundaram, V., *“The Effect of Material Compressibility
on State Bin Pressures,’’ Powder Technology, Vol. 25, 1980, pp. 225-227.

5 Lamb, H., Hydrodynamics, 6th Ed., Dover, New York, 1932, pp.
484-485.

6 Rankine, W. J. M., *On the Thermodynamics of Waves of Finite
Longitudinal Disturbance,’’ Phil. Trans. Royal Soc., Vol. 160, 1870, p. 277.

7 Truesdell, C., and Toupin, R. A., “The Classical Field Theories,”’ in
Handbuch der Physik, S. Flugge, ed., Springer Verlag, Vol. l11/1, pp. 522 and
546.

8 Lee, J., Cowin, S. C., and Templeton, J. S. IIl., ‘‘An Experimental Study
of the Kinematics of Flow Through Hoppers,’’ Trans. Soc. Rheology, Vol. 18,
1974, pp. 247-269.

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E. Nakamachi

Yatsushiro National College of Technology,
Yatsushire, Japan

S. Takezono

Kumamoto University,
Kumamoto, Japan
Mem. ASME

A Numerical Analysis of the
Hydraulic Bulging of Circular
Disks Into Axisymmetric Dies

The hydraulic bulging of peripherally clamped, thin, circular disks into axisym-
metric dies is studied by means of an incremental finite element method, based on

membrane shell theory and formulated to account for finite strains and rotations.

R. Sowerby

Professor,

Department of Mechanical Engineering,
McMaster University,

Hamilton, Ontario,

Canada L85 4L7

The material is treated as an isotropic, elastic-plastic solid obeying the von Mises
yield criterion and plastic-potential flow law. The analysis was first performed for a
Sflat-bottomed die, assuming Coulomb friction between the material and the die
base. Experimental data were gathered from aluminium disks deformed into a die
having a flat, thick glass base. The glass permitted a continuous assessment of the
deformation profile and the contact boundary between the aluminium and the glass,

using Moiré topography. The agreement between the experimental observations and
theoretical predictions is good.

Introduction

The literature dealing with the nonlinear numerical analysis
of thin plates and shells undergoing finite plastic deformation
is extensive, and will not be reviewed here. The most favored
test case to assess the numerical technique has been the
axisymmetric bulging or stretching of a peripherally clamped
thin, circular plate [1-7].

The present paper also deals with the axisymmetric bulging
of a clamped circular disk, but here the material is being
forced into an axisymmetric die. Calculations are provided
herein for a cylindrical, flat-bottomed die, where the material
is assumed to be an elastic-plastic solid obeying the von Mises
yield criterion and associated flow rule. An incremental finite
element method is employed, based on the membrane ap-
proximation for thin shells, and formulated to account for
geometric nonlinearities [8]. The frictional conditions bet-
ween the material and the die were assumed to be of the
Coulomb type.

The predictions were checked against experimental ob-
servations when bulging a 0.31-mm-thick disk of pure
aluminum into a flat-bottomed die. The die base was made of
thick glass and this permitted the use of Moiré topography
[9], to determine the profile of the deforming blank. The
specimens were also gridded, and the principal surface strains
could be determined by removing the specimens from the
bulging apparatus and measuring the distorted grids. The
agreement between experimental observations and theoretical
predictions was very favorable.
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Finite Element Formulation

The present analysis considers the finite deformation of
thin circular disks, where over the major portion of the
material a stretching mode is predominant and hence the disk
may be assumed to behave approximately as a membrane.
Since the loading and deformation is axisymmetrical, a ring-
plate element is employed.

Figure 1 shows a ring-plate element in a known state C after
finite deformation from the undeformed configuration Cy;
there follows an incremental deformation and C is mapped
into C. An embedded (convected) coordinate system ' is
adopted [7, 8, 10], where 6! and 62 are attached to the middle
surface of the element and #° is perpendicular to the ' — 6§

o > JU
€34 €, 383 4 &
= - ! - - —H— Co__
©2 a-re,
92 '0*2
Fig. 1 Displacement of a ring-plate element, showing the coordinate

systems

SEPTEMBER 1982, Vol. 49/ 501

t© 198 E

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subjeCttho)%érl\l/%nicensegorzcgalyﬁ\g]%l\;/lsee http://Iwww.asme.org/terms/Terms_Use.cfm



plane. The incremental kinematic relationships are described
with reference to the base vectors a;(i=1, 2, 3), of the
coordinate system &', at the center of gravity of the element in
state C. )

In the incremental deformation from C to C, a generic
point Pin the plate is displaced by Au where

Au=Auta, + Au’ Mas, (0

and A=~h/h,, the ratio of the thickness of the plate in C and
Cy. The incremental displacement field in the finite element is
considered to be given from the nodal values Auj, by the
Lagrangian interpolation function ¢~ (6%) as follows:

Auil= Yy (%) Auly, (N=1,2) )
N
where ¥V (8%) = ¢~ + 37, and ¢" and 8Y are constants. The

authors follow the convention that Greek indices range over
the values 1, 2 and Latin indices over 1, 2, and 3.

The covariant differentiation of the incremental
displacements is represented by
Au; s = NYEAUY
(3)
Al = N® Auk.

The nonvanishing coefficients are

1 I e 1! 1 _ 4l 2 7l
~¥i = Bnis N =, N33 =A3380 +AF N,
3 _ 3 o 3 _ A2
N = By vV =05, NY3 =ASNIE,,
NGl — AN NP2 — 422N N@d — AN
&, = B, Vof, =a*VLy,, "3 =67,
NG — ARN 2
B33 = A5 Eans /N
NG — 11AN 422N 2 N@2 _ ,2N
Pl = (@, ARBY+AF L)/ N, V5 =a*NEy;.

The quantities A§5 are the coefficient tensors in the con-
stitutive equation of the material given later in the text by
equation (21). The coefficients Y I,,,, yI1%, are expressed as

w r
NEZZk = 7 9}” anz(z = ‘21! Q,f, 4

where rV and ry are the radius of a circle through the nodal
point N. The terms &, and @}, are transformation coefficients

which relate the base vectors a; to the reference Cartesian
coordinates e; as follows:

a, = Olaej)
a® = O%e;, (%)
a; = fle;/A=2%=N0le,,

where [a®| = la; | =1 and a* is the contravariant base vector.

The Green strain increments at the center of gravity of the
ring-plate element are expressed by

Ay = Auyly =By Aul=Bla,; Aul,

Avyn = Auyly =Ny Auf=yIT5 Auf,

Ay = MAN=A}Ay, +Af Ay ©
Ay; = Owheni #j.

It is convenient to introduce a traction per unit length of
plate defined in terms of the true stress, 7%, and its in-
crement, A7 as follows,
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n® = 79p
Anf = Arfp
)
n®® = An®f =0, o=p,
n? = An¥=0.

Under hydraulic pressure the force is directed normal to the
surface of the element. The increment of surface force, AT,
is related to the increment of pressure, Ap, in the following
way

AT!' = —p/NBINa' Au}y),
AT? =0
(3)
AT = Ap/N+p/N(BY+aN Ty )Auk
+ a22N2223 Au3 N ] .
We now introduce the virtual velocity
v=p,a%+v;a’/\, ©)

and in the absence of inertia and body forces the principle of
virtual work in incremental form can be derived as

—{avalAn®Cug, +n8 (Au” 1, + AN/ N vg
+nfAum | gu,, JdA + § VaAT v, dA =0. (10)

When the material makes contact with the die the frictional
resistance has been incorporated into the virtual work
equation. The frictional forces in the direction of the
meridion, a,, in C and C are derived from Coulomb’s law as
follows

a .
up dA inC
Vay, (1)

and

. a4 ]
——dA
mp /—d”
where p is the coefficient of friction and a,; is the metric
tensor. The incremental frictional force can now be obtained
with the aid of (11) in the following manner

A1dA (At%a, + A3 Aa;)dA

p(p+Ap) (ay + A | Nag)(1+ Aucl )

dA/Na,, —ppa,dA/Na,,

u{Apa, +p(Au®] a, + Al | hay)}dA/Vay,. (12)

If (12) is incorporated into the virtual work expression,

equation (10) is modified to the extent of an additional term
—{4VaArtv,dA,

appearing on the left-hand side of the equation.

The virtual work equation leads to the equation of motion
of the finite element in the following incremental form!,

(KM 4 o) Kl + (o KIS+ () RIG) Auly = AP, (13)

In equation (13) the coefficients in the brackets on the left-
hand side are the incremental stiffness matrix, the initial
rotation matrix, the initial stress matrix, and the initial load
matrix, respectively {7, 8]. The term on the right-hand side of
the equation represents the incremental generalized nodal
forces. The quantities are evaluated according to

2 2
E E EaaﬁﬁaﬂﬁMq;QﬁN \I/Jaa)\her,
1 =1

in C,

I

iM —_
Kin =

2

E haaM(I)ZqN\I,{;aAe,

il

iM
(&) Kiew
=1

) 1(13) refers to the local coordinate system and must ultimately be trans-
formed to the reference coordinates e;.
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2
E naaM(pZaN\I,{zaAe’

a=1

ORE = —pINMEE,84~MB],aN)Ay,

M
(o) KJkN -

APl = (Ap/NSiAn,
a=det(@.s),A, =Vaf, dA and Ay =Vaf 4 YndA.

In the foregoing A4, is the area of the finite element in C,.
Note that in the presence of friction two more coefficients
have to be embodied into (13). The contribution to the right-
hand side of the equation is the additional nodal force

() APy = —Vai 4 pAPS, YndA/Va,y,

while to the brackets on the left-hand side the stiffness matrix
is supplemented by
(i K =N al 4 up (M 831 85 + M 2%, 8 WndA/Nay, .

Once the contact occurs with the die base, the displacement
component normal to the surface is zero, and for the case of
full friction the displacement component tangential to the
surface is also zero. It is convenient to transform the com-
ponents of the incremental, displacement A’ and nodal force
AP', with respect to the reference coordinates e;, to directions
normal and tangential to the contact surface. It follows that
Aw! cosé —sing Au!
Aw? Ai?
with a similar expression linking the nodal forces. In the
preceding expression £ is the angle between the tangent to the
meridional direction and the reference direction e;. The

equations are capable of solution for either frictionless,
Coulomb friction or full sticking cenditions.

s

sinf cos¢

Constitutive Equation

As already mentioned, an isotropic, elastic-plastic material
is assumed, which deforms in an axisymmetric mode under
plane stress conditions. It is further assumed that an in-
crement of strain can be obtained as the sum of the elastic and
plastic increments

Ay, = Ay§ + Ay, (14)
The elastic strain increment Av§ is related to the Jaumann
stress increment ;A7 by Hooke’s law, and the plastic strain

increment A is derived from the von Mises plastic potential.
The elastic relationships are

Collimating  Field
lens

X-T Recorder lens

Camera

Amplifier
00
Bourdon
"-\ Sl Glass base
— Die
Pum ] .
P Transducer JTest piece
VRN
l/ v \\\
\R50 /
N e

—_——

Fig.2 Schematic view of apparatus

Journal of Applied Mechanics

JAT11 Avf) '
n | = (15)
JAT Ay,
The elastic matrix B is given by
2 allg!  pglig2
B= -~ (16)
1—-v» va®ql! a?a?

where p is the shear modulus and » is Poisson’s ratio. The
plastic strain increment is derived from the von Mises plastic
potential in the usual manner

Ayy? =dnif/d7Y,
where
[ =120V =a%/3,
i = —alaut/3

Ty = T/kla,-kaj/.

After some manipulation [8] the incremental stress-strain
relationship for the elastic-plastic material can be expressed as

JAT” Ayy
= , 17
JA722 Ayy
where
. 1 FllFll FIIFQZ
D=B- - (18)
F | pRpll pnpn

In equation (18)
(FHFZZ)T:B(TI 11 7’ 22)T,

. 2 ’ ’
F= §F/62+F“T 11 +FQ2722.

F, F*® and F’ denote the characteristics of the material; F’
is the derivative of the function of the plastic work, W7,
where

Sf=F(W?),
and can be determined from a uniaxial tensile test.

The Jaumann stress increment can be expressed in terms of
A7 as

AT” jAT“ A’)’H
= - (19)
AT22 JATZZ A’YZZ
where
271 gt 0
H =
0 27%2q%
Equation (19) can be expressed in the alternative form
At Ay,
= (20)
A% Ay,
where
E=D-H.

Under plane stress conditions the thickness strain increment
Ay, is given by

Ay =AF Avep, 1)
where

A= —v/Ea, DN + 73, F8 /F.

Analysis of the Bulge Forming of Circular Plates

a Experimental Method. Pure aluminum disks, 0.31 mm
thick were clamped around their periphery and deformed
under hydraulic pressure. The diameter of the disk exposed to
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Fig. 4 Calculated and measured blank shapes when forming into a
flat-bottomed die

the oil was 100 mm. At a distance, Z, above the flat blank was  central portion of the glass was minimal, being less than 0.04
located a glass plate, 10 mm thick, which restricted the depth  mm with the highest pressure employed.

of the deforming blank, Hence the blank is being deformed An array of lines was scribed on the surface of the glass
into a flat-bottomed cylindrical die. The deflection of the plate to form a square grid of side, S=1.0 mm. Moiré
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Table1l Material properties

Young’s modulus E=68650 MPa
Yield stress gy =22.05 MPa
Poisson’s ratio »=0.314

True stress-strain

relationship 3=156.4(0.0011542 + &”)*®MPa

0.16 B

Z=10mm

¢

0.14

0.12

0.10

0.08

0.06

NATURAL THICKNESS STRAIN (—¢

B p=0.39MPa
0.04 e pe03
----- Full Friction
0.02} O A Boundary of Contact
0 L L ! !
0 02 04 06 08 1.0
r/a

Fig. 5 Calculated thickness strain distributions for the die geometry
of Fig. 4(a)

topography, [9] was utilized to determine the contour of the
deforming disk. A pattern of interference fringes is revealed
when viewed throtgh the glass plate; the fringes represent
contour lines of equal height difference, Ah, as shown in Fig.
2. In the present experiments Az was 0.75 mm and is given by
the following expression [9]

Ah= S tanf, tané,/(tand, + tand,), 22)

where 6, and 6, are the incident and viewing angles,
respectively (see Fig. 2). Two distinct sets of experiments were
performed with the lower surface of the glass plate set at
either Z=10 mm or 15 mm, above the upper surface of the
flat blank. The oil pressure was applied by a hand pump, and
at pressure intervals of 0.05 MPa a photograph of the in-
terference pattern was taken after holding the line pressure
constant for about 90 s. Typical Moiré patterns are shown in
Fig. 3. As the pressure increases the fringes grow in number,
and come closer together as the slope of the contour of the
deforming specimen increases. The fringe pattern disappears
when the material touches the glass, and the area of contact is
apparent from the photographs of Fig. 3. It is to be noted that
since 6, #90 deg, the fringes are elliptic rather than circular in
shape. However, the difference is small as was found to be
about 2 percent in region of the steepest slope of the bulge,
and a correction was made for this. The maximum line
pressure employed in these experiments was 1.40 MPa. This
pressure was not sufficient to burst the specimen when the
glass plate was set 10 mm above the blank, but with Z=15
mm, rupture did take place.

Across the diameter of each circular blank, lines were
scribed at 5.0 mm intervals. At different stages in the
deformation process the blank was removed from the bulging
apparatus and the principal surface strains were derived from
measurements of the fiducial markings. The thickness strain
was computed on the assumption of material in-
compressibility.

Journal of Applied Mechanics
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Fig.6 Comparison of the calculated and measured strain distribution
at one specific pressure

b Comparison Between Theory and Experi-
ment. Uniaxial tensile tests performed on the aluminum
revealed the property data given in Table 1. This was used as
the material constitutive equation in the finite element
analysis. The coefficient of friction between the aluminum
and the glass was assessed experimentally. A series of weights
were loaded onto aluminum strips which were attached to a
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spring scale and pulled across the glass plate. A value of
n=0.3 was determined under dry conditions, and this value
was used in the subsequent analysis. An alternative procedure
was also employed in the calculations, by assuming that once
the material contacted the glass plate no relative motion of the
interface occurred. This condition is referred to as fixed or
Sfull friction in the following text.

The disk was divided into 50 ring-plate elements of equal
width. To compensate for the radiused corner of the hold-
down ring (see Fig. 2), the deforming blank was assumed to be
of 51 mm radius. Figures 4(@) and (b) show the calculated and
measured profiles of the bulge for Z=10 mm and 15 mm,
respectively. Calculations were performed for both friction
conditions and there was little to choose between either
method. In general the theoretical results agreed quite well
with the experimental observations. Figure 5 shows the
calculated thickness strain distribution for each friction
condition, as a function of hydraulic pressure with Z=10
mm. Under full friction conditions, the maximum thickness
strain is calculated as occurring at the contact boundary of the
workpiece and the glass base, while for 4=0.3 the maximum
strain is deemed to occur just away from the contact boun-
dary in the free surface of the bulge. Upon repeating the
calculations for pressures in excess of those shown in Fig. 4, it
was revealed that beyond a certain pressure, a dramatic in-
crease in the thickness strain occurred. In analytical terms the
enormous increase in the incremental displacements is caused
by the determinant of the stiffness matrix in equation (13)
going to zero. In physical terms this signifies plastic instability
in the material in the form of a localized neck, and the onset
of fracture. It was not straightforward to adjust the pressure
increment so that the determinant of the stiffness matrix went
exactly to zero. Some calculations were performed for the full
friction condition and it was established that rapid increases
in thickness strain were occurring at a pressure of p=1.57
MPa and 1.42 MPa at Z=10 mm and 15 mm, respectively.
These values were regarded as being close to the instability
pressure. Note that the full friction condition predicts the
lowest instability pressure in this type of test.

A comparison of the calculated and measured strain
distribution at one specific pressure is shown in Fig. 6(a) and
(b) for Z=10 mm and 15 mm, respectively. In general the
agreement is satisfactory. The experimental results tend to lie
between the predicted values using p=0.3 and the full friction
condition.

Some calculations were also performed when bulging into a
cylindrical die with a sinusoidal base. The two friction
conditions discussed in the foregoing were employed, and two
distinct sinusoidal contours were utilized. The objective was
to assess the applicability of the numerical procedure to the
study of the forming of more complex parts. The predictions
for the deformation modes, and the influence of friction and
die geometry on the die filling capabilities were eminently
sensible.
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Conclusions

The incremental finite element method formulated to
account for geometric nonlinearities and based on the
membrane approximation, appears to be a suitable analytical
tool for studying certain axisymmetric stretch forming
processes of thin, elastic-plastic, circular plates. Experimental
data have been gathered from the hydraulic bulging of a
clamped, circular plate, into a cylindrical flat-bottomed die.
The theoretical predictions agree well with the measured
values of strain distribution and deformed blank profile. The
calculations based on two assumed friction conditions
straddle the actual results. At a certain stage in the defor-
mation process the analysis reveals a very rapid increase in the
strain components at some point in the diaphragm, for minor
changes in the pressure. This was considered as being close to
the point of instability in the process, and in the present case
the full friction condition predicted the lowest instability
pressure. The physical manifestation of the bifurcation
phenomenon is the occurrence of a localized neck, which
signifies the onset of fracture. ,

The theoretical exercise of analyzing the bulging of a
clamped, circular disk into an axisymmetric die with a
sinusoidal base confirmed the applicability of the numerical
technique to the study of the forming of more complex parts.
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The Large Elastic-Plastic Deflection

T.X. Yur

With Springback of a Circular

Plate Subjected to Circumferential

W. Johnson

University Engineering Department,
Trumpington Street,
Cambridge GB2 1PZ, England

Moments

The large deflection elastic-plastic bending of a circular plate subjected to radially
outward acting bending moments uniformly distributed around its circumference is

analyzed, and computer programs are given to facilitate the determination of the
distributions of bending moments, in-plane forces, and displacements during the
bending and after unloading or springback. Computed examples are given, and the
errors developed by small deflection theory are discussed.

1 Introduction

In reference [1], the biaxial elastic-plastic pure bending and
springback of rectangular and circular plates after subjecting
them to loading and unloading by edge moments was
examined. However, the elementary theory of the bending of
thin plates which forms the basis of that paper [1] was
restricted to the maximum plate deflection being less than
about the plate thickness. With this limitation in mind,
reference [2] was provided to delineate the range of ap-
plicability of the results provided by [1].

In cases in which the deflections are no longer small by
comparison with the thickness of the plate, but are still small
as compared with other dimensions of the plate, analysis must
be extended to include strains in the middle plane of the plate.

References [3] and [4] parallel [1] and [2] but treat work-
hardening materials. Paper [5], in part, addresses itself to the
problems that confront the manufacturer of large water tower
containers, e.g., of 2 million gallon capacity. The many
plates (typically 10 ft x 8 ft and thickness 3~1 in.) which
make up a tower must be so pressed as to have predetermined
biaxial curvatures. These curvatures are those to which the
plate elastically springs back after plastic pressing. Thus the
ultimate purpose behind this and papers [1-5] is to be able to
contribute to assessing the radii to which relatively thick plate
must be elastically-plastically pressed so that after removal
from between the pressing tools and undergoing springback,
the plate possesses any specific double curvature required.

10n leave from the Research Institute of Construction Machinery, Tianjin,
China.
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Fig. 1 A circular plate subjected to bending moments uniformly
distributed along its circumference

2 Assumptions and Basic Relationships

Consider a circular plate of radius a, subjected to bending
moments M, uniformly distributed along its circumference
(see Fig. 1). If the plate is elastic, then the large deflection
problem may be treated as it was by Timoshenko in reference
[6]. In the following, a similar approach is made to deal with
the large deflection of an elastic perfectly plastic circular
plate.

Assume that:

() the material of the plate is elastic perfectly plastic;
SEPTEMBER 1982, Vol. 48507
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b, ' by
© ©

Fig. 2 The distributions of ¢, and ¢, along a normal-to-the-middle
plane of the plate

(i) points of the plate lying initially on a normal-to-the-
middle plane of the plate remain on the normal-to-the-middle
surface of the plate after bending;

(ii)) the normal stresses in the direction transverse to the
plate can be disregarded;

(jv) in plastic zones, the material obeys Tresca’s yield
criterion.

Since the deflection surface in our problem is symmetrical
with respect to the center of the plate, the displacement of a
point in the middle plane of the plate can be resolved into two
components: a component # in the radial direction and a
component w perpendicular to the initial plane of the plate.
Referring to [6], we take the strain in the radial direction to

be?
2
e;‘:ﬂ.k_}_(_dl) , 6))
dr 2 dr
2In the case_ of very large deflection we have [7] e,

mH

du/dr+ l/z[(dw/dr)2 +(du/dr) ]. For our comguted examp]es when wpay
A, (du/dr)/(dw/dr) = 0. OI ~ 0.03, i.e., (dusdr) /(dw/dr) = 0.0001 ~ 0.001,
5o that the term in (du/dr) is neghglble at this level of deflection.

and the strain in the tangential direction as

“, @

€6=—
-
where the superscript * denotes a value at the middle plane of
the plate.
Similarly, the prmc1pal curvatures of the deflected middle
plane can be expressed as®

d*w
K== ©
and
. 1 dw
= e @

It is convenient to introduce nondimensional parameters as
follows:

u w r
- =—, = —, 5
¢ Mk 4 P, &)
o K
é,=— and ¢p=— ©6)
Ke Ke
where A is the thickness of the plate and
2Y(1 —»?)
o= ——pm— @)

k, denotes the curvature in the initial yield state; E denotes
Young’s modulus, » Poisson’s ratio, and Y the yield stress of
the material. Thus, expressions (1)-(4) can be rewritten as

1
g=t"+—{'? 1y’
2
£
= —, 2)’
0
3In the case of very large deflections we have «; *= —dPw/dr? f1—-
3/2(dw/dr) 1. However, for our computed examples, when wp,, h,

(@w/dr)may = 0.08, i.e., 3/2(dw/d‘r)2 < (.01, so that the term (dw/dr)2 is
negligible at this level of deflectlon

Nomenclature
a = radius of the circular plate w = component of displacement in Ap = nondimensional increment in
b = distancein Fig, 2 the z-direction radial coerdinate
¢ = distancein Fig, 3 Y = yield stress o = stress
d = distance inFig. 3 z = direction perpendicular to the ¢ = nondimensional curvature,
E = Young’s modulus middle plane of the plate K/ Ke
f = material constant, E/2Y (1 — »?) o = nondimensional radius of ¥ = nondimensional quantity
h = thickness of plate plate, a/h defined by (30)
i = number of computing steps 8 = nondimensional distance, .
M = bending moment b/ (h/2) Superscripts
M, = edgemoment v = nondimensional distance, e = elastic
M, = initial yield bending moment, c/(h/2) p = elastic-plastic
Yh%/6 é = nondimensional distance, s = springback
m = nondimensional bending d/(h/2) SDT = small deflection theory
moment, M/M, ¢ = strain * = value at the middle plane of
N = in-plane force ¢ = nondimensional displacement the plate
N, = initial yield tensile force, YA in the z-direction, w/h ' = differentiation, d/dp
n = nondimensional in-plane k = curvature .
force, N/N, k, = curvature at the initial yleld Subscripts
R = radius of curvature state a = value at the edge of the plate
r = radial coordinate v = Poisson’s ratio i = value at the circle of radius p;
s = nondimensional quantity ¢ = nondimensional displacement = (i — DAp
defined by(18) in the r-direction, u/h 0 = value at the center of the plate
u = component of displacement in p = nondimensional radial r = radial
the r-direction coordinate, r/k 0 = circumferential

508/ Vol. 49, SEPTEMBER 1982
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b = —f¢" 3
and
PR, @
Je
where ’ = d/dp, so that
1 E
f= 1))

hk, 2Y(1—»?)’
which is a constant dependent only on the material properties.

As in the theory of elastic plates, from the basic assumption
(if) it can be assumed that the distribution of the principal
strains is as shown in Fig. 2. Thus, for any point in the plate,
the strains are

b
(1= % e+
R, b,

_z+b : )2
“TR+b, R, R,
+b,
Eer =(24+b,) & Q)

and
z+ bg + bg
€p = R
" Ry+by R,
where R, and R, are the radii of curvature in the middle
plane, and it is reasonable to suppose that R, > > b, and R,
> > by; b, and b, are quantities defined in Fig. 2.
By taking z = 0 in (9) and (10), the strains at the middle
plane are found to be

G;‘(=br’<r =ﬁr¢r/2‘f

= (z+by) Ky, (10

and an
€5 =bgxg = Bode/2f,
where
_ b _ by
B,= (7/7) and By= 2’ (12)
so that
B-=2fe}/d. and By =2f€}/be. (13)

In each-principal direction (i.e., the r and 6 directions), for
different combinations of bending moment and in-plane force
(i.e., (M,, N,) or (Mg, N;)), the distribution of the
corresponding principal stresses (o, or o) is of three different
types, as shown in Fig. 3 (see [8] and [9]), that is

() a wholly elastic stress distribution, Fig. 3(a), such that
no fiber yields in a specified principal direction;

() a primary plastic stress distribution, Fig. 3(d), such
that there is partial yield on one side with fibers yielding in a
specified direction:

(iii) a secondary plastic stress distribution, Fig. 3(c), such
that yielding occurs on both sides in the given direction.

It should be noted that when the distribution of one
principal stress (say, o,) embraces just one of these three
types, the other principal stress (say, ;) may be another of
these types. For example, when o, is of type (iii), g, may be
any one among types (7), (i), and (i),

However, in any case, there is always an elastic zone in the
plate so that from Hooke’s law we have

O'r=—1_V2 (6,.+V60) = I—VZ [(Z+br)Kr+V(z+b9)K9]

and 14
E .

00=m(60+1'6,-)= 1—1/2 [(Z+b9)K0+V(Z+br)Kr]‘

Journal of Applied Mechanics

h/2 ?

d
(a)
z y 2 ,

Y|

h/2 | ﬁzhd—c ﬂ (hlz)"‘d-c

P = c R ; R

c

thf2)-d-c (h/2)-ds¢c

! © (b)

Fig. 3 The distribution of a principal stress (s, or ¢;) along a normal-
to-the-middle plane of the plate. Three different types are: (a) a wholly
elastic stress distribution; (b} a primary plastic stress distribution; and
{c) a secondary plastic stress distribution.

Since o, = 0atz = —d,and gy = Oatz = —d,, itis found
that
(~d,+b )k, +v(—d, +by)ks=0
and (15)
(—do+bg)kg+rv(—dy+b, )k, =0.
Since, from (9) and (10),
b.k,=¢' and bgkg=¢€f,
then
d= bk, +vbgxy - e+ ved
’ K+ vKg K+ vKy ’
or
d, er+ve;
8, = =2 , 16
w2 =7 4 v, o
and similarly,
dy €p +ve}
8y = =2, . (16)’
T e rwrs

By comparing (16), (16)’, and (13), it is clear that in the
general case 6, # B, and 83 # By, i.c., the fiber at which the
stress vanishes may have a different location from that at
which each strain vanishes; in other words, in the two-
dimensional stress state discussed, there will not be a common
neutral surface for both stress and strain.

Since s, = Yatz = ¢, — d,, itis found from (14) that

(¢,—d, +bYk, +v(c,—d, +by) kg =Y(1 = v*)/BE=«,.h/2,
or by using (15),
¢, (k. +vkg) =k, /2.

Hence, by noting (3)’ and (4)/,

o 1 1
TEWD T e, e 07
(s +v7)
and similarly,
__Cs 1 1 ,
MWD e, p an
(o)

Then, by writing

SEPTEMBER 1982, Vol. 49/ 509
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§

s,Ee;‘+ve5=£'+‘/2§"2+v?
and (18)

£ : v
Sp=ej+vel= — +vE + — %,
P 2

it is found from (16) and (17) that

£ S0
2 42420
8,=2fs,7, = N
g—” +Vi
and ; P L (19)
22 420t +wi?
89 =2fsg7y9 = ¢
LIy
P J

Expressions (17) and (19) show that the distributions of o,
and oy are determined by the components of the displacement
of points in the middle plane of the plate and their derivatives.

For the different types of stress distribution, expressions
(17), (18), and (19) remain the same, but the corresponding
relationships between (v, 8) and (m, n) will be different from
each other; m denotes the nondimensional bending moment
and » is the nondimensional in-plane force. In paper [9], it is
proved that the three types of stress distribution correspond
with three different regimes in the (m, n) plane, respectively,
as shown in Fig. 4, where

(i) Eg is the elastic régime corresponding to Fig. 3(a);

(ii) PIis the primary plastic régime corresponding to Fig.
3(b);

(iii)  PII is the secondary plastic régime corresponding to
Fig. 3(¢0).

Now write down the relationships between (v, 8) and (m, n)
according to the results in [9] and use the following symbols,

M, M,

m,= M, my = M, (20)
N, Ny
d r= s = s 21
an n N, ng N, (21)
where
1
M,= 3 Yh? (22)

is the initial yield bending moment per unit width. Also,
N,=Yh, 23)

is the initial yield force per unit width in tension or com-
pression.

o If
v,—16,121, (24)
then (m,, n,) must be in régime E, and
1
m,=— 25)
Yr
and
6,
n, = (26)
Vr -
Similarly, if
yo— 185121, 24)’

510/ Vol. 49, SEPTEMBER 1982
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Fig.4 Three different regimes in the (m, n) plane

then (my, ny) must be in régime E, and

1
My=—
Yo
and
&y
ng = ——
Yo
iy If
v, — 18, 1<1
but
v+ 16, 1=1,
then (m,, n,) must be in régime PI, and
¥,
m= (-4,
Yr
and
2
n,= 5 .[l— idi },
15,1 4,
where

Yr=1—161+7,.
Similarly, if

’Yg—l(sgl<1
but
’Yg+!5g|21,

then (my, ng) must be in régime PI, with

\[/ 2
my= (3= ¥)
Yo
and
2
ny= % .{I——La },
|6gl 4’)’0
where
¢9=1—|60|+79.
iy If
v+ 18,11,
then (m,, n,) must be in régime PII, and
3 1
me=—(1-5§2%— —y,>
r 5 ( ) ) Yr

and

LN L 2 B N L L BN AL B L ANLILI B L

=10 -05 0 0-5

10

@5y’

(26)’

@7

(28)

(29)

30

@7’

(28)

(29)

30)’

€3]

(32)
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n,=34,. (33)
Similarly, if
yo+ 18,1 <1, G’
then (m,, ny) must be in régime PII, and
3 2 '
= —_— — —_———— 2 ’
my 2(1 84%) 5 Yo (32)
and
ny=85,. (33)

For any one of the three types of stress distribution, the
equilibrium equations for this problem are [6]

dN, N,—-N,
AFRMAAL Y (34)
dr r
and
dM, M,—M, dw
N =
dr + r +AN dr 0, 33)
or in nondimensional form,
1
ni=—— (n,—ny) (36)
P
and
1
mr’=__ (mr_mﬂ)_6nr§-,’ (37)
o

so that when n,, ny, m,, my, and {’ are known, n/ and m, can
be calculated. In the next step, they can be used for finding £”
and ¢”, but again there is a need to discuss three different

cases.
(i) When (m,, n,) is in régime Ep, from (25), (26), (17),
and (19) we find that

mi= —f(;" +v§;—') = —f(;"' +u% —vi—;>
and
n,’=2f(£’+ % ;'2+u%) ’=2f<£”+§"g“”+u%— —yp—i>,

so that

L SR S (38)
P p
and
n’{ t Set? '
=t gk 2 (39)
o p

=5

(ii) When (m,, n,) is in régime PI, since in this problem 8,
> 0 (this can be verified by reference to all of the numerical
results given later), expressions (28) and (29) become

2
n=1- % (29)”
and
m=(1-n)3-y,). 28)”
Thus, from (28)”,
mi=—n;3-y,;) = (1-n)y/
or
v={—-nG-y,)—m}/(1~-n,), (40)

and from (29)”,

v ¥ 1 { v/ }
[ + = -1 4+ - !
n; 2, y Yr . 2 (1—n.)v/

Journal of Applied Mechanics

AT Pini= pishp=10D
Einr. &l Lin Ll G
by {67), (48}, 149}, (50), (51}

NPUT Efy, v

INPUT A P
INPUT €4, Py

¥y+TysSr-S0-0r6p by (17), (16119]

AT p*0
0, t=¢o
0, o, ffe-Be

] {Eq)

AT p=0 {M—.‘I,Y(Tyl

Vo= Ta = Yitwigo ng by (267
Sp = Sg = 14V} €
6p= 6g = 21€0/P0

meby(25) | m. by 28] [m by (32
(Eq) (PLIYES  (PI npby (261 | fnp by 290§ | np by 33
M= Mg hy(Z_S)l ’jn,-:ma by(?81 ‘mr= mg by (32]]
f,.=ng by (26} fnp=ng by(29)] {n.=ng by (33)
L ki L nr by 381 | [ol by 1] [af by 36)
i i 1 m by 37) ] [mbiby 31 |mp by 37
ny by (36) I In; by 36)] [ nf oy (ml
af byi3n mf by (370 m by (37}
r ' ! W{ by (40}
; ¥/ by 61
! by (40 7
\07 y 140} ¥¢ by 5} Sk by (42
LT ]
Se by (b2) Fopa)] [Ty wzn] [Pbyun
E by} 16" by wtd| | E" by e
Moy [L¥oywa] [ by e
¥y 9| &7 bywar] | 7oy @
YES
L——o——d—] NO
L= fa= |
= 9% = plig)
\,.Hl/,f ndia)
/" ouTPut RESULTS/

Fig. 5 The flow chart for the computing program from ¢y and ¢; to a,
mg, and soon

1
O ai={nver 5 wwa-n. @)
From (30), we have
\I/r’ = _zf(sr7;+sr’7r) +'Y;a
so that
I ,— lpl I
sr={7r2f : _Sr'Yr]/'Yr' 42)
Lastly, from (17) and (18) we obtain
vr $" §
"= —v— +v 43
£ r e 0 “3)
and
£ £ @4

£ =5/ —v—+v—.
o P

(iiiy When (m,, n,) is in régime PII, from (32) and (33),

m;=—3n.n/~vy/
and
n/=2f(s v/ +5/7,),
so that
vi=(=3nn/—m}) /v, 5)

SEPTEMBER 1982, Vol. 49/ 511

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



and

’ n,{ 7
§r= (2— i‘sr'Yr) /%r.
Then, from (17) and (18) expressions for ¢ and £”, which
are similar to (43) and (44), are obtained.
At this point, all the basic equations required for a full
solution to our problem have been obtained. i

(46)

3 Computing Procedure

The problem discussed in this paper is one of geometrical
and material nonlinearity, but the basic equations can be
solved numerically by starting from the center of the plate and
advancing by small increments in the radial direction.

By assuming a certain radial strain at the center, say,

ff‘,;:o =€5'|p=0=60
and a certain uniform curvature at the center
o, lp=0 = ¢y |p=0 = ¢g,
where ¢, and ¢, are chosen constants, then

£=0, {'=¢
and

{=8=0, {"=—¢o/f
at 0=0.

Then Yrs Y85 Srs g, 6ra 60: my, mg, n,, Hy, n;’ mrlr g//’ and
¢” can be calculated in order, by means of the expressions
obtained in Section 2.

As long as the values of &, £/, ¢”, ¢, ¢, ¢”, and {” are
known around thecirclep; = (i — DAp (i =1,2,3,...),a
radial step of length Ap can be madeand the values of £, £/, ¢,
¢, and ¢” at p;.1 = iAp = p; + Ap can be calculated ap-
proximately by means of Taylor’s expansion, thus,

oy = £+ B0+ o E(A, @
Elv1=§/+&Dp, (48)
Simi=§+§Ap+ % §(A0)* + % §i" (80)°, 49
Sler=8+ 5o+ % " (Ap)?, (50)

and
oy = 874+ 5" B, (s1)

According to the chosen length of step, Ap, the preceding
procedure is repeated, until at a certain value of p = a = a/h,
the radial force vanishes, i.e.,

Rl e =0. (52)

If

M,
M, "’
then the solution for the circular plate of radius ¢ = ok bent
by moments M, = m,M, and distributed uniformly around
the plate periphery has been obtained.

Figure 5 shows the flow diagram for the computing
procedure from ¢p and ¢, to «, m, and so on.

In most practical cases, the radius of a plate and the
bending moment along its circumference are given, i.e., o and
m,, but it remains to find the corresponding values of ¢, and
¢ in order to calculate the distributions of bending moments,
in-plane forces, and displacements in the whole plate. To meet
this requirement another program is produced, as shown in
Fig. 6. :

A parallel program to handle the unbending problem has

Ml eg=m,= (53)

512/Vol. 49, SEPTEMBER 1982

START
INPUT EfY, v, Ap
INPUT By, a0, mq

r T
|

| BLOCK ‘
L _SEEFiGS_|

RESET

P o PO RESULTS (€5, 45, L* etc)
e~ =op{ig)

FOR A WHOLLY ELASTIC
UNBENDING FROM A
PARALLEL PROGRAMME

RESET ®5 BY
INTERPOLATION

OUTPUT RESULTS (€. 4% ¢! etc)
FOR ELASTIC-PLASTIC BENDING
|

v
| SUBTRACT (5= -L° etc |

OUTPUT RESULTS (L’etc)
FOR SPRINGBACK

Fig. 6 The flow chart for the computing program from «, m, to all
results for elastic-plastic bending and springback

been developed. As pointed out in [9], it can be proved that
only if (m + n) > 2, can some fibers reyield during
unloading; but this does not occur. Hence, the unbending
process is entirely elastic and the parallel computing program
can be easily set up. By assuming that the unbending results
can be simply subtracted from the bending results, the
distributions of m,, my, n,, ng, £, and { after unloading can
be obtained so that the springback is determined in detail.

Our program can print all the results required and leads to a
plotting of the various diagrams described in the next section.

4 Numerical Examples

By taking E/Y = 500, » = 0.3, and Ap = 0.1 or
0.2—which imply a computing step length of 1/10 or 1/5 of
the thickness of the plate, respectively—many interesting
examples can be given. The computed results show that the
differences between the results for Ap = 0.2 and for Ap = 0.1
are only between about 1 and 2 percent, so that there is good
reason to believe that the computed results for these lengths of
step are already relatively accurate.

Figure 7 shows results for a plate for which o = a/h = 20
and for edge moment m, = M,/M, = 1.165. In Fig. 7(a), the
distributions of the bending moments (m, and m,), the in-
plane forces (n, and ny), and the displacement components (£
and ) are shown as functions of p = r/h. The divisions
between the elastic and plastic zones in the plate are shown in
Figs. 7(b) and (c), where dimensions in the z-direction are
enlarged relative to the dimensions in the r-direction. Ob-
viously, the *‘neutral surfaces,”’ i.e., the surface for ¢, = 0
and the surface for o = 0 are displaced from the middle
plane toward the upper surface of the plate, but for the r-
direction and the 6-direction there are different ‘‘neutral
surfaces’’ and different plastic zones. In Fig. 7(d) of the figure
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Fig. 7(b) The divisions between the elastic and plastic zones in the r-
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Fig. 7(c) The divisions between the elastic and plastic zones in the ¢-
direction. E = elastic; P = plastic.
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Fig. 7 The computed results for « = a/h = 20 and m, = M,IM, =

1.1623

Table1 Principal results for various a/h and M/M, ratios

Radius of plate a=a/h 20 (Fig. 7) 20 30 30
Edge moment m, =M/M, 1.1623 1.4001 1.1652 1.400
e 0.00013775 0.0002000 0.0002050 0.00022943
it 0.80 1.00 0.60 0.6857
(M) max 1.1647 1.4029 1.1694 1.4050
(M, ) min, at center 1.0268 1.1860 0.7800 0.8889
(M) min /Mg 0.8834 0.8471 0.6694 0.6349
Mg)max 1.1008 1.3080 0.9904 1.1864
(n,)max, at center 0.0938 0.1099 0.1464 0.1630
(7r) min, at edge 0 0 0 0
(M) min, at edge ~0.2105 ~0.2708  —0.3487 —0.4122
[ (ng)min | /M4 0.1811 0.1934 0.2993 0.2944
$max 0.6135 0.8453 1.1408 1.4236
mlng (Small Deflection Theory) 0.6822 1.2578 1.5398 2.8189
S / bmax 1.1120 14880  1.3498 1.9801
max 0.0005 0.0007 0.0013 0.0013
Emin, at edge -0.0099 -0.0204 —-0.0241 -0.0413
I€ min |/ Emax 0.0161 0.0241 0.0211 0.0290
regimes for (m,, n,) PI-PIT PII Eg —-PI-PII PI-PIl
regimes for (mg, ng) PI-PII—-—-PI PII Egr—-—PI PI-PII—-—PI

the corresponding loci in the (m, n) plane are shown. At the
center of the plate always m, = my, and n, = n,, but with
increasing values of p = r/h, the loci of (m,, n,) and (m,, ny)
pass through different regimes in the (m, n) plane.:

Some principal results obtained are assembled in Table 1.

Journal of Applied Mechanics

5 Comparison With Small Deflection Theory

In the elementary or small deflection theory for an elastic
perfectly plastic circular plate bent by an uniform edge
moment, (see [1]), the bending moments m, and m, are
distributed uniformly throughout the whole plate, there is no
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Fig. 8 The relationship between the maximum deflection of a plate
and the edge moment for « = a/h = 20. e = elastic; p = plastic
bending; s = springback; SDT = small deflection theory.

in-plane force in the plate, and the deformed plate has an
uniform curvature in any direction.

Comparison of results based on the small deflection theory
and those based on large deflection theory as obtained in this
paper has the following obvious features:

(@) The bending moments are no longer distributed
uniformly in the plate, and the larger the plate ratio a/h, the
smaller the bending moments at the center.

(b) Significant in-plane forces appear, especidlly around
the center where it is tensile in both directions; the in-plane
forces may play a vital role in the buckling of the plate. See
[101 for experimental examples.

(¢) Deflections of the plate according to large deflection
theory are smaller than that for small deflection theory. Also,
the larger the radius-thickness ratio of the plate and the edge
moments, the larger the difference between these deflections.

According to small deflection theory [1], the radius of
curvature of the deformed circular plate subjected to edge
moments is

Eh
RPT= —— _ \3-2m,, 54
2Y(1 - ») “ 4
and the maximum deflection is
2 2y( - 1
anDa){= aDT = il V) . s &8
2RS Eh V3-2m,
or in nondimensional form, ]
pre Woe _ X)L (56)
" E  V3_am,

514/ Vol. 49, SEPTEMBER 1982

]

Fig. 9 The distribution of bending moments, in-plane forces, and
deflection before and after unloading

the superscript SDT refers to the ‘“‘small deflection theory’’,

Figure 8 compares {27 and §,,.,, for a/h = 20, as based on
the large deflection theory. It has been found that for o = a/h
= 10, 327 gives a good approximation to {m.; for a = a/h
= 20 (Fig. 8) when m, =< 1.2, the relative error of {327 is less
than 13 percent; and for o = a/h = 30, {327 is much larger
than (.. Thus small deflection theory may only be applied
for plates of small a/h ratio, say, a/h = 20; this coincides
with the conclusion in [2].

6 On Springback

Following the flow chart in Fig. 6, some of the numerical
calculations have been carried out to arrive at distributions of
bending moments, in-plane forces, and displacements. A
portion of the results is shown in Table 2. Results for @ = a/h
= 30 and m, = 1.400 are as plotted in Fig. 9, where m$, mj,
ni, nj, and {° show the distributions after unbending. If
needed, the residual stresses in the plate can easily be
calculated from these values.

In small deflection theory, m$ = mj= n{ = nj = 0 in the
plate after unbending. Then, the final deflection of the plate is
determined by (see [1]), .

5,8DT .
max -

o? Y(1-v») { 1 }
E 3—2m,
Taking E/Y = 500, v = 0.3, and o = a/h = 20, some

&)

* calculated results are as shown in Fig. 8 and Tables 1 and 2. It

can be seen that the small deflection theory cannot well ap-
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Table2 Principal results for springback for different a/h and M/M, ratios

Radius of plate « 20 20 30 30
Edge moment m,, 1.1623 1.4001 1.1652 1.4001
“ef 0.00013775 0.00020000 0.00020500 0.00022943

of 0.8000 1.0000 0.6000 - 0.6857
€ 0.00013960 0.00018830 0.00020650 0.00025640
b ' 0.7848 0.9040 0.5894 0.6432
€ —0.00000185 0.00001170 —0.00000150 —-0.00002697
o ) 0.0152 0.0960 0.0106 0.0425

ms 0.0066 0.0108 0.0138 0.0527
final values mj 0.0066 0.0108 0.0138 0.0527
after unloading ns —-0.0059 —0.0246 -0.0011 —0.0201
at the center ng —0.0059 —0.0246 —0.0011 -0.0201

& 0 0 0 0

ms 0 0 0 0
final values ) —0.0505 -0.0797 —0.0950 —0.1472
after unloading n; 0 0 0 0
at the edge ng 0.0203 0.0478 0.0309 0.0838

gg 0.0171 0.1479 0.0256 0.1626
rax 0.6135 0.8453 1.1408 1.4236
B/ Pra 0.0279 0.1750 0.0224 0.1142
proximate the final deflection { .., even whena/his as small  References
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Introduction

The proofs of the uniqueness theorems of linear
elastostatics are straightforward for mixed boundary-value
problems in which the portions of the bounding surface where
the various types of boundary conditions apply are known in
advance. They rest on the positive-definiteness of the strain
energy function and Clapeyron’s work identity (equation (2))
(see [1], for example). For some problems, the portions of the
surface where one boundary condition holds rather than
another must be determined in solving the problem. Thus in
the indentation of an elastic half space by a smooth rigid
spherical punch, the radius of the contact area is chosen so
that the solution involves only pressure on the contact area
and so that outside the contact area there is no movement of
material into the region occupied by the punch, This leads to a
unique solution on the reasonable assumption that contact
occurs over the entire portion of a circular area. Other
problems ‘with contact between elastic bodies or with bodies
resting on elastic foundations can be more complex (for
references see [2]), and uniqueness of a solution may not be so
apparent. For a body with a nonplanar crack, only parts of
the crack may open under load. For a crack on the interface
between two elastic solids, Comninou [3] has derived a
solution for tension applied normal to the interface under the
assumption that the crack only opens partially with the faces
in frictionless contact near the crack tips. Again it is of in-
terest to know if such a solution is unique.

In the following we show through the work identity that
positive-definiteness of the strain energy is sufficient to ensure
uniqueness for problems involving smooth contact between
surfaces of elastic bodies. We first consider a body containing
a crack and then treat smooth contact between elastic bodies.
Indentation by a smooth rigid punch is a limiting case but is
treated separately. Uniqueness for an elastic body which can
come into contact with a rigid body of known shape has been
shown previously by Knops and Payne [4], and their proof
covers identation by a rigid punch when the movement of the
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Uniqueness for Elastic Crack and
Punch Problems

Uniqueness of solution is shown for equilibrium states for elastic bodies in smooth
contact. The cases considered include a body with a crack that may open only
partially under load with parts of the faces in frictionless contact. Indentation of a
body by a smooth rigid punch and contact with an elastic foundation are also

punch is known. Here we also treat the case when the loading
applied to the die is specified instead of the displacement and
rotation of the punch. Finally we consider an elastic body
with support from an elastic foundation. Villaggio [5] has
proved uniqueness for an elastic body with a plane face in
contact with a plane elastic foundation. His proof is similar to
that given here and does not depend on the formulation of the
problem given in [5].

To apply the work identity (2), we require that any im-
proper integrals that arise in the left-hand side of (2) from the
solutions that we consider, be convergent (with a similar
restriction on body force integrals), and so have uniqueness
for states with finite total-strain energy. Knowles and Pucik
[6] have shown that for plane crack problems, boundedness of
displacement is sufficient to guarantee uniqueness.

Elastic Body With a Crack

We consider an elastic body, which may be inhomogeneous,
with strain-energy density W given by
2W=cyu ey ex (Cyjrr = Cry =Cjint)s 1)
where e; are the infinitesimal strains. The components of
displacement are u; (x) referred to rectangular Cartesian axes
x;(i=1, 2, 3), and the usual summation convention is
assumed for a repeated index. For equilibrium states with no
body force we have

SS T-udS=SVC,-jk, e,'j (471 dV, (2)

where T is the surface traction on the boundary S of the region
V occupied by the body. If the body is a composite,
equilibrium will require the surface tractions to be continuous
across interfaces and with continuous displacements the
identity (2) will still hold.

In the reference state the body is unstressed and it contains
a crack defined by a surface C interior to V, but possibly
extending to the boundary of V, across which the material has
no cohesion. A particular case would be a crack on an in-
terface in a composite. We use n to denote the unit normal to
one side of the surface C. The displacements and stresses may
be discontinuous across C in an equilibrium state of the body
and we use + signs to indicate values on the two sides of C,
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with the + sign referring to the side of C with exterior normal
n. Thus if we were to suppose that C were part of the
boundary of the body, the normal n would point out of the
body for the material surface on the positive side of C and the
exterior normal for the other crack surface would be —n.

Under loading of the body, we assume that separation can
occur over the crack or that portions of the two sides can
remain in smooth contact with no tangential traction. Thus on
the surface C equilibrium states satisfy either (/) separation
with no traction transmitted across C or (if) continuous
normal displacement with pressure transmitted across C. We
therefore require either

@) T*r=-T" =0 when (u* —u~)en<0
or 3)
(@) T*=-T =-pn whenu*en=u"en

at each point of C, where p(x) is the pressure transmitted
across C. We extend the definition of p(x) so that it is zero at
points of C where (i) holds.

The loading of the body is supposed to be caused by a body
force field F and prescribed surface loading in which at each
point of S, each component of the surface traction or the
corresponding component of the displacement is specified. If
u, and u, are two possible displacement fields for the loading,
the difference field

u=u —u

will be an equilibrium field for zero body force with each
component of traction or the corresponding component of
displacement zero on S. Because the solutions u;, u, each
satisfy (3) on C, we will have T* = — T~ everywhere on C
for the field u.

If we use the identity (2) for the state u we must include the
contribution from the crack surfaces to the left-hand side.
There is zero contribution from S, so the left-hand side of (2)
is

SC (T*eu* +T- ou~)dS= SC T*o(u* —u-)ds.

The integrand of the latter integral can be written as

@2 -pO)(uf —u;)en—(u —uz)en},
where pt, p@ are the crack surface pressures for the two
solutions (zero where (/) holds). On portions of C where u,
and u, either both satisfy (i) of (3) or both satisfy (i) of (3),
the integrand is zero. On a part of C where u, satisfies (/) and
u, satisfies (i) the integrand is

pPui —uy)en,

which is less than or equal to zero in view of (3). Similarly the
integrand is nonpositive where u,; satisfies (i{) and u, satisfies
(9). Thus the left-hand side of (2) is less than or equal to zero
but the right-hand side will be non-negative for a positive-
definite strain energy W so that both sides must vanish in this
case. It then follows that the fields u,, u, generate the same
strain field and the solution for the given loading is unique,
except possibly for a rigid displacement, depending on the
conditions on S.

The result also holds if the body has more than one crack.
With the approach of the next section, the analysis can also be
extended to include loading by contact with other elastic
bodies.

Smooth Contact Between Elastic Bodies

For simplicity we consider contact between two elastic
bodies over a nearly plane area, as in the Hertz theory.
However the approach can be generalized to smooth contact
between curved surfaces of bodies, such as occurs between a

Journal of Applied Mechanics

body with a cylindrical hole and a closely fitting lubricated
pin, and contact between several bodies can be treated.

In the unstressed reference configuration, the bodies touch
at the origin of coordinates with a common tangent plane x;
= (. The bodies occupy regions ¥, and V, and the x; —axis
points into region V,. Under loading contact may occur over
surfaces C, and C, of the two bodies, defined as the nearly
plane surfaces ’

Cii x3=f(x1,x), Cyi x3=g(x1,x),

where x,, x, lie in aregion C of the x; —x, plane enclosing the
origin and the shape functions fand g satisfy

Sy, x2) =g (x),x,).
The tangential tractions are zero on C; and C, and we denote
the common value of 7 and — T} by p(x,, x;), where
superscripts refer to the fields for the two bodies. The bodies
do not penetrate each other so that

uj-ul=f—gonC,
and we require

p=0whenu} —ul>f—g,
)
i —ul=f—gwhenp>0

at each point of C.

On the remaining portions S; and S, of the surfaces of the
bodies, we suppose that each component of the traction or the
corresponding component of the displacement is prescribed.
If we have two possible displacement fields u, and u, for the
given loading over S; and S, and for a given body force field,
the difference field

un=u; —u,

will be an equilibrium field for no body force and such that
each component of the traction or the corresponding com-
ponent of the displacement vanishes on S; and S,.

If we use the identity (2) for the state u, the contribution to
the left-hand side comes only from the region of possible
contact and it is

° = 2 _yl
Scl e ToudS Sc T2 (43 —ud)dx, dx,.

The integrand can be written
PO ~p®) (130 — ) — (13D —ui@)},

where the superscripts in parentheses indicate values for the
two solutions while the other superscripts refer to the two
bodies as before. The integrand is zero on the parts of C
where both solutions have no contact between the bodies (zero
Y and p?) or both have contact (the expression in the curly
bracket vanishes). Where one solution, say u;, has contact
and the other does not, the integrand is

PO (f—g— (43® — )]
and is therefore less than or equal to zero because u, satisfies
(4) and p is non-negative. Thus the left-hand side of (2) is less
than or equal to zero so that both sides of (2) must be zero
when the strain energy is positive-definite. Uniqueness of
solution to within a rigid body displacement then follows.

Indentation by a Smooth Rigid Punch

The indentation of an elastic body by a smooth rigid punch
can be treated as a limiting case of two elastic bodies in
contact. Alternatively we can use a direct approach as in-
dicated here for the case when the possible area of contact is a
region C of the x; —x, plane enclosing the origin. The exterior
normal to the body at the origin is along the x;-axis, and the
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remainder of the surface of the body is denoted by S. When
the movement of the punch is known, the location of the
punch surface after indentation has occurred will be known.
We will then have .

Uy <f(x1, x;) onC, &)

where fis a known function, and we require
D 0 when u; <f,
U, Sfwhenp>0 .

il

at each point of C, where p is the contact pressure. On the
remaining surface S each component of the traction or the
corresponding component of the displacement is known.

If we have two possible displacement fields u, and u, for
the given surface loading and a given body force field and
examine (2) for the difference field w = u; —u,, the con-
tribution to the left-hand side comes only from C and it is

|, 0 -p")00 e, ax, ©

where the superscripts indicate values for the two solutions.
Where both solutions have no contact or both have contact
the integrand is zero. At points of C where u; has contact and
u, does not, the integrand is

)

and this is less than or equal to zero because p is non-negative
and u, satisfies (5). Thus for a positive-definite strain energy
we are again led to uniqueness of the strain field. The proof
has been given previously by Knops and Payne [4] for the case
when contact with a smooth rigid body whose location is
known may occur over a curved portion C of the surface of
the body.

Instead of prescribing the movement of the punch, the
downward force L on the punch and the moments M, and M,
of the force about the x; and x, axes may be given. In this
case for a known punch shape f(x,, x;) the solution will
satisfy

Uy <f(x1, %) —6+ax; ~fBx, onC,

where the constants «, 3, é are to be determined. The contact
pressure must satisfy

L=§dex1 dx,, M= —Scpxz dx, dx,,

M, = ScpxI dx; dx,. %)

(If the punch is constrained to indent without tilting, the
constants «, 8 are zero and the values of M; and M, are not
prescribed.)

If we apply (2) to the difference of two possible solutions,
the left-hand side will be equal to (6). We now define v? and
v® for points on C through

v =yfm 4§ — My, + M x (n=1, 2) )

for the two solutions. Because the contact pressures both
satisfy (7), if we substitute (8) into (6) the terms involving the
constants will go out and the integral becomes

518/ Vol. 49, SEPTEMBER 1982

[, 0@ =P - vax, dx,,

where now v and v@ are less than or equal to f on C. The
integral can now be seen to be less than or equal to zero and
uniqueness follows as before.

Uniqueness for problems involving contact with several
rigid dies or punches is similar and essentially amounts to
extending the definition of the contact region C.

Smooth Contact With an Elastic Foundation

We now consider the case when a portion of the elastic body
can receive support from an elastic foundation. For simplicity
we assume that the foundation is plane but curved supports
can also be treated. The portion C of the surface of the body
that can come into contact with the body is the nearly plane
surface

X3 =f(xy, X3)
touching the plane x; =0 but entirely above it and (x;, x,)

‘lying in a region C of the x; — x, plane. The elastic foundation

occupies part of the half space x; < 0, and the x,-axis points
into the elastic body. The foundation reacts only in com-
pression with a reactive pressure proportional to the normal
displacement of the surface, so that on C we require

p=0when u; > —f,
&)
p=—K(u; +f)whenu; < —f,

where p(x;, x,) is the contact pressure and the positive
constant K is the stiffness of the foundation. Boundary
conditions on the remaining surface S of the body and a body
force field are specified as before.

For the difference field of two possible solutions, the left-
hand side of (2) again reduces to an integral over C. If we
write the integrand as

@D —p@) () +£) = (U +.))
we see that in view of (9) the integrand is less than or equal to
zero where one or both solutions have contact with the
foundation and is zero otherwise. Uniqueness of the strain
field then follows as before for a positive-definite strain
energy.
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and reduce the problem to solving the simultaneous Fredholm type integral
equations of the first kind.

As an example, the stress concentration problem is analyzed for a circular
cylinder with a semicircular annular groove under uniaxial tension. The results are
obtained for various values of parameters such as Poisson’s ratio v, characteristic

length I, and the ratio v, of bending, twisting moduli.

Introduction

Continuum mechanics introducing couple-stresses has been
proposed by Mindlin and Tiersten [1], Truesdell and Toupin
[2], and Koiter [3] to explain some discrepancies between
theoretrical predictions and experimental results. Many
researchers have applied this theory to fundamental elastic
boundary value problems [4-6], but almost all of these works
have been restricted to those for two or three-dimensional
infinite media. As a matter of fact, to determine the new
material constants adopted in the couple-stress theory, it is
necessary to compare theoretical results with experiments. For
this reason, we should examine three-dimensional, finite,
elastic boundary value problems which can be easily con-
firmed by experiments.

By the way, many investigators have developed the
boundary integral methods as an attractive method to analyze
boundary value problems in classical elasticity. These may be
classified into two types. One is the indirect boundary integral
method [7, 8], which takes the density functions as the
unknowns, and the other is the direct boundary integral
method [9, 10], which takes boundary displacements and
tractions as the unknowns. In addition, some researchers have
introduced the concept of a fictitious boundary to obtain
more accurate solutions by the simplest numerical quadrature
[11, 12]. Also, one of authors and his collaborators have been
analyzing many two and three-dimensional boundary value
problems by direct and indirect boundary integral methods
together with and without a fictitious boundary [12-16].
Through these analyses we know:

i The direct boundary integral method has the advantage of
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being able to obtain boundary displacements and tractions
directly; on the other hand the use of a fictitious boundary
doubles the number of unknown functions.

ii The indirect boundary integral method with fictitious
boundary has the advantages that the potential field becomes
smooth and continuous in the region under consideration,
that stresses and their gradients on a real boundary and in its
neighborhood can be obtained accurately by analytical dif-
ferentiation, and that the convergence of a solution with the
increase of subdivisions is rapid.

In this paper, we propose one method to attack three-
dimensional boundary value problems in the couple-stress
theory of elasticity. This method is based on the ‘“‘indirect
fictitious-boundary integral method,”” in which we get no
jumps and no singularities in the potential and can obtain the
solution with high accuracy. This analysis may also be un-
derstood as a method where concentrated forces and couples
are distributed over a fictitious boundary in an infinite
medium so as to satisfy the conditions on a real boundary.

As a numerical example, the stress concentration problem is
analyzed for a circular cylinder with a semicircular annular
groove under uniaxial tension. From the results obtained, it is
verified that the present method is very effective for solving
three-dimenisonal boundary value problems in the linear,
couple-stress theory of elasticity.

Basic Equations

The fundamental equations governing the linear, couple-
stress theory of homogeneous and istropic elastic solids were
presented by Mindlin and Tiersten [1]. The stress equation of
equilibrium is given by

1
v-75+§v><v-”=0 1)
where 7° is the symmetric part of a force-stress dyadic 7, u? is

SEPTEMBER 1982, Vol. 491519

1982 b E

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subjectctco)%érl\l/%nitcgse or conﬁ‘g%Msee http://www.asme.org/terms/Terms_Use.cfm



the deviatric part of a couple-stress dyadic p, and ¥ is the
spatial gradient. Let u be the displacement vector, 7°¥ and p”
then are given by

S =AVeul+p(Vu+uv)
2)
uP =2uH{(V V Xu+14, 7V Xuv)

where \ and p are Lamé’s constants, / and n, are the material
constants adopted in the couple-stress theory, and I is the unit
spatial dyadic. Also, / has a dimension of length and 7, is
dimensionless. Substituting equations (2) into equation (1),
one can obtain the displacement equation of equilibrium

A+p)VVeu+pv2iu+plP viv X vV xu=0 3)
Any solution u of equation (3) is representable as [1]
(A+p)

u=B—12VV'B_ V[r-(l—IZVZ)B+BO] (4)

2(0N+2p)

where r is the spatial position vector, and B and B, are the

vector and scalar functions, respectively, characterized by
(1-~v?)v?B=0 and V?2B;=0 ()

Let 7* be the antisymmetric part of 7 and (u:I) the scalar of
. Neither of them appears in the equation of equilibrium (1),
and they are only related by

TA=%1x[2uﬂv2qu+§V(u:I)l ©)

Namely, * and (u:I) cannot be determined independently.
This is the reason why the couple-stress theory is said to be
indeterminate.

Analysis
Consider a homogeneous and isotropic medium that oc-
cupies a “‘real-domain’’ R bounded by a closed smooth ‘“‘real-

boundary surface’’ S and is subjected to a force traction T and
a couple traction M on S. We now suppose a closed Liapunov
“fictitious-boundary surface’” S* outside S not intersecting
each other, and extend a domain form R to a ‘‘fictitious-
domain” R* bounded by S*. Hereafter we asterisk the
quantities defined on S*. A displacement vector u in R then
satisfies equation (3) and is given by equation (4). When / =
0, equations (3) and (4) agree with a well-known equation of
equilibrium and its Boussinesq-Papkovich solutions in the
classical theory.

Now we can get the solution of a concentrated force F
acting at the origin in an infinite medium [1] by

B=F[(1—-e~"")/r], B,=0
where r is a magnitude of a spatial position vector, and also
that of a concentrated couple C [1] by
B=-Cxv{(1-e ") /r}, By=0

In the linear, couple-stress theory, we can superpose these
solutions. Therefore, according to the ‘‘indirect fictitious-
boundary integral method,”” a continuous distribution of
surface densities £*(q*) and {*(q*), corresponding to con-
centrated force and couple, over a surface S* generates the
potential B for the present solution as follows:

B(P)= Ss' [E* (@)1 —e~Y") /ro1dS* (q*)

+ SS, @) x V(1 —e ") /ry1dS*(q*) )
B,(P)=0
where £*(q*) and {*(q*) are Hélder continuous vector den-

sities at q*, P and q* are the vector variables specifying points
in R and on S*, respectively, r, is the distance between P and

Nomenclature
a = radius of groove
h* = length of the ith segment on I'*
| = characteristic length
m = number of segments
n = outward unit normal vector on §
p = vector variable specifying points on S
p;, = vector variable specifying point of inter-
section of normal line at q;* and T’
q* = vector variable specifying points on S*
g* = vector variable specifying nodal point on the

ith segment on I'*
q’.i» = vector variable specifying interval points of
the ith segment on I'*

rp = distance between two points P and q*
u = displacement vector
X1,X2,X3 = coordinates of the point p
x*,x%.x = coordinates of the point q*
r, 0,z = cylindrical coordinates
B = vector function
B, = scalar function
D = diameter of cylinder
I = unit spatial dyadic
L = length of cylinder
M = coupletractionon .S
M; = components of M in Cartesian coordinates
(i=1,2,3)
P = vector variable specifying points in R in-
cluding S
R = real domain
R* = fictitious domain
= real-boundary surface
S* = fictitious-boundary surface
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T = forcetractionon S
T; = components of T in Cartesian coordinates
(i=1,2,3)
S.C.F. = stress concentration factor
X,,X;,X; = Cartesian coordinates
o, = S.C.F. with respect to the first principal stress
a, = S.C.F. with respect to the second principal
stress
o; = coefficient of fictitious-boundary distance
* = vector density on S*
05,8 = components of §* in Cartesian coordinates
&80, 8 = components of * in cylindrical coordinates
7, = ratio of bending-twisting moduli
Ap = Lamé’s constants
p = couple-stress dyadic
P = deviatric part of g
p:I = scalarof p
v = Poisson’s ratio
£* = vector density on S*
ErEr,E8 = components of £* in Cartesian coordinates
£r,64,8 = components of £* in cylindrical coordinates
7 = force-stress dyadic
74 = antisymmetric part of 7
75 = symmetric part of 7
7 = mean normal stress on minimum cross
section of cylinder
T' = contour of Sin the plane of § = 0
'™ = contour of S* in the planeof § = 0
Vv = spatial gradient
v? = Laplace’s operator
oo = infinity
(zn )} = combination
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Fig.1 Geometry of example problem

q*, and V* is the spatial gradient with respect to q*. As noted
before, ! and (u:I) remain indeterminate, but we can take
(n:1) to be identically zero without loss in generality [3], since
they are not governed by the equation of equilibrium (1), Thus
substituting equations (7) into equation (4), then into
equations (2) and (6), we can obtain a force-stress 7 = 75 +
71 and couple-stress u = xP in the forms of integral equations
for £*(g*) and *(g*).

In this way, the present problem is reduced to solving the
simultaneous integral equations for £* and ¢* on S* under the
boundary conditions

onS ®)

where n is the outward unit normal vector on S. Since P and
q* never coincide with each other, the relevant integral
equations have no singularity. To solve these equations
analytically is, generally speaking, very difficult, so it is rather
convenient to solve them numerically.

ner=T and nep=M

Numerical Analysis

As a numerical example, we consider the stress con-
centration problem for a circular cylinder with a semicircular
annular groove subjected to uniaxial tension parallel to X;
axis as shown in Fig. 1. The problem being axisymmetric, we
take a cylindrical coordinate system related to the Cartesian
one as shown in Fig. 2, and formulate the problem in the
plane of § = 0.

We define I' and I'*, respectively, to be the contours of S
and S* in the plane of § = 0 (Figs. 1 and 3). For the sake of
convenience, we divide I' into m segments with equal length &
and set the distance between I" and T'™* by ¢;, and then define
the coefficient of fictitious-boundary distance [12] by «; =
t;/h. The coefficient o; is the most important parameter that
affects the accuracy of solution, so that it should be deter-
mined with extreme care. Similarly we divide I'* into m
segments, the ith segment being the length of A;* and centered
about a nodal point q;* midway between the interval points
q},1,2, and also S* into m rings corresponding to m segments
on I'* as in Fig. 3. On each ring, we suppose that the com-
ponents of £* and {* in cylindrical coordinates (£*, £, £7)
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Fig.3 Subdivision of fictitious-boundary surface S*

and (&*, &', ), are constant. We determine the position p;
such as a point of intersection of normal line at the nodal
point q;* and I'". .

The foregoing simultaneous integral equations are reduced
to simultaneous algebraic equations as follows:

"

L [, (60N + G @PIFGIAS" @)~ T, (p) =0

i=1
®

m

Y | . 620Gy + e @ H1dS* @) - M, (1) =0

i=1 945

where p is a vector variable specifying points on S, &* and ¢

are the components of £* and {* in Cartesian coordinates, T;

and M, are those of tractions T and M, AS;* represents the

area element of the ith ring, and E;, Fy;, Gy;, and H); are

given in the Appendix. In these equations we assume the

summation convention over repeated indices. The surface
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integral around the ith ring can be calculated numerically by
Simpson’s rule, the simplest quadrature,

[ @ d5° @) =R G 4477 4 11012)/6

where f* and f}.,,, are contour integral values along the
circles C;* and C}, 1, respectively (Fig. 3). )

The components of £* and {* in cylindrical coordinates are
independent on 6* and related to those in Cartesian coor-
dinates by :

(10)

3y £ st &
£ ¢ =[N & pand< & > = [N]S & (1
£ £ & &
where
cosf* —sin6* 0
[N] = |sing* cos0* 0O
0 0 1

Since we now deal with the axisymmetric tensile problem, we
can take &4, ¢*, and {;*, density functions related to the
torsion problem, to be zero. The coordinates x; (i = 1, 2, 3)
atponT and x*( = 1, 2, 3) at q* on S* are represented as
follows:

X1 =X, x2=0, X3 =X3

(12)

xf=p*cosf*, x;f=p*sinf* and x;=x;
Then, from equations (9), (11), and (12} it is found that the
contour integrals in equation (10) generally take the forms
S [cos™ 6*/ri2]p* d6*

and

(13)
where n; = 0,1,2,3,4, n, = 3,5,7, and n; = 1,2,3,4,5,6,7.
Letting x;? "+ p*? + (x3 — x#)* = A and 2x,p* = B, we can
writer, = (4 — Bcos §*)!/2, so that

cos™ §* = [(A —ry2)/B1"

S [cos™1 §*/ri3le " p*dB*

-7

7y
=R~ E (__ l)i (;11 )Anl—f r02i
i=0

The functions r, and e~"0" being even with respect to 6*,
expressions (13) beomce
n
2B~ M E (_ l)i (?l)Anl—i (A +B)i—n2/2p*

i=0
SO [1 - K2cos?(§*/2)) "2 d6*

ny
2B~ Z (_ 1)1 (;'I)A"l_i(A +B)i—113/2p*
i=0
SO [1—k&Zcos?(6*/2))~"/2e— "o/l do* (14)
where the relations ry = {(4 + B)[{1 — k?cos?(8*/2)}}'/? and
k*= 2B/ (A + B) are used.

The integral in the first of expressions (14) is the elliptic
integral and denoted as
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I, = SO [1 — K2cos?(¢/2)]~"2d¢

by replacing (2i — n,) with (—n). By successive use of the
recurrence formula
L =ln=2)( 2 - DI ' [(n=3)k* — 2L, +(n—NI,_4] (15)

the integral 7, can be reduced to the sum of complete elliptic
integrals of the first and second kinds

w/2
K(k)=1,/2= SO (1 —k*sin?¢) ~V2d¢

w/2

E(k)y=1_,/2= So (1 —k%sin?¢)2d¢ (16)
Here we note that n is an odd number. Similarly the integral in
the second of expressions (14) can be denoted as

Hn’ = SO [1 —kZCOSZ(d)/z)] -n'72 e—r0/1d¢
and reduced to the sum of five integrals H_,, H_;, Hy, H,,
and H2 by
H, =[(n' =2)(k* = D] ' (k' (kK* -DH," _,
+(K*—Dn’ —=NH,» _,+k’H, _3]1+(n' —4)
Hn' —4 +k,Hn' -5 }

a7

where k' = (A + B)!2/l. These five integrals, H_, ~ H,,
are obtained numerically.

Thus the numerical computation of the present problem is
reduced to solving simultaneous algebraic equations of 2m
unknown vector densities £*; and {*(, on S* so as to satisfy
the boundary conditions at m points p; on I'. Here £* ;) and
¢* (5 are the vector densities on the ith ring. In the boundary
integral method with a fictitious boundary, the lack of strong
diagonal dominance may give rise to a little difficulty in
solving the simultaneous algebraic equations; therefore, we
use double precision, which gives satisfactory results.

Numerical Results
The estimates of accuracy for the numerical computation
are
7" —T;¢1/#50.5% 10~ 2and
IM;" =M€ 1 /[7(D/2)] = 0.5x 1072
midway between each neighboring collocation point on T.

Here 7 is the mean normal stress on the minimum cross
section of the cylinder, 7;” and M;" are the components of

Table 1 Stress concentration factors for various values of
parameters

1, =~1.0 7 = 0.0 7, = 1.0
D2yl oy o) oy o o
) 1.451 0.214 - - - -
10 1.328 0.127 1.350  0.142 1.380 0.162
r=0.1 8 1.295 0.103 1.318  0.119 1.352 0.143
5 1.224 0.050 1.246  0.066 1.284 0.095
2 1.137 -0.020 1.155 -0.013 1.178 0.015
o 1.411 0.260 — - - -
10 1.336  0.198 1.351 0.209 1.372 0.225
»=0.3 8 1.313 0.178 1.329  0.191 1.353 0.210
5  1.260 0.134 1.276  0.147 1.304 0.171
2 1.193 0.072 1.201 0.078 1.222 0.100
) 1.390 0.286 - - -~ -
10 1.339  0.240 1.350  0.249 1.365 0.262
p=0.45 8 1.321 0.225 1.333 0.235 1.351 0.251
5 1.282 0.190 1.294  0.201 1.315 0.219
2 1.241 0.139 1.246  0.145 1.259 0.161
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force and couple tractions obtained numerically, and 7;¢ and
M;® are those givenon T, respectively.

The geometries of the cylinder analyzed here are L/D =
3.0, a/D = 0.25, and a’/D = 0.05. The coefficient of the
fictitious-boundary distance o; and number of subdivisions m
are determined so as to satisfy the foregoing estimates of
accuracy. In practice, the storage capacity of a computer
limits the number of subdivisions m. We determine the
suitable values of o first for a simple problem, e.g., bar and
sphere, and then for the present problem by a few trials. Here,
o; = 3.0 and m/2 = 63. From the necessary and sufficient
conditions for positive definiteness of a strain energy [1], we
can obtain the parameter ranges as

p>0, 3A4+2x>0, /20 and -159, 51

18
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Fig. 6 Reduction ratio of stress concentration factor, a4, to that in

classical theory versus (D/2)! I for various values of » with 4, = 0.0
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Fig. 7 Stress distributions along X4 axis for various values of (D/2)/ |
with» = 0.3 and 4, = 0.0

Noting that A = [2»/(1 — 2»)]u, where » is Poisson’s ratio,
we can find —1 < » < 1/2 from the second of equations (18).

Stress concentration factors are shown in Table 1, where oy
and «, are those with respect to the first and second principal
stresses, 733 and Ty, respectively. Figure 4 shows the stress
concentration factors against (D/2)/! for various values of 7,
with » = 0.3. All results approach asymptotically to the
values obtained by the classical theory, shown by thin lines,
when (D/2)/] — o. When v is small, the magnitudes of o, at
the center in the minimum cross section tend to be larger than
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those at the surface. The difference between them is, however,
very small, so that it is not mentioned here. Figure 5 shows the
values of «; against Poisson’s ratio, and Fig. 6 shows the

reduction ratios of «; to that in the classical theory, [(ory s —

o )/aldass.] X 100(%), against (D/2)//, with 5, = 0.0. The

stress distributions along X, axis are shown in Fig. 7 for
various values of (D/2)/] with » = 0.3 and %, = 0.0, where
the dimensionless force-stress 7/7 and couple stress
w/[7(D/2)] are used.

Conclusions

In the present paper, we have given one method to solve
three-dimensional elastic boundary value problems in the
linear, couple-stress theory, which are difficult to analyze.
This method is based on the ‘‘indirect fictitious-boundary
integral method’’ which the authors have been using. Its
advantages are:

1. Accurate solutions can be obtained by numerical
quadrature with the simplest approximation.

2. The stresses and their gradients on a real boundary and
in its neighborhood can be calculated by analytical dif-
ferentiation of vector potentials on a fictitious boundary.

As a numerical example, we have treated a cylinder with a
semicircular annular groove under uniaxial tension and shown
the influence of the parameters, », /, and 7, on the stress
concentration. The results are summarized as follows:

i The reduction ratio about «; increases with decreasing ».
That is, as Poisson’s ratio » becomes small, the couple stresses
affect the stress concentrations significantly.

ii In the classical theory, the magnitude of «; decreases
with increasing ». But in the couple-stress theory, the
relationship is reversed, i.e., the magnitude of «, increases
with », under a certain value of (D/2)/1.

iii So far, there are many papers that show the influence of
v and / by solving two-dimensional problems, but none that
show that of 7, since that can be obtained only by analyzing
three-dimensional problems. In this paper, it is shown that the
effect of 5, on stress concentrations is substantially smaller
than that of ».

This method cannot be applied, however, to the problems
with complicated shapes, such as sharp notches and cracks. In
these cases, we must use the analysis based on indirect and
direct boundary integral methods without a fictitious
boundary, which is now under consideration.
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APPENDIX
Eyg=pny (8yx¢ [~ 1+20—68"2 +2(36-2 +38~ + D)e—#1/ry?
+ (8nx; + 6pjxi M —1+2a’ —6872
+(68°2+6871 +3+F)eB/ry3
+2x, %/ x¢ [15872 = (15872 + 15871 + 6+ B)e~F1/ry’
+ 200 X (B — 354 % /10 2)/ 10> + (B’ — Sy Y1+ BYeB/r?)
Fij = uny € { GumX] + 8mxi )%, [3(1 —2a")
~(3+38+8%eF)/ry’
+ 60" X, [~ OpuX; + 8ujxy + 8, ) +5x4 x7 X%, /102116 )
+ 1y € (8 (1 +B+B2)e P /rg® —x x5 (3 + 3B+ B2)e~ 8
/r0°)
Gy =2ny leng (n—n" )~ 1+ (1 +B)e Fl/ry?
+ (MemXs + 1" €xnm X YXn[3— (3 +3B8+62)e=81/ry% )
Hyy= =2y (98yx4 + 7' buxy X1 + B)B2e P /1y’
+2n, (n+1") [ (85X + 8 X1 +8pex; ) [3— (3 +3B8+62)
e PV (g’ +xix) x{ [— 15+ (15+ 158+ 682 + 8)e#1/r,7 )

where §;; is the Kronecker delta, e the permutation symbol,
o= p/(N+ 20, 0 =M+ /RN + 2], 8 =rg/l,q =
p20 = ply, X7 = xi—x*({=1,2,3), x; and x* are the
components of the vector variables p and q*, respectively, and
n; the components of the outward unit normal vector n at p.
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The Contact of a Cuspidal Crack

C.H. Wu

Professor,

Department of Materials Engineering,
University of lllinois at Chicago Circle,
Chicago, Ill. 60680

Mem. ASME

A simplified airfoil mapping is used to define a cuspidal crack. The objective is to
investigate the effects of compressive loads on an infinite solid containing crack-like
Jflaws. Such an objective cannot be achieved by using the conventional line crack to
characterize the flaws. The associated contact problem is solved exactly by
assuming that the contact region is small in comparison to the crack length. It is

shown that the well-known Barenblatt model is just the present contact problem in
reverse, Moreover, a specific functional form is determined to describe the so-called
cohesive force which was assumed to be a material function by Barenblatt.

1 Introduction

The determination of the effects of compressive load on
solids containing crack-like flaws is an important and in-
tricate problem. It is important because it is still an open
problem in that the several theoretical models [1, 2] do not
lead to the experimentally determined high compressive
strength. It is intricate because the convenient line-crack flaw
is practically useless for this purpose. Moreover, internal
contact is an inherent phenomenon to this problem. Com-
pressive loads may be classified into two categories, crack-
parallel loads and crack-perpendicular loads. For the former
category the effects can again be divided into two distinct
classes depending on whether the flaw is a line crack or a
cuspidal hole. The line-crack case leads to the nonlinear
buckling phenomenon discussed in [3, 4] and a cuspidal hole
can be easily handled by the standard complex variable
method [5, 6].

For the class of crack-perpendicular compressive loads, the
effects can only be studied by introducing smooth holes or
cuspidal cracks. Griffith used an elliptic hole and showed that
the compressive strength is exactly eight times the tensile
strength [1], but the experimentally obtained ratios are much
higher. The inclusion of a coefficient of a friction does not
change the picture much either [2]. It would seem to be more
effective and reasonable to introduce a hole with initial in-
ternal contact, such as a figure-eight shaped hole. This
problem is now under our investigation. The purpose of this
paper is to investigate the effects of compression when the
flaw is modeled by a cuspidal crack. With the expectation of a
contact problem to solve in mind, the cuspidal crack must be
chosen or constructed in such a way that it does not lead to
additional complication. This is, of course, motivated by our
desire to obtain a closed-form solution so that the result may
be used for many meaningful parametric studies. A crack is
said to be simple if the associated elasticity problem has a

Contributed by the Applied Mechanics Division for presentation at the
Winter Annual Meeting, Phoenix, Ariz., November 14-19, 1982, of the
AMERICAN SOCIETY OF MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS, Manuscript received by
ASME Applied Mechanics Division, September, 1981; final revision, January
1982. Paper No. 82-WA/APM-5.

Copies will be available until July, 1983.

Journal of Applied Mechanics

closed-form solution. Several methods are described in [5, 6]
for the purpose of generating simple cracks.

The cracks generated by the well-known symmetric airfoil
mapping are simple. This mapping, however, has two poles
and the needed algebraic manipulation is still too involved.
An offspring of the airfoil mapping is then derived. This new
mapping has only a single pole of higher order. The class of
cuspidal cracks considered in this paper is defined by this
latter mapping.

The formulation of the problem expressed in terms of the
complex variable method is outlined in Section 2. Many
equations are taken directly from what we believe to be the
most concise book on the subject by England [7]. The solution
for the noncontact problem solved in [6] is summarized in
Section 3. The contact problem is solved in Section 4. A
formal asymptotic approach, using the contact length as the
small parameter, is adopted as a matter of preference. We
find it more convenient this way to trace the orders of
magnitude of various terms. Finally, Barenblatt’s theory is
examined in Section 5. It amounts to a simple switch of the
signs involved.

2 Statement of the Problem and Governing Equations

We consider the plane elasticity problem in the (x;, x;)-
plane and shall use a complex formulation in terms of the
complex variable z = x; + ix;. The displacements u, (x;, x3)
and stresses 7,5(X;, X,) may be written in terms of two
complex functions W(z) and w(z), viz.,

2uuy +ity) =k W(z) =z W' (2) —w(2) Q2.1
Ty + T =2[W' (2) + W’ (2)] 2.2)
Ty~ ity =W (2) + W () + W (2) @.3)

In the preceding equations and throughout this paper prime
denotes complex differentiation; W’ and w’ are holomorphic
functions; u is the shear modulus; and

3-4y plane stress
K= 2.4
(3—»)/(1+») planestrain
where » is Poisson’s ratio. We will be dealing with an infinite
body R, loaded at infinity by the uniform stresses
Tap = 0, (cOnstant) as Iz] —oo 2.5)

SEPTEMBER 1982, Vol. 491525

1982 by ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subjectctco)%érl\l/%nitcgse or co;}/yrig%Msee http://www.asme.org/terms/Terms_Use.cfm



Fig. 1

so that
W(Z) = W1Z+ W,_IZ_1 +..., W] = 1/1(0'11 +022), (2.6)
W(Z)=W1Z+W_1Z—1+. .y W1=1/2(0'22'—0'11)+l.012, (2.7)

as Izl —oo,
The infinite body R, is assumed to be the image of I{] > 1
under the mapping

1-6 &
z=m({)= g [(1 +8){+ < + 3 ~2—5] lel>1  2.8)
where { = § + i{, is an auxiliary complex plane, a is a length
scale, and é a parameter satisfying

0<é<l. 2.9

The mapping (2.8) is a derivative of the thin airfoil mapping
discussed in [5]. It is simpler than the airfoil mapping because
it contains only a single pole of order 2 at { = 0. The complete
class of configurations defined by (2.8) may be found in [5].
The image of the unit circle I¢l = 1 in the z-plane defines a
crack C, and

Cix(n)+iy(n)=m(e") (2.10

where
x{(n)= —a[l ~cosy+ dsin?y], 2.11)
y(n)=adsinp(1 — cosy). (2.12)

It is noted that the crack C, has a cusp of zero cusp angle at z
= 0and
2T 3v3
XO-x(1)=28, youx =¥ (5 )= 00
The crack configuration for 6 = 0.1 is shown in Fig. 1. Near
the cusp tip,i.e.,n << 1,

(2.13)

1+28
X(m=-— an*, y(n)=Yiady® (2.14)
or
2 3/2 xl 3/2
_— =1 [ ——
X, =Y, (x)) /2a6(1+26> ( a) . (215

We note in passing that Y/(0) = 0 and Y/ (0) = oo.

Before proceeding, it is convenient to introduce curvilinear
coordinates (£, 1) in the z-plane by the coordinate curves
(Fig. 1)

526/ Vol. 49, SEPTEMBER 1982

Crack configuration in z-plane, together with curvilinear
coordinates ¢ and 5, and two auxiliary complex planes {and ¢

z=m(Ee™). (2.16)
Then,
2 +in) =) - 2O G H —a(h @17
m’(§)
Q) Q¢
=2 ——r .
Teg + T [m’ © +—‘—~m'(§‘)] (2.18)
v e m({) d ()
TS o T [m'(f)df[m’(s“)]
@ (DY sm' (D)
SRR LA i L L1d 2.19
m’(s“)} m’ () @.19)
where
WO =Wm(), w()=w{m({). 2.2
The conditions (2.6) and (2.7) now become
QO =R F+Q_ e, QI=(1+26)"W1, @.21)
CO(() =w1§‘+w_1§'“1 +..., o= (1 +26)awl. (2.22)

It is assumed that the crack periphery-is subjected to no ex-
ternally applied load and, as a result, there are the following
two possible boundary conditions:

(@) Traction-Free Crack

Qo) + m,(g') () +w()=0, Ifl=1 (2.23)!
m’ ()
(b) Contact Problem
Ty 40Ty, =0 for {=e (gl >sin~leN) (2.24)
Tgy =0 (2.25)
for ¢{=e” (Igl<sin~'eh)
u, = — Yaady® (2.26)*

It is implicitly assumed that the contact region is small so
that (2.14) applies. The contact region in the physical z-plane
is defined by (c.f. (2.14))

I'This is the integrated form of 74 +irg, =0.
2u2 istaken from (2.14)and e < < 1.
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1+26

—-c=<x=0 and c¢= aet\? .27
within which theA condition

must be satisfied.

To facilitate the solution, it is convenient to introduce the
stress continuation through the introduction of a single
function Qg ({) defined by [7]

Q(9) feSTIEI >1]
WO=  m@ o
- (1/{)9 A/5) —w(1/)) eSS [1fl<1)
(2.29)
In terms of Q4 ({) and another new function
Qn () =05 (5 /m" () (2.30)
(2.17)-(2.19) become
2u(uy + i) = k@ (8) +Qy(1/ 9
—[m($) —m(1/ )% (1), (2.31)
TEE+T1711=2[QM(§‘)+Qm(§‘)]s (232)
. m’(1/§) -
TE£+IT£71=QM(§') - g_g';rn, (g_) Qm(l/g‘)
m'(1/9
1- Q
+[1- 2 |8 ®
mm (g‘)
1/ 2.33
+[m(1/ 9~ m(s“)]m s (2.33)
Moreover, along the crack boundary { = e
2;1.% (1) +iug) =[Q4+ (€M +Qf~ (eMie 2.34)

where, and throughout the paper, F* and F~ are the values
of Fapproached from S* and S~

Since the contact region characterized by e\ (c.f. (2.26)) is
assumed to be small, the behavior of the solution near the
cusp tip 2 = 0 ({ = 1) is best described by introducing a
boundary-layer complex variable defined by

o=0; +io, =i~§—;——, {—1= —ieo. (2.35)

The positive o, and ¢, directions are, respectively, the
negative x,({;) and positive x,({;) directions (Fig. 1). The
mapping function (2.8) now becomes

1+28 1+36
m(l —ieq)= — a 5 ) et + « 3 ) i+ .... (2.36)
Moreover, for I¢l = 11 + jesl =1,
o= 0y(0y,€) =0 —igo%-i- . 2.37)
In terms of o, we may define / (o, €) by
Qu(1—eio)= —ig(e)h(o,e) + const. (2.38)
where g (¢) is a scaling factor to be determined. Then
dy _q(e) dh q(e)h (00 2.39)
as e do
Substituting  (2.35), (2.36), (2.38), and (2.39) into

(2.31)-(2.33) and keeping only the leading terms, we obtain

2—( +iuy) =
q(e HTHI=

Journal of Applied Mechanics

-2 _
- —-i[xh(o,0)+h(6,0)+ d °2h'(a,0)], (2.40)
2a(l +26) TR0k (a0)
—q_(_e)—.- (TEE+T,7.,,)——-21[ p — —g—], (2.41)
Ca(l +25) ' (0,0) k' (5,0)
q(e) (TEE""ITE.,,)—I[ p p

RO CE |

3 Traction-Free Crack

If we make the artificial assumption that the crack
boundary is always free of traction, regardless of the load
applied at infinity, then 9 defined by (2.29) must be
determined in such a way that (2.23) is satisfied. It follows
that Q4 is holomorphic in the whole plane. This is just the
problem solved in [5] and the result is

a(l+8) . W,
(=5 Wis= (o 15 7) 3 15 1 |
n(§) =" =t 1+a ¢ 1+5 ra
3.1
The stress-intensity factors are
. 1+6
(K, ,K2)=(022,012)(7m)/l (3.2)

(1+28"°

The displacements at a point z =
boundary are just

m(e'™) along the crack

. k+1
u1+lu2=TQH(§'), (3.3)
v
and
k+1a o
Uy = ( ) {— 5 (o1 +03)+ [(1 +28) 0y, — 053 ]cosy
8u 2
1
+8(01; + 03)sin? } (—"i—z(”—‘” aoy,sing, (3.4)
I
_ (K+l)(2+6)a{( d )
2 8 02 — 240 e’
6 .
+ 375 (o + azz)cosn} singy
+DA+8
+ (_"__)(_2 aagp;cosy. (3.5)
4p
Near the cusp tip, we have
(k+1)(2+368)
U = B T aoyn (3.6)

An estimate for the contact length may now be computed
from (2.14) and (3.6). It is

Estimated Contact Length
a

_ (et (1 +28)2+35) (_2) 3.7

8

4 The Contact Problem

We now turn our attention to the problem defined by
(2.24), (2.25), and (2.26). Since the contact region is assumed
to be small, it is most convenient to express the solution in
terms of an outer expansion and an inner expansion so that
the relative orders of magnitude may be easily checked. We
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shall use the variables { and ¢ for the outer and inner ex-
pansions, respectively. The leading terms of the two ex-
pansions will be explicitly determined. They are to be con-
sidered as an asymptotic solution of the /inear governing
equations of the theory of linear elasticity. At the same time,
however, they are to be treated as the exact solution of the
theory of linear elasticity in that it would be meaningless to
include the higher order terms without also raising the ac-
curacy of the governing equations.

4.1 Outer Expansion (1z1 >> 0 or If—11 >> 0). In
terms of the variable ¢, the contact region defined by (2.26) is
an e-segment centered at {=1. It follows from (2.29) and
(2.24), which is essentially the same as (2.23), that Q4 ({) is
holomorphic for |¢— 11>0. The solution is just

Q4 (O =H' ({0
_a(1+3d) o 1-=6 1 26 W,
=73 [W1+(W1+mwl>g~—z+m?s‘]
s ad F(m) n+m KEZPX(E) 1
+,,§ Eo (¢-1) 27r(1+«)} @.1)

A few comments regarding this solution are in order. For e =
0, there is no contact region and H (¢, 0) becomes (3.1). The
double sum follows from the fact that H'({, € is
holomorphic only for if—11 > 0. The last term is added
because the anticipated contact pressure is to be identified
with 7; according to (2.26) and hence the horizontal resultant
force on the crack is not zero. With these comments then (4.1)
may now be formally considered as the complete outer ex-
pansion of the linear equations of the theory of elasticity.

To facilitate matching, we need the inner expansion of the
outer expansion. It is

H'(l1 —¢io,e)

[a(l +8)

(035 —loyy)i+ E 4.2)

( -la) ] -

4.2 Inner Expansion (Iz| < < aor |{—1]1 << 1). For the
inner expansion, we use the independent variable o defined by
(2.35). Then, using (2.39) and (4.2) we write

Q41 — eio) = (6)

h' (a,€) 4.3)

By comparing (4.2) and (4.3), we conclude that
g(e) =aloyle. (4.4)

The stress continuation (2.29) and the boundary condition
(2.24) imply that 2’ (o, €) is holomorphic in the whole {-plane
cut along the e-circular arc defined by

f=e" (Il =sin~leN) 4.5)
which, in terms of (2.35), (2.37), and (2.26), is just
0=00(01,e)=01-6%021+. . (e lsN.  (4.6)

Then, in the limit as ¢ — 0, the function
hi(o) =h’ (0,0)

must be holomorphic in the whole o-plane cut along the real
axis (c.f., Fig. 1)

U=00(01,0)=01 (‘O’l ‘S}\). (4.7)

The function Ay o) must now be determined to satisfy (2.25)
and (2.26).

We first examine the property of hj (o) as ¢ — oo, This is
determined by the inner expansion of the outer expansion. It
follows from (4.2) and (4.4) that

hi(o)= 4.8)

“—T((Tzz 1012) as lol—o

528/ Vol. 49, SEPTEMBER 1982
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Fig. 2 (a) Cusp shapes before and after deformation; and (b) contact
pressure and normal stress ahead of cusp tip

Substituting (2.37) into (2. 42), we find

e(1+26)
logg |

where A3 * (o) = Ay(o; = 10). Equation (2.25) now becomes

(7 +iTgy) -—’—~ [k * (1) — g~ (o1)] 4.9)

T (o) +hi" (a)—hg " (a)—hg " (01) =0 (4.10)
or
lim ,Olhé(a)~hé(6)]— lim [hg (o) —hg (5)] (4.11)
o=gy +i o=q) — i0

Since both A4 (o) and h(;( &) are holomorphic in the whole
plane cut along lo; | < A, the preceding condition, together
with (4.8), yields

hg (o) —hg (6) = ‘ 22' .12)
Substituting (2.37) and (2.38) into (2.40), we obtain
—.d_. (u + i )_
dO’l v )=
q(E) T3 1ims* )+ g™ (o)] (loy 1 <) @.13)

which, in view of (4.12), yields the relation
du,
d (]

Q(e)

(K+1)[h (o) +hi™ iz ] (4.14)
|0' 2|
Equatlon (2.26), with n replaced by — eo;, now yields
6
Gt (o) +hg (o) = — —— o} —i1+8) -, (4.15)
K+1 |0'22|

g(e) =pade®. (4.16)

We conclude from (4.4) and (4.16) that
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2 10'221

<<l. 4.17)
The solution for (4.15) and (4.8) is just
61
-—-[ il +8) 22 ]
, X(o) ¢> k+1 foy |
ho (0') = N - dt
2w J -\ X*(8) (t=0)
1+8 ‘
+X(0)o——— (09 —i0oy) 4.18)
2 '022 | .
where the Plemelj function
X(0)= (2 —N)"% (4.19)

has been chosen so that ¢X(¢) — 1 as lgl — oo. The in-
tegration of (4.18) is straightforward and the result is

A+6 o, 3
B (o) = — -
0(6) ! 2 |022| k+1

e RC el Gl [ G I |

(4.20)
The requirement that the contact pressure vanishes at ¢ = A
leads to the conclusions:

1
(%) <0, )\2 = § (K+ 1)(1 + 6), (4.21)

and hence

hi(oy=—itt8 92 _ 3 n 2z @a2)

2 |022|_K+1

The contact pressure may now be computed from (4.9) and
(4.22). Itis

xl 1/2
——p, [1+ ?] (—c=x,<0)  (4.24)

where the maximum contact pressure p,, and the contact
length ¢ defined by (2.27) are

2 3(1+6)6mazzl]1/2
p’"_1+25[ P ’ (4.25)
1 lgyy |
£ ol (e DA +8(1 +28)—2 < <. (4.26)
a 6 op
We note that the estimate given by (3.7) is off by the factor:
5/3=(2+38)/(1+26) <2. 4.27)
The resultant contact force Pis
2
P= ‘3‘Cpm
2 + DA +8) log | 7172
=~[(" X )"22] (1+8) loy la, (4.28)
3 3ou

and the resultant horizontal force on the crack, a consequence
of interpreting r;; as the ‘“‘vertical” contact pressure, is (c.f.,

@.1))
2o o TR +8)5
“PO=—q077

The constants F, involved in (4.2) may be identified with the
expansion of 4§ (o) at infinity. In particular

(4.29)

|0'22 |ac~2.

Journal of Applied Mechanics

0 40 3N 1 .
FO, = e 8eil) -2 («+ 1)1+ 8)%aloy !
We have thus completed a solution accurate to the order of €
in terms of the linear equations of elasticity. The solution,
however, is actually exact in terms of the accuracy of the
linear theory of elasticity.

The following summary is provided (see Fig. 2):

(4.30)

Contact Length
| [05%) ‘
Su

% =é(x+1)(l+6)(l+26) <<l (033<0) 4.31)

Maximum Contact Pressure

2 3(1+8)éuloyl 112
p”'_1+25[ K+ 1 ] 4.32)
Contact Pressure
x1 1/2
Tee = =D (1 + ?) (—cs<x; <0)  (4.33)

Normal Stress Along x,;-axis

722(x1,0)=—p,,,[<1+x?1>1/2—(f—l—>l/2] ©O=x,) (4.34)

c
Cusp Shape Before Deformation (x; = +0)

X\ M2
X =Y, (x)=A (— —c—) (x; <0) (4.35)°
Displacement Near Cusp Tip (x; = +0)
sgn (05,) Y, (xy) (—c=x;=0)
U, = (4.36)
sgn (o)IY, (x1)— Y, (x; +] (1 =—c¢)
Cusp Shape After Deformation (x, = +0, g, <0)
0 (—c=x,=0)
Xy=y(x))= 4.37)
Y, (x;+¢) (x;<s-¢)
“Amplitude’’ of Cusp Opening
2 32
= _— = — = ) S
A=Y, (—c)=y,(-20) /za6[(1+26)a] (4.38)

It is noted that the change from (4.35) to (4.37) is merely a
translation to the left. If we denote K; by

1+6
a+287’°
which is just the stress-intensity factor defined by (3.2) but has

no special implication in the present nonsingular stress field,
then

Vi

K(032,a,8) =05, (ma) (4.39)

o\ 172
Ki(lonlad)=(5) " pm. (440
As x; — oo, in the sense of the outer expansion of the inner
expansion, (4.34) becomes

¢® . Ki(0p,a,0)
0= ~pn X =
1

which indicates that the present regular stress field approaches

(x;>>¢) 4.41)

3Same as (2.15).
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the singular stress field obtained without including the effect

of contact. We conclude this section by noting from (4.31)

and (4.32) that

3(1+6) on
k+1

172
} lop | >> loy|  (0<6<1).

{ +

|(722 |
5 Barenblatt’s Theory—The Contact Problem in
Reverse :

To set the stage for the ensuing discussion, we first deduce
from (4.31), (4.32), (4.38), and (4.39) the following identities:

_k+l K}(loy 1,a,8)

Pm= . LA ) .1
2 37pd ]2
- [ (x+ DK, (logy L,a,8) ) -2
The values of p,, and c evaluated at § = 0 are denoted by
k+1 K} (loy l,a)
i P 5-3)
2 37ud ]2
“=7 [ (k+ DK;(loy |,a) (5-4)
where
K;(0y,a) =K (02,a,0) (5.5)

Consider now a straight crack defined by (—2a¢ =< x; < 0,
X, = =x0). The infinite region containing the crack is loaded
by a remote crack perpendicular tension + 0y, and the crack-
surface tension

x 1/2
Tyy(xhio)= +p0(1+zé') ("“Co SXISO) (5.6)

where py and ¢, are defined by (5.3) and (5.4) in which the
amplitude A4 is assumed to be given. The solution to this
problem may be easily obtained from the results of Section 4
by replacing (8,p,,¢) by (0,pp,c0). In particular, the
displacement of the crack surfacex, = +Qnearx;, = x, = 0
is just (4.6), i.e.,

A(—f_—;) 3/2
A2 ()] o

(5.7

(""CO =X SO)

u2(x11+0)=

Before proceeding we first review the hypotheses of the
Barenblatt Theory {8, 9]:

(H-1) The molecular attractions across a crack near the
ends are not insignificant. These attractions denoted by g(x)
are called cohesive forces. The positive singularity caused
external load and the negative singularity caused by the
cohesive forces cancel each other so that the net result is a
stress field without singularity.

(H-2) The cohesive force distribution g(x) is confined to a
small zone extending inward for a distance ¢, from the crack
tip.

(H-3) Crack becomes unstable when g(x) = g,,(x) and
&, (x) is a material property.

These hypotheses lead to the conclusion that [9]

172

§. en(-nrrar=c=(3) " Kionay  9)
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where Cis a material constant called the modulus of cohesion.
It takes at least two constants, g,,(0) and c., to define the
“material function” g, (x,). The modulus of cohesion gives
only one condition, and the other condition is the qualitative
statement that ¢, must be small. The equivalence of the
Barenblatt theory and the K;-criterion has been established
in many occasions [9, 10] but, to the best of our knowledge,
no specific form of g,, (x,) has been determined or suggested.
Equations (5.3)-(5.8) enable us to restate (H-3) as follows:

(H-3’) crack becomes unstable when

X1 172
an@=p(1+2) 7 (meemx=0) (69
Pe= 5o o -
21 3muA, JZ
=2 2T 5.11
W[(K+])KIC ( )

where K¢ is the fracture toughness and A, a material length.
Substituting the foregoing into (5.8), we conclude that the
modulus of cohesion is just

T 172
C=(§> K- (5.12)
and the fracture criterion is simply
K1=ch. (513)

Our statements preceding (H-3') seem to have implied that
(H-3") is more complete than (H-3), but what is 4,7 One may
argue that there is no need to know A, since the objective of
the theory (5.12) and (5.13), is completed without the
knowledge of A,. Still the thrust of the theory lies in its
assumption that the stress field is nonsingular, and it is of
interest to know the magnitude of the cohesive force. If one
insists on interpreting the cohesive forces as molecular at-
tractions then, since 24, is just the separation at the end of
the attraction, 4. must be of the order of the distance between
atoms. It follows from

K c=0(10%psivin., p=0(10")psi, A,.=0(10"%)in. (5.14)
that
P.=0(10")psi > > theoretical strength = 0(10%)psi.  (5.15)

This estimate is obviously unrealistic even though the stress
field is now finite,
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Torsional Impact Response in an
Infinite Cylinder With a
Circumferential Edge Crack

The problem of torsional impact response in an infinite cylinder with a cir-
cumferential edge crack is solved. Using Laplace and Fourier transforms the
problem is reduced to a singular integral equation of the first kind that has Cauchy-
type, logarithmic and generalized Cauchy-type singularities. The kernel of the

integral equation is improved in order that the calculation may be made easy.
Dynamic stress-intensity factors are estimated with good accuracy.

Introduction

In the structure having pre-existing crack under dynamic
loading, the waves are transmitted to all parts of the structure
and are reflected and refracted at the crack, causing higher
stress elevation than that of similar type of static loading.
Therefore, since the crack problem concerning transient
response in the elastic body has been considered as one of the
most important problems in fracture mechanics, various
research has been done up to date. Regarding three-
dimensional axisymmetric crack problems, we may mention
the work analyzed by Sih and Embley [1] for the problem of
the dynamic stresses around a penny-shaped crack in an
infinite elastic body under torsional impact in which the
maximum stress-intensity factor has been determined to be
about 1.19 times as large as the factor of the corresponding
static problem. In the case of finite elastic body, there appears
a reflected wave from the boundaries and a scattered wave
from the crack, and the analysis becomes complicated. Chen
[2] studied the problem of an infinite cylinder having a penny-
shaped crack under torsional impact loading by solving the
Fredholm integral equation of the second kind, and clarified
the impact and geometry effect on the dynamic stress-
intensity factor. In these researches, however, since the
estimation of the kernels involved in the Fredholm integral
equation of the second kind was not performed, the numerical
evaluations are to be laborious in order that the accurate
results may be obtained.

The present paper deals with the problem of the torsional
impact response in an infinite cylinder with a circumferential
edge crack. By the method of integral transforms, the
problem is reduced to that of solving a singular integral
equation of the first kind transformed from a dual integral
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equation. The solution of the integral equation is expanded in
terms of the Jacobi polynomials with unknown coefficients
which are solved by an infinite system of linear algebraic
equations for the coefficients [3]. In the treatment, the in-
tegrals concerning Cauchy-type and logarithmic singularities
involved in the singular integral equation of the first kind are
estimated analytically, and the slow convergency of two sorts
of integrands in the equation is improved by using contour
integrations and asymptotic expansions. The expression of
singular stress near the crack tip is given by a closed form and
the solution is transformed into the physical plane by using
the numerical Laplace inversion technique [4]. The stress-
intensity factors subjected to time-dependent loadings are
shown in a figure for various crack depths. The related static
problem has been studied by Shibuya, et al. [5]. The results
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Geometry and coordinate system
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are also obtained from the present solution by taking a
limiting case. Both results are compared and made good use
of for clarifying the impact effect on the dynamic stress-
intensity factor. In addition, it may be mentioned that the
present solution is identical to that for the sudden appearance
of a crack in an infinite cylinder under stationary twisting.

Formulation of the Problem

Let us take cylindrical coordinates and the z-axis as the axis
of symmetry of a circular cylinder which is made from
homogeneous and isotropic material. For convenience, r and
z will be regarded as dimensionless quantities referring to the
radius of the cylinder b. The present problem is, as shown in
Fig. 1, that of an infinite circular cylinder of radius 1 having a
circumferential edge crack of depth c lying in the plane z=0.

The displacement field in the r, 8, and z-directions is
denoted as u,, uy, and u,, respectively. For torsional motion,
we have

u,=u,=0, ug=uy(rzT) 1)

where Tis time. The corresponding stress field is as follows:
Trg (12, T) = u g, r~ug/r) 2)
T (1,2, T) = pty (3)

where u is the shear modulus of elasticity and a comma
denotes partial differentiation with respect to coordinate
variables. The other stress components are all vanishing.
Hence, two of the equations of motion are identically satisfied
and the remaining one gives

ug 1 duy  uy | Buy 1 du 4

ar? r ar 9z ¢} oT? @
where ¢, = (u/p)”* and p is the mass density of the material.

In the present problem, a circular cylinder is initially at rest

and a stress 7y, = —7or, With 7, having the dimension of
stress, is prescribed at the crack surface for 7 = 0. That is, a
torque M, of magnitude of w7,/2 is prescribed suddenly at
Izl = oo. For the resulting problem of scattering field of a
normally incident torsional impact wave by the crack, the
boundary condition is given as follows

T,g(l,Z,T) =0 5)
7o (1,0, T} = —1orH(T), a<r=I (6)
up(r,0,7=0, O=r=a o)

where a=1~cand H(T) is the Heaviside step function.

Analysis

The time variable is removed by the Laplace transform
relations

® 1
re = smerrar, qn=:-{ rerera  ®

The path of integration in the second equation of (8) is the
Bromwich path, which is a line on the right-hand side of the p-
plane and parallel to the imaginary axis. Applying the first
equation of (8) to equation (4) results in the transformed
equation

1 ou, 1 .

—_————=u
r or 270

3*u, 0%u, P O

ar o2 3 !
Referring to the upper half space z>0, solution of equation
(9) can be written as

u(; = So A(o,p) (ar)e "do 7
g 1
+ So B(a,p) I, (yrsin(az)da+cyr r e~ w22 (10)
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where J,( ) and 7,( ) denote the n-order Bessel function
and the modified Bessel function of the first kind, respec-
tively, A(a), B(«), and ¢, are unknown functions and
coefficients to be determined later, and vy denote

v=(a?+p*/c})* an

The relation between unknown functions is determined
from the Laplace and Fourier sine transforms of the boun-
dary condition (5), by using equations (2) and (10), in the
form

* 9A(n,0)J2(n)
0 az + 62
Similarly, from the boundary conditions (6) and (7) in the

transformed plane, a pair of dual integral equations is ob-
tained as

VB (ep) =a dn (12)

[ A@nwi@dat | Blp) (e do

1 ‘
= —-ror/up+corc—, a<r=1 (13)

2
i 1

So A(a,p)Jl(ar)da+c0r; =0, O<r=<a (14)

In order to solve the equation, the following definition is

made on the crack surface displacement:

d /1
" (;u;) = o*(r.p), a<r=1
=0 O=<r=a (15)
From equation (15), 4 (a,p) is determined by the form
1
Atan)=-{ toto) e (16)

Substituting equation (16) into equation (13), and using
equation (12), a singular integral equation of the first kind is
obtained as

1
| 10t 0oR0) + R, 00) + Rotr 01

1
=—70r/pp+c0rc—, a<r=l an
2
where

Ro(r,t) ESOOO ajz(at)Jl(ar)da

=i2[K(t/r)—E(t/r)]+ i E(t/r), t<r
Tt T

(> =r)

= -i[K(r/t) —E(r/H)]
wrt

2
+—%—[——t——E(r/t)—-K(r/t)], t>r (18)
wrt

(22-r?)

R0 =] (y=as(an I (anda (19)
2 (> o

R0) === | S nanKeGnds Q0)

where K and E are complete elliptic integrals of the first and
second kind, respectively, and K, denotes the n-order
modified Bessel function of the second kind. Similarly, from
equation (14), unknown coefficient ¢, is determined as

L |
co=p|, = et e
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Fig.2 Contours of integration for integrals in equations (29) and (30)

The kernel Ry(r,f) in equation (17) has Cauchy-type and
logarithmic singularities and can be written in the following
form by separating the singularities:

r 3 i 2(t—r) |
- —lo
w(t—r) 2w l-a
where Ly(r,f) is the Fredholm kernel which has no
singularities and is written as

P Ry(r, )= + Lo(r,t) (22)

. r[%E(t/r) ~1]

1
Ly@r,t)= - [t(t+r) —Z]E(t/r) + )

4K (t 3 2(t—
BT W P L

+
T 27 1—a

1 r
= 7 [m —2(t/r)]E(r/t)+

rlE(r/ty — 1]
w(t—r)

+— + 1o
T 27 &

@3)

!
2—K(r/t)
r 3 2(t-r)
l , I>r

1-a

For the sake of convenience of analysis, we perform the
following change of variables and function:

1 1
r=-2—[(1—a)s+1+a], t=5[(l—a)r+1+a] (24)
P=p/C2 (25)
* * I_T i
o)/ 7o/ wp)t=24p) (T ) 26)
+7
Then, equation (17) is written as
ISI [ 1 _30=20) ot
T J-1L7—s 4r gl
-7\ " 1
+K(s,r)]<——) d*(r,p)dr=—1+coy—pu/ty @27
1+7 Cy
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where

1-a
K(s,7)= Ere w{Lo(r,t) +12R,(r,t) +12R2(r,t)] 28)
Next, let us consider the kernels R(r,f) and R,(r,0),
respectively. First, regarding R,(r,f) expressed by equation
(19), it is a form of integral of bad convergency. To evaluate
the integral accurately, we consider the contour integrals

Iy = §e L (v, k) o (kt) H (kr)dk,  t<r (29)
Iy = 8§ L(v,k) Jy(kt) HP (kr)dk, t<r (30)

where :
L(v,k) =k—vy=k— (k* + P2)* 31)

In equations (29) and (30), contours cl, ¢2 are defined in Fig.
2 and H{D, H{® are the first-order Hankel functions of the
first and second kind, respectively. The integrals in equations
(29) and (30) satisfy Jordan’s lemma on the infinite quarter
circles, so that

La=|. (@) a(er) P (er) des

P
+ Sm (la—iv')J,(iat) HP (Gar)id o

0
+ SP (ia— (i) HP (jar) ida (32)
I,= S: (o~ (ot HP (ar) do
P
+L (—ia+iv)Jy(—iatYHP (—iar)(—i) do
0
+ SP (—ia—inJ,(—ia) HP(—iar) (—=i)da  (33)
where
v=(P? -~ o?)", v =(c?-PY)% (34)

Because of I,; + I, = 0, R\(r,t) for t<r can be finally
written as -

) 1
R(r,n)= - p? Uo aly(aePt) K, (aPr)da

+ Slm [e—(a? — 1)1 (Pt K, (aPr)da} , t<r (35)
R (r,?) for t>r can be also found as follows:
R (rt)=— —;PZ{SO] oK, (oPt) I (aPryda
+ S:o [a— (a? —1)”?]K,(aPt) ], (aPr)dot}
+ % e+, t>r (36)

where the integrands have the pole of first-order, so that I,
and I,, expressed by the following forms are to be necessary.
That is,

0
I =lim S L (y,ee®) HV (tee®) I (ree™® ) ice®d6 = Pr/s?

-e—0
(37
0
L, =lim S " L(vy,ee®)HP (tee”)J, (ree’®)ice®df=Pr/*
e—0 -

€0))
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The kernels given in the form of equations (35) and (36) will
allow their numerical evaluation with good accuracy.

Successively, for the sake of convenience of the numerical
calculation, we rewrite equation (20) in the form

R(rt)=—~-g~gw[i2—1(t)l{( YT, (yr) — A*( rt)]d
2, 7 Jo 712(7)2’)’ 207 ) 4y o,r, o

2 oo
———S A*(a,r,tYda 39
T JO
where
Aoty =aje-@-r0a 4 L [g-0-r-tu_g-ia] (40)
[0
S A*(a,r,t)da= @ +a,in[6/2—r—1)] 41)
0 2—r—t

The forms of a; and a4, come from the leading terms in the
asymptotic (a— o) expansion of oI, (yt) K, (v) I, (yr)/ L, (v),
and are given, respectively, as:

m s e[ (0t 2)- 00,
42)

Besides, to use the a,/« term without causing divergence of
the associated integral term, it is necessary to artificially
include e ~%. We merely choose & so that it has little effect on
the integrand values for large o; We actually use §=2.

Now, to solve equation (27), we assume the unknown
density ®*(7) in the form [3]

()= ) B, Py “3)
n=0

where P{*~")(7) denotes the Jacobi polynomials. Sub-
stituting equation (43) into equation (27), we obtain the
equation

Y. B[P (s) +w, () +p, (5)] =

n=90
i
-1+ —2—(1—a)B01rP 44)
where
31 - !
w,(s) =~ ( a)S loglr—s| P4~ ")(7)
47r -1

1— v
T) dr

1+7
Sl (s—log2), n=0
4r
C3-a@em!y 1 R
T 4r(nh22 [ n T, (s) anH(S)],
n=1,2,... (45)
1o [y %
= — (Y4, — 2}
Pa($)= o S_lK(S’T)Pn (T)<—1+T) dr  (46)

T,(s) in equation (45) denotes the rn-order Chebyshev
polynomials of the first kind. Considering the orthogonality
relations of the Jacobi polynomials, the following equation is
given from equation (44):

0k(ﬂl/z']/2)Bk* E [’Ykn +Ckn]Bn

n=0
1
=dk[1— E(1—a)BO7rP], k=0,1,2, . .. (47
where
66 = 48)
s 2012k + )
e = 49
k (1+2k) (k) (k+1)122C4+D “9)
1 1+ 23
vo=|_ PO, () a6
1 1+ Va
Cu=|_ PEPop, ) () ds 6D
- -5
dy = Ty 52)

810 in equation (52) denotes the Kronecker delta.

The evaluation of integrals in equation (50) and (51) can be
easily performed by using the following Gauss-Jacobi
quadrature formula [3], i.e.,

! 145 \*% ., 2«
S—l(l—s) J()dss 5o

N
Y +s) 1),
i=1

s—cos( 2i—1 ) 53
= IN+1 " (53)

06
T~ _ 0524
05 —<=03 | L eemvtlod
' 05 |
//"_ 0466
04 0364 _
. | T
.03 07 +—"" |
x /
02
/ _____ static solution
0.1
o 1 2 3 4 5 6 7 8 9 10

To

Fig.3 Variation of dynamic stress-intensity factor with time
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Jj=1

I (57) s s

2T
=cos{ T _ 54
7 °°S<2N+1> 4

Dynamic Singular Stresses Near the Crack Tip

To find the local dynamic stress field, the inverse Laplace
transform of the expressions 7)5(r,z,p) and 7 (r,z,p), which
are obtained by substituting equation (10) into equations (2)
and (3), must be applied. The singular stresses are obtained by
expanding the integrands in the stress integrals of 7)%(r,z2,p)
and 73,(r,z,p) for large a. Considering the theorem [6] on the
behavior of Cauchy integral near the ends of the path of
integration and performing the Laplace transform inversion
of the singular stresses, dynamic singular stresses near the
crack tip are obtained as

Ky (T)

T,-g(r,Z,T) -~ W COS(GI /2) (55)
Ky (T) .
7o, (1,2, T} ~ ESa sin(6; /2) (56)

where K;; (T) is a so-called dynamic stress-intensity factor
defined as the following expression

Ky (T) = lim [2n(@a—r)]" 74, (r,0,T)

1

=1(2c)"a — (- 1,PyeP2TdP  (57)

e o

In equations (55) and (56), p;,0; denotes the following polar
coordinates, that is,

o1 =l(r—a)* +z2}*, 6, =tan™! (_z >

(58)

The Laplace transform inversion of equation (57) is carried
out numerically by using the formula [4]:

F(P/f)= SO F(T")e™ PIOT qT"

N

=B Y, wixl " F(— logx;) (59)
j=1
where [ is a variable that regulates time scale,

Journal of Applied Mechanics

x;(j=1, - - - ,N) are the roots of the equation Py(1 —2x)=0
in which Py( ) denotes the Legendre polynomials of order #,
and w; denotes weight functions given by the relation

W,__gg‘ Py(1-2x)

! 20 (x=x)[P{(1 = 2X)]
In equation (60), P{(1 —2x) denotes the differentiation
dPn(1-2x)/d(1 - 2x).

dx (60)

Numerical Results and Considerations

Solving the infinite system of linear algebraic equation (47)
and performing the Laplace transform inversion numerically,
we have determined dynamic stress-intensity factors of an
infinite cylinder with a circumferential edge crack under
sudden twisting. The dimensionless values of K;/7, versus
T, are shown in Fig. 3 for the cases of ¢ = 0.3, 0.5, and 0.7.
7, denotes nominal stress 2My/wa®, and T, denotes
dimensionless time ¢, T/¢, and the results shown by the dotted
lines are those of the related statical solution for the case of
P=0 in equation (47), and are in good agreement with the
results in reference [5]. Generally, the values of the dynamic
stress-intensity factor become larger and reach the maximum
values close to those of statical one through the point of in-
flection as the time increases.

We note that the term of rigid displacement given in the
present solution is important for solving such problems of
dynamic stress-intensity factor.
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1 Introduction

Discontinuous-fiber reinforced plastics are attractive in
their versatility in properties and relatively low fabrication
costs. They consist of relatively short, variable length, and
imperfectly aligned fibers distributed in a continuous matrix
material. The orientation of the short fibers depends on the
processing conditions employed and may vary from random
to nearly aligned. Thus, it is imperative to take into con-
sideration the effects of the bias in fiber orientation and
variation in fiber aspect ratio on composite elastic properties.

The stiffness properties of two-dimensional random fiber
composites were analyzed by Halpin and Pagano [1] for
instance, under the assumption that such materials can be
modeled as laminated systems composed of layers of
unidirectional short-fiber composites oriented at specific
angles with respect to the reference axes. The case of three-
dimensional misaligned fiber composites has been analyzed in
[2, 3]. Christensen [2] obtained the results by summing up the
contributions to stiffness for all the fiber orientations. The
stiffness value of each orientation was obtained by the tensor
transformation of stiffness of the system with aligned fibers
parallel to the loading direction. Chou and Nomura [3] used
the results from both the bound and self-consistent [4] ap-
proaches for the values for each orientation. In the analyses
of [2] and {3] the interactions between fibers at different
orientation are not considered.
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Effective Longitudinal Young’s
Modulus of Misoriented Short
Fiber Composites’

This paper examines the effective longitudinal Young’s modulus of composites
containing misoriented short fibers. The analysis is based on the Eshelby’s
equivalent inclusion method and the average induced strain approach of Taya,
Mura, and Chou. The present approach is unique in that it takes into account the
interactions among fibers at different orientations. Numerical results are presented
to demonstrate the effects of fiber elastic property, aspect ratio, volume fraction,
and orientation distribution function on composite Young’'s modulus. Fiber
orientation distribution has a more significant effect on composite longitudinal
Young’s modulus than fiber volume friction, within the range examined.

In this paper we consider the effect of the distribution in
fiber orientation on the effective Young’s modulus. The
interaction among fibers at different orientations is included
in the analysis by adopting the average induced strain ap-
proach [5, 6] and the modified Eshelby’s equivalent inclusion
method [7].

In the formulation, the general approach is described first
and it is shown that the average induced strain has only two
unknown components. Then we describe the approach in
detail by the use of this result. Numerical results of effective
Young’s modulus are presented for two types of fiber
distribution patterns (uniform and cosine-type) with the
parameter of distribution limit « as a function of fiber
orientation angles. The effect of the volume fraction is also
presented.

2 Formulation

The infinite elastic body containing misoriented short fibers
and subjected to the applied stress g, is shown in Fig. 1(a).
The fibers are modeled as ellipsoidal inclusions of the same
size. Let the domains of the infinite body and ‘the fibers
(inhomogeneity) be denoted by D and {, respectively. Hence
the domain of the matrix becomes D —{. The elastic stiffness
tensors of the matrix and fiber are denoted by C, and Cy,
respectively. The bold-face letter stands for tensorial
quantity.

Under the applied stress o,, the average of the total stress in
the matrix can be given by ¢, + <o>, where

<g>=Cy€ (1)

Here, <> denotes the volume average of a quantity and €
stands for the average disturbance in strain of the matrix due
to the presence of all fibers.

Following Mori and Tanaka [8], a single fiber is introduced
into the composite D. The orientation of this fiber is defined
by the angles 6 and ¢ as shown in Fig. 1{(b). To apply the
Eshelby’s equivalent inclusion method {7] to this single fiber
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the local coordinate system x| xy x4 is also adopted, where
the x4 axis coincides with the fiber axis. Then

agg +o' =Cy(e) +€ +e’ —e*’)

' =C, (e +€" +e') )

and
e’ =Se*’ . 3)
where ¢’ is the disturbances of stress due to this single fiber,
e’ is that of strain due to only this single fiber, S is the Eshelby
tensor for Q (see [9] for details), and e*’ is the eigenstrain (or
transformation strain), which has nonvanishing components
in Q, but becomes zero outside Q. The prime indicates ten-
sorial quantities referred to the local coordinate system x; x;

xy . The stress disturbance ¢’ in € can be obtained from
equation (2).

o' =Cy (€' +8e*’ —e*’) @
Also,
o5 =Cp eg (or gg =Cy €p) (5)

Since the added single fiber can be regarded as any fiber in the
composite, equations (2) and (4) hold for any inclusion in the
matrix. From equation (2)

e’ = —((C,—Cy)S+Cy)~! « (C,—Cy)(eg +€) (6)
and
e —e*' =—(S-DIC,—Cy)S+Cy)~! « (C,—Cy)eg +€')(T)

The results of e*” and e’ from equations (6) and (7), after
being transformed to the global coordinate system of x; x, x3,
are applied to the following relation

é+1/VDSQ (e—e*)dV=0 8)

where V5 denotes the volume of domain D. It is shown in
Appendix A that equation (8) is equivalent to the requirement
that the integration of the stress distrubance over the whole
domain vanishes [5, 6, 9] namely, {5 ¢ dV = 0. Equation (8)
represents, in general, six linear algebraic equations with the
six unknown components of €. The subsitution of € into
equation (6) yields e*”’.

Furthermore, the equivalency of the strain energies of the
composite system [5] can be expressed by

1/200 « Colag=1/205 + g +1/2 1/Vpiqa, » €*dV  (9)

where C, is the effective stiffness tensor of the composite to
be computed. We consider here the uniaxially applied stress g,
along the x,;-axis as shown in Fig. 1(a). Then the effective
longitudinal Young’s modulus E, of the composite can be
obtained by inserting e*’ into equation (9).

E, 1
oL (10)
Boo B ! S L dV

—_ e

7 PR

where E,; is the Young’s modulus of the matrix and e}; is the
normal eigenstrain along the x;-axis.

The volume integrals of equations (8) and (10) are per-
formed by the use of the density function p [Appendix Bl,
which is a function of 6 only, and also by the use of the
relations between e* (6, ¢) and e* (4, 0), and between e(f, ¢)
and e(6, 0) [Appendix C].

By taking into account the fact that € has only two
unknown components, €;; (= €;,) and é;; [Appendix D] and
using the results of Appendices B, C, and D the following
results are obtained from equation (8)

e +f|, 8(0) 172 (€1(6,0) + €60
~ (0,00~ e, (6,0))d0=0 (an
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Fig.1 Calculation model

entf] 80 + (ex 0.0 - 6.01d8=0 (1)
where f'is the volume fraction of fiber and
in @
= for p=po (13)
l—cosa
g0 =
cosa@sin @

for p=p cosa b
l—COS(l —a)o (14)

2(1-a)

1-cos(l+a)a
2(0+a)

-

Here, the fibers are assumed to be distributedin0 < 6 < a.
Also, e; (0, 0) and ej; (8, 0) are, respectively, components of
the induced strain and eigenstrain for a fiber in the global
coordinate system. For convenience of calculation, this fiber
is assumed to lie in the x, —x3 plane at an angle 6 with the x;-
axis.

By using the vector notation,

e (0,0) = (— », sin20— v cos?8, .— v sin*§ + cos?4,

0,0, (1+»)sin 6 cos )" >
E,
é’(9,0)=(é”, é33 Sin20+e_11 COSZB, éll sin20

+ €33 08%0, 0,0, (633 —€;,)sin G cos 0) * 15

where ¢ denotes the transpose.

Then, from equations (15) and (6) and the tensor trans-
formation it can be shown that the integrals in equations (11)
and (12) are functions of the linear combinations of the
unknowns é,; and é3;
ey +f{ayy €y +ais €33 +a)=0
€33 +f(a31 €)1 + a3 €33 +a3)=0
where a;; are constants,

Inputting solutions of €, and é;; into equations (15) and
(7), and replacing unit matrix I by zero matrix 0 in equation
(7) leads to the result that the left-hand side of equation (7)
becomes 1/V, {ge*dV. This result is substituted into equation
(10) to obtain the solution of E; .

(16)
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3 Results

Results of this analysis are first compared with existing
solutions of composite elastic moduli where the fibers are
completely random in their orientations. Figure 2(a) shows
the comparisons of the effective Young’s modulus E; for the
short fiber case where the elastic properties, following those
of [3], are E;/Eq = 20, », = 0.3, and y; = 0.4, and L/r = 2.
E, is the fiber Young’s modulus, », and », are, respectively,
matrix and fiber Poisson’s ratios. Also, fiber length is 2L and
diameter is 2r. The dotted lines are the upper and lower-bound
predictions of Chou and Nomura {3]. Figure 2(b) is for the
case of continuous fibers and the elastic properties [3] are
E;/E, = 324, »y = 0.25 and »y = 0.4. L/, = 10,000 is
actually used in the present calculations. The present theory
again lies within the bound predictions of [3] and is lower than
that of a self-consistent approach by Chou, Nomura, and
Taya [4].

Figures 3 and 4 demonstrate the effect of fiber density
distribution on the effective Young’s modulus E; . The case of
short carbon fiber-reinforced polyamide 66 is considered and
the material elastic properties are E;/Ey, = 100, », = 0.42
and v, = 0.17. Two fiber density distributions, uniform and
cosine types, are examined (see equations (B-4) and (B-5) for
details). The angle « denotes the range of fiber orientation
distribution relative to the x;-axis or the loading direction.

Or 10
& E
Ep present resuit Eo —~——— present result
] bound theory [3] 8 o= bound theory [3]
-~ -~ self consistent ’

approach [ 3] /

(a) (b)

Fig.2 The effective Young’s modulus E; for the cases of: (a) E{/Eq =
20.0,v¢ = 0.3,59 = 0.4, LiIr = 2.0; and (b) E{/Eg = 32.4,»; = 0.25,5p =
04,L/r —

m
-

m
*

0.8

06

0.4

0.2

00 L 1 1 1

Figure 3 shows that, for a fixed fiber volume function f, E, is
higher for the cosine-type orientation distribution than the
uniform-type as expected. The case of uniform fiber orien-
tation distribution and o = 90 deg gives rise to an isotropic
material and thus the lowest effective Young’s modulus.

Figure 4 demonstrates E; as a function of « for both types
of fiber orientation distributions. The effective moduli in Fig,
4 are normalized by E_, the composite effective moduli when
the fibers are aligned with the x;-axis. E, naturally is a
function of fiber volume fraction and its values are, for in-
stance, 8.50 By, 16.41 By, 24.77 E, and 33.62 E, for f = 0.1,
0.2, 0.3, and 0.4 respectively. The values of E;/E_ drops
rapidly in the range of o = 30 and 60 deg. It is also interesting
to note that E, /E, is more sensitive to fiber orientation
distribution than fiber volume content.

4 Conclusions and Discussions

1 The present analysis is based on the Eshelby’s equivalent
inclusion method [7] and the average induced strain approach
of Taya and Chou [5], and Taya and Mura [6].

2 Previous theories [2-3] of effective Young’s modulus of
misoriented short fiber composites are performed by first
evaluating the modulus of the aligned short fiber composite at

30
& i —- — cosine-type
Eo ——=uniform-type // a=30°
| /
/
/
//
20+ /7
/
/
/
o /
//
/7
/, 7 a=90°
ol /, 7
Z, Ve
/ il
/ '
Y 7
- _ P
Py
0 L )
00 0.2 04

Fig. 3 The variation of effective Young’s modulus E; with fiber
volume fraction f

— 0.2

- Cosine - type

Q 30

distribution
------ } Uniform - type
distribution
- e i 1 L
60 90

a (degrees)

Fig. 4 The variation of effective Young’s modulus ratio E{ /E, with

fiber distribution limit angle o
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the same fiber volume content. The modulus value at a
specific fiber orientation is obtained by tensor transformation
of the aligned fiber case. Then the effective Young’s modulus
is derived by integrating the modulus values within the range
of fiber orientation distributions and using the fiber orien-
tation distribution function as the weighting function in the
integration. The linear superposition of elastic moduli of
different orientations neglects the interaction of the fibers,
which is included in the present analysis.

3 The effective Young’s modulus. of a short fiber com-
posite is more sensitive to fiber orientation distribution than
fiber volume content.
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APPENDIX

Appendix A (Derivation of equation (8))

The equation (2) is rewritten as follows by using the global
coordinate system x; x, X3
A-1)
Applying equation (4-1) to §, ¢ dV = 0 along with the use of
g, = C; ey we obtain

fp_aCo(€+e)dV+[y Cy(€+e—e*)dV=0 (A-2)

The first integral in (4-2) of the matrix region D — Q is defined
in equation (1) as C, é-Vp_q, where Vp_gq is the volume of
the matrix region. Then

sD—Q CO edV=0

gy +o=Cy (e, +€+e—e*)

(A4-3)
and
pCoédV+JyCo(e—e*)dV=0 (A-4)

Premultiplying equation (4-4) by Cy! and dividing by the
total volume ¥V, we obtain

€+1/Vp fo(e—e*)dV=0 (6) and (A4-5)

Appendix B (Volume Integrals in equations (8) and (10))

We consider the case of e*. When the direction of the fiber
OP in Fig. 5 is determined, e* has the unique value and the
reason is as follows. We consider fibers of the same size, that

Journal of Applied Mechanics

($=0)

(a) (b)

Fig. 6 The relation of strain tensors for e and e* between § = 0, ¢ = ¢
andd = 0,0 =0

is, the Eshelby tensor S is the same for every fiber. Then, the
stiffness C, and C, are constant, and e/ and e’ are functions
of # and ¢ only because e, and € are constant. Thus from
equation (6), e*’ or e* is also a function of 6 and ¢ only, e* =
e* (0,9).

Then, the volume integral of e* is
a 27
l/VDSne* a'V=1/VDS‘0 So e*(0,0)ep(6,0)VdS (B-1)
where p (6,9) is the number of fibers intersecting a unit area of
the surface of the unit sphere in Fig. 5, V is the volume of a
single fiber, and the infinitesimal surface area of the sphere dS
= sinfdfd¢. The distribution of fibers is in the region defined
by0 < ¢ < 2mand 0 < @ < «. The volume fraction of fiber f
is defined by the following equation.

S=1/Vp fq 0(0,¢) VdS (B-2)
By inserting equation (B-2) into equation (B-1), we obtain

o pr2n
[ 1.7 e*@.90(0,0)-sinsands

1/ Vpiee*dV=Ffe (B-3)

S ‘ 5021;) (0,¢)sinfdod¢

0

We consider two types of orientation distribution function: p,
and p, cos af, where @ and p, are the constants. When p (8, 9)

= Po,

1/VS *D =S
Dne VfOI—cosa

When p(8,¢) = pg cosd,

o i 27
—ﬂridf)-l/ZwSO e*(0,6)dd  (B-4)

1/VD-Sﬂ e*dV
cos afl » sin @

4 SO 1 1 ] |
2(lTa)(l —cos(l+a)a) + i—a) (1-cos(l —a)xx)
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2T
1/27rS0 e* (0,9)do (B-5)
" Appendix C (Derivation of Eigenstrain e* (,¢))

We apply equation (6) to the case of Fig. 6(a), where ¢ = 0.
After the transformation from the local to the global system
we get el*l (070)) 952 (0)0)’ 33*3 (0’0)’ eTZ (0,0), ef3 (0)0)’ and
e3;(6,0), which are components of the eigenstrain e*. The
general case, that is, a fiber indicated by the solid line (Fig.
6(1)) has the same components of the eigenstrain as those of a
fiber indicated by the dotted line and represented by the local
coordinate system x; x, X3 . Then

et1(6,¢) =et (6,0)cos*¢

+e1(0,0)(—2sing cos¢) +e5,(8,0)sin’¢
e%,(0,9) =et, (0,0)sin*¢

+e1(0,0)(2sing cose) +e5,(6,0)cos2¢
e$(0,4) =e3(6,0)
e (8,9) =(e,(6,0) - e3,(6,0))sing

cos ¢+ e, (8,0)(cos? ¢ —sin?¢)

540/ Vol. 49, SEPTEMBER 1982

el3(6,¢) =el;(8,0)cosd —e3;(6,0) sing

e3;(0,¢) =e1;(0,0)sing +3,(6,0) cos¢ (&)

Appendix D (Unknowns in equation (8))

By the use of equation (C-1) we get the integral 1/2x 3"
e}; (6,¢)d¢ in equations (B-4) and (B-5) as follows,

172 (e11(8,0) +e1,(0,0))  for (i, H=(1,1)or(2,2)

e3(6,0) for (i, )=@.3) D-1)
0 for (@i, )=(1,2),(1,3), or (2,3)
Thus the volume integral of e} gives

1/Vp §aety dV=1/Vp fget, dV v
1/ VD !Qerz dV=1/ VD Igel*g dv=1/ VD jge% dV=0 (D-Z)

The same discussions are applicable to the volume integral of
e — e* in equation (8). We can conclude that a normal
component of € along the x, axis is the same as the one along
the x, axis, and that shear components are zero. Then
equation (6) has only two unknowns.
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A study of boundary-layer stress singularities in multilayered fiber-reinforced
composite laminates is presented. Based on Lekhnitskii’s stress potentials and the

theory of anisotropic elasticity, formulation of the problem leads to a pair of
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coupled governing partial differential equations (P.D.E.’s). An eigenfunction
expansion method is developed to obtain the homogeneous solution for the
governing P.D.E.’s. The order or strength of boundary-layer stress singularity is
determined by solving the transcendental characteristic equation obtained from the

homogeneous solution for the problem. Numerical examples of the singular
strength (or singular eigenvalues) of boundary-layer stresses are given for angle-ply
and cross-ply composites as well as the cases of more general composite lamination.

1 Introduction

The response of a multilayered fiber-reinforced composite
laminate near its geometric boundaries has been a subject of
intensive investigation during the last decade. Both ex-
perimental studies and approximate analytical solutions have
indicated that complex stress states with a rapid change of
gradients occur along the edges of composite laminates; see,
for example, references [1-15]. This phenomenon is con-
sidered to result from the presence and interactions of
geometric discontinuities of the composite and material
discontinuities through the laminate thickness. The anomaly
has been found to occur only within a very local region near
the geometric boundaries of a composite laminate, and is,
therefore, frequently referred to as a ‘‘boundary-layer effect’’
or ‘‘free-edge effect’”—a problem unique to composite
laminates and not observed in homogeneous solids in general.
It has been shown further that the boundary-layer effect is
three dimensional in nature and not predictable by classical
lamination theory (C.L.T.) [16, 17]. The boundary-layer
effect is apparently one of the most fundamental and im-
portant problems in the mechanics and mechanical behavior
of composite laminates. The high stresses developed in the
boundary-layer region coupled with the low interlaminar
strength are certainly of critical significance in aggravating
the failure of composite materials and structures. For
example, boundary-layer stresses have been observed to be

responsible for the initiation and growth of local
heterogeneous damage in the forms of interlaminar
(delamination) and intralaminar (transverse cracking)

fracture in composite laminates under static loading [3, 18].
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They are considered to have even greater effects on the long-
term strength of composite laminates under cyclic fatigue
loading [19, 20].

While the significance of boundary-layer effects has long
been recognized, research progress on this subject has been
relatively slow. The situation is apparently caused by the
inherent complexities involved in the problem: the strong
anisotropy of mechanical properties of each individual ply,
the abrupt change of material properties through the laminate
thickness direction, the geometric discontinuity along
laminate boundaries, and the coupling between in-plane and
transverse deformations and stresses near the edges of a
composite laminate. According to Pagano [14], analytical
studies of this problem to date may be roughly classified into
two general categories: approximate theories and numerical
solutions. The first approximate solution for finite-width
composite laminates was proposed by Puppo, et al. [4] based
on a laminate model containing anisotropic laminae and
isotropic shear layers with interlaminar normal stress being
neglected throughout the laminate. Other approximate
theories were also attempted to examine the problem such as
the extension of the higher-order plate theory [21] by Pagano
[10], the perturbation method by Hsu, et al. [12], and a
boundary-layer theory by Tang, et al. [11]. Recently, Pagano
{14, 15] has developed an approximate theory based on
assumed in-plane stresses and the use of Reissner’s variational
principle. Even though there is no singularity involved in the
formulation, the approach has certain features significantly
important in objectively determining detailed laminate stress
fields. The study of edge stresses in composites by using a
numerical (finite difference) method was apparently first
made by Pipes, et al. [S]. Isakson and Levy [6] developed a
finite-element scheme containing membrane elements, which
closely resemble the laminate model of Puppo et al. [4]. Later
finite element studies on this subject by Wang, et al. [13] and
Herakovich, et al. [18] led to numerical solutions similar to
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that given by Pipes [5]. Due to the singular nature of the
problem, a large number of elements, especially through the
thickness direction, are required in conjunction with a lengthy
extrapolation procedure in order to achieve satisfactory
solutions even for a simple two or three-layer laminate.
Improved finite-element methods by using a more complex
element stiffness formulation based on Maxwell stress func-
tions [7] and by hybrid-stress elements [22] have been able to
achieve an expeditious computation with significantly less
elements. Unfortunately, the refinements do not guarantee
[23] the convergence and accuracy of the numerical solutions
because of the singular nature of the boundary-layer stress
field. That is, with each more refined analysis, numerical
values of the maximum interlaminar stresses are shown to rise
with continuously decreasing element size. The quest, ap-
parently, is to show that a stress singularity exists at the edge
of a composite laminate.

From a linear elasticity point of view, it is well known that
stress singularities generally occur at the corners of geometric
boundaries joining dissimilar materials (see, for example,
[24-26]). Unfortunately, the search for the order of stress
singularity in the boundary-layer region of a composite
laminate containing anisotropic plies has not been successful
to date, to the authors’ knowledge. Since the singular
boundary-layer stresses are observed to be very localized, the
precise nature of the boundary-layer effect will not be fully
understood until the exact order of the stress singularity is
determined. In this paper, the first in succession, a theoretical
investigation of the free-edge stress singularity in composite
laminates is presented.

In the next section, a mathematical model and basic
equations for each lamina of the composite are presented.
Based on the theory of anisotropic elasticity and Lekhnitskii’s
stress potentials [27], a pair of linear governing partial dif-
ferential equations is derived. Associated near-field boundary
conditions, interface continuity, and end loading conditions
are also given. The homogeneous solution for the problem is
obtained in Section 3 by an eigenfunction expansion method.
A solution procedure used to evaluate the exact order of the
boundary-layer stress singularity is presented. Commonly
used cross-ply and general angle-ply composite laminates are
examined in detail. Numerical examples of edge stress
singularities for graphite-epoxy composites with various fiber
orientations are given in Section 4. As will be shown later, the
free-edge stress singularity in a composite laminate is
determined explicitly in this paper. It settles, once and for all,
the previous conjecture of boundary-layer stress singularities
in composite materials, and provides a rigorous mathematical
method for determining the exact order of the edge stress
singularity. This gives a fundamental basis for the
development of boundary-layer theory in composites. Some
of the results have been reported earlier in [28].

2 Formulation

2.1 Basic Equations. Consider a composite laminate
composed of fiber-reinforced plies with constitutive equations
described by generalized Hooke’s law in contracted notation
as

(i,j=1,2,3,4,5,6), 1)
where the repeated subscript indicates summation and S, is

the compliance tensor. The engineering strains, ¢;, in (1) are
defined in a Cartesian coordinate system by

E,'=S,-j0j

ou dv ow
€1=€x="5‘;, 62:6)1-_3;’ €g=€z——§—,
LA L Ow
4= Vyz ay 9z s €5 =Y = ax Tz,
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ou dv
©=To= 5 t o

where u, v, and w are the components of displacements. The
stresses, o;, are defined in an analogous manner in the
Cartesian coordinate system,

The composite laminate considered here has a finite width
and is subjected to surface tractions acting in planes normal to
the generator of the lateral surface and not varying along the
generator, i.e., the z-axis (Fig. 1). The composite is assumed
to be sufficiently long that, in the region far from the ends,
the end effect is neglected by virtue of Saint Venant’s prin-
ciple. Consequently, the stresses in the laminate are in-
dependent of the z-coordinate. The case of a finite-width
composite laminate subjected to a uniform axial strain, ¢, =
e, along the z-axis has been intensively studied by many
researchers [5-13]. The special case in which stresses and
displacements are independent of z and e, =0 corresponds to
the well-known generalized plane deformation [27]. Under
these assumptions, the equations of equilibrium without body
force read

, @

a7y, ar, do 7y ar
+ 2 =0, —F4+-2L=0, Z+-2=0. 3
ox ay ox ay ax ay 3
Following the procedure in [27], it can be shown after some
mathematical manipulation that the general expressions for
displacements and the stress component ¢, have the following

forms:

do,

1
u=— 7A1S33z2—A4yz+ U(x,y) +wz—w3y+uy, (4a)

1
v=— ~2—A2S3322 +AXZFV(x,Y) Fwsx—w 2+, (4b)
w= (A \x+A,y+ A3)S332+ W(x,y) + o1 y—wx+wy, (4c)

o0, =A1x+Ay+A3—S830;/83, (J=1,2,4,5,6,). 4d)

The unknown functions, U, V, and W depend on x and y
only, and can be shown easily to obey the following relations:

au

——5;('— =§1j0j+Slg(A1x+A2y+A3), (5a)
v
W =S2j0j +S23(A1x+A2y+A3), (Sb)
aw
—W =S5j0j+S§3(A1X+A2_V+A3)+A4y, (SC)
aw
W =S4jaj +S43(A1x+A2y+A3)—A4x, (Sd)

Ay

Free Edge »B¢

~ M' ®(nr\‘) S(iv;n)
M! b\
M, 0 (Imerface oB; -
f/ '
Pz ®(m'+l) S(."jn“)
Z - ]
‘ Tuz

(]

Fig. 1 Geometry and coordinates of a free edge in a composite
laminate
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v +ﬂ=§6-o~+5 (A x+Ay+A;) (5e)
ay ax 5 0 63l 2y 3) €

where
S;=8;—S383/5%, (,j=1,2,4,56). )

It is obvious that the constants, ug, vy, wy, and w; ( = 1,2,3)
in equations (4a-4d) characterize the rigid-body translation
and rotation of the solid. A, and A, represent the bending of
the laminate in the x-z and y-z planes. A, characterizes the
uniform axial extension of the composite laminate, and A,,
the relative angle of rotation about the z-axis.

2.2 Governing Partial Differential Equations. In-
troducing Lekhnitskii’s stress potentials, F(x,y) and ¢ (x,y)
[271, such that

?*F *F ?PF

g, = —— - - _ -

T gy T g0 e axdy’ ©
Y 0y

Txz ay Tyz——a,

one can show that the equations of equilibrium are satisfied
identically. Eliminating U and ¥ from equations (5a), (5b),
and (S5¢) and W from equations (5¢) and (5d) by dif-
ferentiation, we obtain the following system of governing
partial differential equations for the problem:

LiF+Loy=—2A4+A,53 — A5,
LyF+L3y=0,

(Ta)
(7b)

where L,, Ly, and L, are linear differential operators defined
as

a? a? . 08°
L2—544a 5 —28us axay'*SssW, (7¢)
. 33 B - a3
L= _524W + (Sys +S46)m
_ ~ 33 . 63
_(Sl4+S56)'(W +5is e (7d)
4 4 4
Li=8y— F 285 —— FYE +(2512+566) oy’
_ 64 ~ 34
—'2S165;5;§‘+'S115;f' (79)

2.3 Boundary and End Conditions. Assuming that the
edges of a composite laminate, By, are traction free and that
the interface of the mth and (m + 1)th plies is a straight line
meeting the traction-free edge at a right angle (Fig. 1), we can
obtain the following boundary conditions along dB:

Oy =Ty =Ty, =0. ¥

The conditions at the ends of the composite laminate may
have the forms from the statically equivalent loads as

SSB Ty dx dy =0, HB 7y, dx dy =0, HB o, dx dy=P.
SSB aydxdy=M,, Ha axdx dy=M,,

[], (rex—ramax ay=m,, ©

where the integrals are taken over the entire area B of the
cross section, and P, M,, M, and M, are the applied force,
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bending moments, and twisting moment acting on the ends of
the composite, respectively.

2.4 Interface Continuity Conditions. Consider a portion
of the laminate cross section composed of the mth and
(m+th fiber-reinforced laminae, as shown in Fig. 1.
Assuming that the plies are perfectly bonded along the in-
terface 0B;, one can immediately establish the continuity
conditions of the stresses and displacements along the in-
terface as the following:

G)((lrz)n;rn) + T)((;n)n}(’m) —_ o§zrr+l)n§nz+l) _ T’g]rwl)n}('m«rl), (10(1)
1,‘0',")n,£"’) + UJ(’m)n}(,m) — _T)((;z+l)n§rrz+l) _ 6)(,"'+l)n§,'"+l), (IOb)
7.:gzn)n)((m) + T)(':i{n)n)(,m) — _T§gz+l)n§nr+l) _ TJ(,QHI)HJ(,”HI), (JOC)
and

u(m) =u(m+l)’ U(m) =U('"+]), w(m) =W('"+1), (IOd—f)

where the superscripts denote the mth and (m + 1)th plies in a
composite laminate, and n, and n, are components of unit
outward normal to the interface.

3 Homogeneous Solution and Free-Edge Stress

Singularity

The governing equations, (7a) and (7b), are coupled linear
partial differential equations with constant coefficients
related to the anisotropic elastic constants of each individual
lamina. With the aid of aforementioned near-field boundary
conditions and interface continuity conditions, the structure
of the homogeneous solution for the governing P.D.E.’s can
be determined easily. The homogeneous boundary conditions
and interface continuity conditions also provide important
information for determining the strength or the order of the
free-edge stress singularity in a composite laminate, which is
the major concern in this paper.

According to Lekhnitskii [27], the homogeneous solution
for the governing partial differential equations has the general
form as

6 6
Y FeGr+my), $(xp) = Y, meFh (x+mey),

k=1 k=1

F(x,y)=

(11a,b)

where the prime (') in equation (11b) denotes differentiation
of the function F, (x + u,y) with respect to its argument, and
the coefficients p, are the roots of the following algebraic
characteristic equation:

L) L (p) —B(w) =0, (12a)
and
N == 3(ue) /(e ) = =L Que ) 713 (pi)s (12b)
where
()= Sssp* — 28451+ Sas, 12¢)
L) =S815p® — (814 + Ss)u? +(Sz5 + 846)n— Soas (12a)
L =81t —286p> + 281, + See ) — 28551+ 85, (120)

It can be shown that equation (12a) cannot have a real root
(thus, u, have to appear as complex conjugates) and that F,
are analytic functions of the complex variables Z, = x + u;y
= r(e® + Ne /(1 + N) with Np =1 + ipe) /(1 — iwy)
and r and @ being components of polar coordinates. Sub-
stituting the expressions of F(x,y) and y(x,y), equations (11a)
and (11b8), into equations (6a-e), the homogeneous solution
for stresses o; may be expressed in terms of F, (Z,) as

6

ot = E

F(Z,), (13a)
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6

o = Y, F{(Zy), (13b)
) 6

0 == Y mFU(Zy), (13¢)
k=1

® = E weneFL(Ze), (13d)

k=1

6

) == Y mFi(Z). (13¢)

The expressions for displacement components may be ob-
tained directly from equations (5), (7), and (13) with omission
of the terms that are to be included in the particular solution,

6
uh = Y pyFi(Zy),

(14a)

k=1

6
v® = )] qFi(Zy), (14b)

k=1

6
wi = Y 6 F(Z), (14c)

k=1

where
Pe=S1uk+8, = Siume + Sismeme — Sismes (14d)
G =S+ S0/t = Soami/ i + a5y — S, (ide)
te=S1umic+ a0/ e — Saamic/ i + Sasmi — Sag. (14/)
We now choose the form of F, (Z,) as

Fi(Z) =CuZi /(8 + 1)(6+2)], (15)

where C, and § are arbitrary complex constants to be
determined later. Substituting equation (15) into equations
(13) and (14) gives

3
Y [CemdZi+Cr sk Z3),

i = (16a)
k=1
3
o = ) [CLZE +Cris 281, (16b)
k=1
3
P == Y [CemeZi+Crrs 1 Z8), (16c)
k=1
3
™ = E [ComepnZd + Cry my B Z81, (16d)
k=1
3 -
T)(g}f) = - E [CopiZi +Cris by ZE], (16e)
k=1
and
3
U = Y [Cop ZE + Co 3B ZEH 1/ (5 + D), (17a)
k=1
3
v = ) [Ce@iZit ! + Cran @i Z4 1 1/(5+ 1), (17b)
k=1
3
wh = E [ChtyZ + C 3 1, 25 11/(8+ 1), 170

k=1

where the overbar denotes the complex conjugate of the
associated quantity, For convenience, we drop the superscript
h associated withthe aforementioned homogeneous solutlons
for stresses and displacements in this paper.

The homogeneous solutions are required to satisfy the
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homogeneous boundary conditions and interface continuity
conditions. This leads to a standard eigenvalue problem for
determining the values of 8. It is noted that § generally ap-
pears as a set of complex conjugates, which enable us to make
equations (16) and (17) real functions by superposition.
Furthermore, the value of & is required to satisfy the condition

Re[8} > — (18)

to ensure the finiteness of displacement components at the
origin, where Re represents the real part of 8.

To expedite further developments, we transform the stress
and displacement components from Cartesian coordinates to
polar coordinates. Thus, we have

3
Ogg = E (CLH Zi+ C s Hi ZD),

(194)
k=1
3 - -
Tee= Yy (CiHyZh+Cros Hy ZY), (19b)
k=1
3
Tor E (ChHyZy+ Cyy s Hy Z)), (19¢)
k=1
3
E (ChHyZy+ Cy s Hy Z)), (19d)
3
T = E (CLHs Z4+ Cy s Hy Z3), (19¢)
k=1
and
3
= Y [ChHeg ZU' /(84 1)+ Cpyy Hg ZE 1 /(54 1)), (200)
k=1
3
Up= E [CeHy Z3 /(8+ 1)+ Cpy s Hy Z3T /(8+ 1)1, (20b)
k=1
3
U= Y [CeHy Zi™ /(84 1)+ Cpyy Hot ZU /(54 1)), (200)
k=1

where Z, are defined in polar coordinates, and Hy (j =
1,2, . . . 8) are functions of 7, py, Pi» 9x» tx, and @ given in
Appendix 1.

The traction-free boundary conditions, equations (8a-c),
along the free edges of the mth and (m + 1)th plies in polar
coordinates read

o = rfp =74

=0 on 0=%, Qla)

(s
U{sén+l)=7.é£n+l)=7.r(én+l)___0 on 0=_7'

The continuity conditions, equations (10e-f), along the ply
interface give

(o 780 5 ) aafm) ufm) )

_{G[Sm+l) Té"”'l) ,r(m+l) ur(m+l)’uém+l)’uz(m+l)]

(21b)

on 0=0. (21¢)

More. explicitly, the homogeneous boundary conditions,
equations (2la,b), and the continuity conditions, equation
(21¢), provides

é[a‘v'""f‘"”( o (5)]

vermme (3o ()] J-0 - e
om0
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— — )
sesgome (e ()] -0 e

3
Y CE Ty + Ci T 1~ [T )
k=1

+COPIOT ) =0, (=1,2,3;r=1,2,3,4,5,6), (220)

where Hj (n/2) and Hy (—n/2) are values of H;; evaluated
at# = w/2and § = — 7/2, respectively; Q (6) are defined as

Q(0) = (ei"+)\ke“0)/(1 +Ne)s (23)
and
Iy =LTy=n.Tu=pme:Tax =0, Tss =G, Loxr =t,.  (24)

Solving for C{™ from equation (22c) in terms of C{”* D, one
finds

Ci™M =@, Cm D (kys=1,2, . . . 6). (25)
Substituting equation (25) into equation (224a) gives
6 3 s
E (Cs(m+1) E {H}én) ( T )aks [Q}(m) ( l )]
s=1 k=1 2 2
T 8
w1 (D )awe|ae (3)] ) =0 @9

Equations (224) and (26) constitute a system of homogeneous
linear algebraic equations in C{"*V., The existence of a
nontrival solution for C{"*! requires vanishing of the
coefficient determinant

[A(8) | =0, 27

where A(d) is a 6 X 6 matrix involving 6 in a transcendental
form. Thus, equation (27) is a transcendental characteristic
equation for the standard eigenvalue problem. It has a very
complicated structure as can be seen from the coefficients of
C{m*1 in equations (22) and (26), and the detailed expression
for A(8) is ndt given here. To obtain solutions for the
characteristic equation requires the employment of standard
numerical techniques such as Muller’s method [29] with the
aid of a digital computer. The eigenvalues obtained from the
numerical solution of equation (27) give important in-
formation concerning the behavior of the edge stress and
displacement. Due to positive definiteness of strain energy of
the elastic body and the argument given in equation (18), the
eigenvalues, §,, bounded by

—1<Re[5,] <0, (28)

characterize the order of stress singularity in the boundary
layer. Thus, for small values of r, the asymptotic stresses are
proportional to #R¢ll provided that §, satisfy equation (28).

4 Degenerated Cases—Cross-Ply Composite

Laminates

In the case of a cross-ply composite laminate, i.e., laminae
with 0 and 90 deg fiber orientations only, the stresses o,, 0y,
7, are uncoupled with 7,, and 7,, by virtue of the material
symmetry in each lamina. For illustrative purposes, we
restrict our attention to the problem of composite laminates
under stretching and/or bending; thus, we shall concentrate
our study on the four stress components, o, oy, 7y, 6,. The
general expressions for displacements and ¢, may be sim-
plified as

1
u=— —Z—A,S3322+U(x,y)+wzz—w3y+u0, (294)

1 .
V= — 7 AzS33zz + V(x,}') +w3x_wIZ+v0, (29b)
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w= (A x+A4,y+A3)837+ w Yy —wx+wg, 290)
OZ=A1x+A2y+A3_(S310X+S320y)/S33. (29d)

Following the same procedure shown in the preceding
section, the governing partial differential equations are
uncoupled and may be written as

L,F(x,y)=0, (30a)
where L, is defined as before
_ 64 ~ _ 84 ~ 4
L'4=S22W+(2S12+S66)5x2—6y2 +51154‘- (30b)

The homogeneous solution for equation (30a) may be ob-
tained in a simplier form as

4
F(x,p)= Y, Fr(x+med), @31)

k=1
where yu, are the roots of the following algebraic equation:
law) =811 p* + Q281 + Se)p? + 85, =0. (32
The homogeneous stress and displacement solutions are then
given as
4 4
WFL(X+ 1), o= kEI Fi(x+mey),

o, =
k=1
4
Ty == 3 mF{(x+py), (33)
k=1
4
Ux,p) = Y piFi(x+my),s
k=1
4
V(%)= Y quFi(x+md), (34)
k=1
where
Pe=Suud+8u, @=Sum+Sn/m. (35)
We shall choose the form of F, (x,y) as
4
F(Z) = Y, Gz /[(6+ 15 +2)], (36)

k=1

where C, and 6 are, as before, arbitrary complex constants to
be determined later. Imposing the homogeneous traction-free
boundary conditions along the free edges and the continuity
condition along the ply interface, one can proceed with the
same procedure outlined in the preceding section. Then, the
eigenvalues and eigenfunctions can be determined in a manner
similar to those in the previous cases.

5 Numerical Examples

From the structure of the governing partial differential
equations and the homogeneous solution for the problem, it is
clearly seen that the asymptotic stress and strain fields in the
vicinity of the edge are governed by the singular terms with
the strength’ of stress singularity 5, determined from the
eigenvalue analysis. Examining the structure of equations
(22b) and (26), we easily find that the eigenvalue solution and,
therefore, the edge stress singularity is related to laminar
constitutive properties and fiber orientations of adjacent plies
only.

Consider a composite laminate with ply properties typical
of a high-modulus graphite-epoxy system [5]:

E;, =20x10%psi, Er=FE,=2.1x10° psi,
Gy =G, =Gr,=0.85% 108 psi, 37

vpr=vr,=v;,=0.21,
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Table 1 Roots uy, of characteristic equations for graphite-
epoxy composite system with fiber orientation 6*

0 M2 34 ¥s,6

15° +0.88782 i +1.10301 1 +1.56776 i
30° +0.86222 i +1.06956 1 +2.53630 i
45° +0.80902 i +1.,03503 i +3.44438 1
60° +0,73316 1 +1.,01323 i t4;15870 i
75° +0.66324 1 +1.,00294 i +4,61201 1

*Q1is the angle measured counterclockwise from the positive
z-axis to the fiber direction

Table 2 First 12 noninteger eigenvalues* for free-edge stress
solutions in [ & 45 deg] graphite-epoxy composite

-2.5575658 E-2

8.8147184 E-1 %+ 1 2.3400497 E-1
1.5115263 E 0 = 1 7.9281732 E~1
2.3389433 E 0 *+ 1 1.1158402 E O
3.0913532 E 0 + i 1.7360464 E O
3.9520023 E O+ 1 2,0287146 E O
4.,7440929 E 0 + 1 2,5683871 E O
5.6021457 E 0 * 1 2.8588510 E 0O
6.3962635 E 0 + 1 3,3652707 E O
7.2565174 E 0 + i 3.6575937 E 0
8.0497237 E O + 1 4,1479983 E O
8.9120567 E O = i 4.4407609 E 0O

*
Integers (0,1,2,...n) are always eigenvalues obtained from Eq 27

where the subscripts, L, T, and z refer to the fiber, transverse,
and thickness directions of an individual ply, respectively.
The influence of material properties of composite plies on the
boundary-layer stresses may be related to the roots u, of the
characteristic equation, equation (12¢). With the lamina
properties given in the foregoing, the roots of the charac-
teristic equation for the graphite-epoxy laminae of different
fiber orientations © are shown in Table 1. It appears that all
the six roots yu, are purely imaginary by virtue of the material
properties in equation (37). Furthermore, the p, for the +©
ply are the same as those for the — © ply due to the in-plane
rotation of fiber directions.

Based on the material constants, u, py, qi, and ¢, obtained
for the graphite-epoxy, the transcendental characteristic
equation, equation (27), can be solved numerically to provide
eigenvalues for the homogeneous solution, For illustration,
the first 12 noninteger eigenvalues associated with the stress
solution for the free edge of a [+45 deg] graphite-epoxy
composite are shown in Table 2. Eigenvalues §, smaller than
—1 are excluded for the reasons given in the preceding sec-
tion. It is seen that there exists one and only one eigenvalue,
i.e., 6, = —0.02557, which satisfies the required constraint
condition of equation (28) for the [+45 deg] laminate. The
eigenvalue §, is the strength (or the order) of free-edge or
boundary-layer stress singularity, which is of major concern
in this study. In fact, only one 8, which meets equation (28) is
observed in each case of all of the composites with various

fiber orientations studied in the present research. Higher-

order eigenvalues, occurring as integers (including zero) and
complex conjugates, always exist and should be included in
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0.3x 16!

T

02 x16'

0.1x10

+®

Fig. 2 Strength of boundary-layer stress singularity in [+ 0] graphite-
@poxy composites

determining the complete solution when remote boundary and
end conditions are matched by an appropriate method.

For the commonly used [+©] angle-ply graphite-epoxy
composite, as anticipated, the order of boundary-layer stress
singularity is a function of the fiber orientation 6. Numerical
results of &, for each of the [+0] fiber composites are
calculated and shown in a graphic form in Fig, 2. It is clearly
seen from the figure that the free edge of a composite
laminate having approximately [£51 deg] fiber orientations
possesses the strongest boundary-layer stress singularity. As
the O changes to either direction, the order of the stress
singularity &, decreases rapidly. Its value converges to zero
for the cases of © = 0 and 90 deg, since the two adjacent plies
become identical with orthotropic elastic properties.

In the case of a composite edge associated with plies of
more general fiber orientations instead of the symmetric
[+ ©/— 0] configuration, solutions for the eigenvalues §, are
also obtained. To illustrate the nature of the eigenvalues for
this situation, free-edge stress singularities associated with [30
deg/0Q] fiber orientations in graphite-epoxy composites are
determined, where O varies from 7.5 to 82.5 deg. The first few
noninteger eigenvalues for various ©’s are given in Table 3.
The integers (including zero) are also eigenvalues, but not
included in the Table. The [30 deg/30 deg] graphite-epoxy
composite is not included either since the two plies are
identical. Again, for each of the [30 deg/©] composite
laminates there exist only one 8, which meets the requirement
of equation (28) and gives the dominant edge stress
singularity.

The degenerated cases of cross-ply composite laminates
discussed in the preceding section are also investigated. The
eigenvalues for the boundary-layer stresses in a graphite-
epoxy composite with [0/90 deg] lamination are given in
Table 4. The dominant stress singularity in the present [0/90
deg] case has an order of magnitude similar to those in [+ O]
angle-ply composites and in more general {0, /0,] [aminates.
It is noted that the orders of the boundary-layer stress
singularity for both angle-ply and cross-ply composites are
generally much weaker than those associated with other
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Table 3 First five noninteger eigenvalues* for free-edge
stresses associated with [30 deg/ 0] graphite-epoxy composites

° 81 62
7.5° -2.792991 E-3 9.887419 E-1
+i 8.435637 E-2 i
15° -1.986115 E-3 9.943591 E-1
+1 6.113543 E~2 *i
22.5° -6.725306 E-4 9.989196 E-1
+i 2.920556 E-2 *+i
30° nand —
37.5° -9.077774 E-4 1.001306 E O
+i 5.180632 E-3
45° -3.771122 E-3 3.624687 E-1
52.5° -8.,292252 E-3 9.291682 E~1
60° ~1.367358 E-2 9.010723 E~-1
i
67.5° -1.897304 E-2 8.810614 E-1
+i
75° -~2.343868 E-2 8.719040 E-1
+i
82.5° -2.668523 E-2 8.778236 E~1
i
*Integers, 0,1,2,....n, are also eigenvalues.

Table4 First 12 noninteger eigenvalues for free-edge stresses
in cross-ply graphite-epoxy composite*

-3.33888 E-2

8.80268 E-1
1.41674 E 0 £ 1 3.93303 E-1
1.65345 E 0 £ 1 6.85523 E-~1
2.83449 E 0 £ 1 1.76219 E O
3,75294 E O + i 1.1853E E O
4.29235 E 0 = 1 2.66884 E O
5.70726 E 0 £ i 3,57190 E O
5.79010 E 0 £ 1 1.52461 E O
7.12293 E O * 1 4,48145 E O
7.81068 E O + 1 1.76401 E O
*Integers, 0,1,2,3..., are also eigenvalues

typical singular elastostatic problems such as the elastic crack
problem. The relatively weak singularity for the laminate edge
stresses introduces several unique features as well as dif-
ficulties for the evaluation of boundary-layer effects in
composites, which are discussed in [30].

6 Summary and Conclusions

A study of boundary-layer stress singularities in both angle-
ply and cross-ply composite laminates has been presented.
Formulation of the problem is based on Lekhnitskii’s
complex-variable stress functions and basic relationships in
the anisotropic elasticity theory. An eigenfunction expansion

Journal of Applied Mechanics

- NE W

= —

=

W Wk WH e

$3 84 85
.930568 E 0O 3.095930 E O 3.862698 E 0
.319540 E-1 +i 8,103959 E-2 +i 7.204410 E-1
.949288 E 0 2.726071 E O 3.441129 E O
.882098 E-1 +i 5,183480 E-1
.989893 E 0 2.649382 E 0 3.342300 E O
.661871 E-1 i 5,276117 E-1
.984327 E O 2.182540 E O 3.204760
+i 1.910473 E-1 +i 8.009168 E-1

.061916 E O 1.821684 £ O 2.021985
1 4.926242 E-1
.168571 E 0 1.621302 E O 1.906136 E 0
+i 6.212519 E-1
.354059 E O 1.825695 E O 3.518516 E 0
.864060 E-1 1 6.942274 E-1 +i 1.413627 E 0
321793 E O 1.773577 E 0O 3.488780 E O
224246 E-1 +i 7.358765 E-1 +1i 1.428440 E O
.303673 E O 1.743059 E O 3.485411 E O
.820090 E-1 i 7.550141 E-1 +i 1.425960 E O
.310388 E O 1.725286 E O 3.513604 E O
.866969 E-1 +i 7.501905 E-1 +i 1.387356 E O

method has been developed to obtain the homogeneous
solution for the coupled governing partial differential
equations for the problem. Angle-ply and cross-ply com-
posites as well as more general laminates have been studied.
The strength of boundary-layer stress singularity for each case
has been determined to illustrate the fundamental nature of
the edge effects in composite materials.

Based on the information obtained, the following con-
clusions may be reached:

1. Boundary-layer or free-edge stresses in a composite
laminate are generally singular in nature due to the
geometric and material discontinuities.

The order of boundary-layer stress singularity can be
determined by solving the transcendental characteristic
equation obtained from the homogeneous solution for
the governing partial differential equations.

The boundary-layer stress singularity depends only on
material elastic constants and fiber orientations of
adjacent plies in a composite laminate.

For angle-ply and cross-ply composites as well as more
general laminates the order of boundary-layer stress
singularity is very weak in general. In a graphite-epoxy
system, for example, §; is much smaller than other
kinds of singular stress problems in elastostatics such
as the elastic crack problem.
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APPENDIX 1

Expressions for H;; (6) in equations (19) and (20)

H,;, = (u;sinf + cosf)?

Hy, = —19, (py5inf + cosb)

Hy = — (pgsind + cos)(p, cosé — sinf)

Hy = (pcos0 —sinf)?

H; = (upcosf—sing)

Hg, =p,cosf+ q,sind

H, = —p,sinf+ g,cosf

Hy =1,
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Boundary-Layer Effects in
Composite Laminates:

Part 2—Free-Edge Stress Solutions and Basic
Characteristics

Boundary-layer effects in composite laminates are considered. Based on the theory
of anisotropic elasticity and Lekhnitskii’'s complex-variable stress function form-
ulation, the exact laminate elasticity solution is derived for the problem. The
solution contains the exact boundary-layer stress singularity and higher-order terms
in eigenfunction series. Convergence and accuracy of the solution are studied, and
present results are compared with existing approximate numerical solutions. For
illustrative purposes, the complete solution for a symmetric {45/ —45/—45/45]
graphite-epoxy composite is presented to elucidate fundamental characteristics of
the boundary-layer effects. Detailed stress distributions in the boundary-layer
region are determined. Boundary-layer stress intensity factors are introduced to
characterize the singular edge-stress field. Physical significance of the parameters is
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discussed in the realm of fracture initiation and failure modes in the laminate

boundary region.

1 Introduction

In the absence of complete and accurate information on the
boundary-layer field, some of the most fundamental
problems involved in simple mechanical testing and
characterization of basic material properties and behavior of
composite laminates still remain controversial and unresolved
[1-7]. More complex problems such as fracture initiation,
failure modes, and strength and stiffness degradations under
static and cyclic fatigue loading conditions would not be
tractable without a thorough knowledge of the complex state
of stress and deformation in the composite laminate,
especially in the boundary-layer region. Thus it is imperative
to establish a rigorous, accurate, and complete solution for
the boundary-layer problem in the current development of the
composite material technology and in advancing more reliable
design and analyses of composite structures.

In an associated paper [8], a study of the fundamental
nature of the boundary-layer effect in composite laminates
has been formulated on the basis of the theory of anisotropic
elasticity. The basic structure of the boundary-layer field
solution has been obtained by using Lekhnitskii’s complex-
variable stress potentials [9]. The boundary-layer stress field
has been found to be singular at composite laminate edges,
and the exact order or strength of the boundary-layer stress

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS,

Discussion on this paper should be addressed to the Editorial Department,
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ASME Applied Mechanics Division, October, 1981; final revision, February,
1982,
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singularity has been determined by the use of an eigenfunction
expansion method. The formulation and the homogeneous
solution given in reference [8] deal only with the local
geometry and lamination variables at the free edge. Complete
solutions for the boundary-layer stress and deformation
require a full consideration of the overall composite laminate
geometry, lamination and material variables, remote
boundary conditions, and end loading conditions. In this
paper, the second in succession, the complete solution for the
boundary-layer problem is presented, and fundamental
characteristics associated with the boundary-layer stress field
are studied in detail.

Specific objectives of this paper are directed to (1) deter-
mine the particular solution for a composite laminate with
given lamination variables and loading conditions, (2) present
complete solutions for symmetric composite laminates to
illustrate fundamental characteristics of the boundary-layer
stress field, and (3) introduce basic physical parameters, e.g.,
the boundary-layer stress intensity factors, which provide a
practical measure of the severity of the singular stress field
and its influence on failure modes and mechanics in com-
posite materials.

In the next section, general solutions for boundary-layer
stress and deformation fields in composite laminates are
constructed from the homogeneous solution in the form of
eigenfunction series and a properly selected particular
solution in polynomials. A collocation method is used to
determine free constants in the truncated series solution. To
illustrate the solution method, commonly used symmetric
composite systems are considered in Section 3. Further
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simplifications and the detailed solution scheme are presented
for both symmetric angle-ply and cross-ply composites. Based
on the complete solution obtained, the asymptotic solution
structure of the boundary-layer stress field is identified, and
important physical parameters are introduced in Section 4.
Due to space limitation, only the complete solution for a
[45/ —45/ —45/45] graphite-epoxy composite under uniform
axial strain is presented in Section 5 for illustration and
comparison. A study of solution accuracy and convergence is
also given. Characteristics of the boundary-layer stress field
in composite laminates are determined. A more appropriate
definition of boundary-layer width is introduced on the basis
of strain energy density consideration. Influences of
geometric and lamination variables, environmental con-
ditions, and loading modes on the boundary-layer stress field
are reported in future papers.

2 General Solution

2.1 Homogeneous Solution. Once the eigenvalues §, are
determined, the relationships among C,’s can be established
from equations (19)-(20) in reference [8]. Thus homogeneous
solutions for the stress and displacement fields have the
following expressions:

) 3
off) = E Cin Re{ E [bknAikZIin +D (k43 Aikzl‘s/']}
n=1 k=

o0

3
+ E Con Im{ E [bknAikZlacn +b(k+3)n1_\ikZ/6<"]
n=1 k=1

, (a)

f——

o 3

“j(h) = E ClnRe{ E [bknPu+3)kZ/<ca"+l)
. 1

n= k=1
+D 3L e ZEn D1/ (5, + 1)}

3 3
+ E CZnIm{ E Bin T 3 ZEo+ Y
n=1 izl

+b sy T e ZEn*01/(8, + 1)] ,
(i=1,2,4,5,6; j=1,2,3), (1v)

where b,,, are known constants related to the eigenvectors; c;,
are real constants to be determined, and A, = uZ, Ay, = 1,
Age = =iy Asie = e, Ak = — s T = Pie, Tse = i,
and g, = ¢, with the constants ug, n, Pk, gk, ! being
defined in reference [8]. For the convenience of the later
development, the homogeneous solutions, equations (1a, b),
are expressed in simpler forms as

o =Y d, fin (.33 8,)  (i=1,2,4,5,6), Qa)

uf =Y d, g (6,33 8,)  (j=1,2,3), (2b)
n

where f,, and g; denote the known -eigenfunctions
corresponding to the nth eigenvalue §,; the unknowns d,, are
real constants to be determined in conjunction with a par-
ticular solution through remote boundary and end conditions.
Generally, there are infinite number of eigenvalues §, so that
the number of unknown constants d, is infinite. Proper
truncation of the infinite eigenfunction series is needed to
approximate the edge-field solution.

2.2 Particular Solution. The particular solution for the
governing partial differential equations in [8] may be sought
in the form of polynomials,

550/ Vol. 49, SEPTEMBER 1982

FO (x,y) =a,x* +a,x*y+asxy* +ay° +asx® +agxy +a,y?,
(3a)
(3b)

where a; are arbitrary constants to be determined later. The
particular solutions for stress and displacement in each ply
can be shown to have the general forms as follows:

PP (x,y) =agX* +agxy +ay? +ax+any,

o) =2ayx+6a,y+2a,, (o)
o) =6a,x+2a,y+2as, (4b)
) =-—2agx—agy—ay, (4c)
) =agx+2a,0y+ay, (4d)
) = —2a,x—2asy—ag, (de)

1
u®) = — EA,S33z2 —Auyz+UP (x,9) + w2 — w3y + g, (5a)

1
v = — E,42S33z2 +Axz+ VP (x,9) + wyx— w12+ g, (5b)
wP) = (A, x+ Ay +A3)S52+ WP (x,y) + w1 y—wyx+wy,

(5¢)
where
) 1 2 1 ,, 1
Ut = 5 Gux* +Gpxy+Gpx+ 5 (G —Go)y* + 3 Gesy,

(6a)

1 1 1
V@ =Gy xy+ 5 Gpy* +Gyuy+ > (G —Gp)x? + 3 Gesx,

(6b)
1 1
W = 3 G5 x* + (G, + A xy+ Gs3x+ 5 Gpy*+Gyy, (60

in which Gy are related to the lamina stiffness matrix S;; and
the constants @; and A; by

Gjl =2§11 as +6§j2a1 - 2§j408 +l§j5a9 _2Sj6a2 +Sj3A1 N

(7a)
Gj, =68 a4 +28pa, — §ja9 +285a10 — 28,503 + S5 A4,

(70)
Gjy =280, +28,as — Syay + Sjsa1, — Sjgag +SpAs,

(70)

U=12,4,5,6).

The particular solutions o and u{”’ given by equations
(4) and (5) are required to satisfy the governing partial dif-
ferential equations for the problem. It is clearly seen that
equation (7b) in [8] is satisfied identically and that equation
(7a) in {8] leads to the following relationship for each ply:

—6824a; +2(855 + Sus)ar — 2(S14 + 8s6)as +6815a4 + 28y ay
—2845a9 +2855a10= —2A4 + A, 834 — A, 555. ®)

Furthermore, equations (4) and (5) are also required to satisfy

near-field traction-free boundary conditions and interface

continuity conditions of the adjacent kth and (k+ 1)th plies.
These lead to the establishment of the following relationships:

af™m =0, (i=3,4,6,7,10,12; m=k, k+1), ©)
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aff) =affth, (i=1,2,5,8,11); (10)

A S = AP SN, (1=1,23); A0 =AfD,
(11
G =G{{*V, GY) =GV, G —GI§ =G+ - GIs™0,
(12)
SO + o = S G +uffHD, GP =G,
G =Gi§+, (13)
ué"’=u5"+”, v(gk)__:vékﬂ)’ W(Sk)=W(Sk+l), (14)
W) =@k tD | k) = fk+D) (15)

Examining equations (4), (5), and (8)-(15), we observe that
for the kth and (k+ 1)th plies, there exist 44 unknowns (in-
cluding rigid-body translation and rotation) related by 34
linear algebraic equations. After solving these algebraic
equations, there remain 10 unknowns which may be deter-
mined in conjunction with the homogeneous solution by using
the end conditions and remaining remote boundary conditions
other than,those along the traction-free edges.

The sum of the homogenous and particular solutions
satisfies identically the boundary conditions at free-edge
surfaces. However, along lateral surfaces (0B — 8By) other
than the free edges, there appear residual tractions. The free
constants in the homogeneous solution permit matching the
complete stress solution (¢f? + ¢/?’) with the boundary
conditions along these surfaces through the following
relationships:

o n,+rPn,=—aPn,—78n,, (16a)
™Wne+aofn,=—18n,—aP n,, (16b)
W +rn,=—1Pn.—1Pn,. (16¢)

As the eigenfunctions are nonorthogonal, equations (16a—c)
may be satisfied in the least-square sense by truncating the
infinite series of the eigenfunctions through a boundary
collocation method, which is discussed in Section 5.

2.3 Complete Solution. Now the complete -elasticity
solutions for the boundary-layer field in a composite laminate
can be written as

o;=0lM +gf” (i=1,2,3,4,5,6), (17a)
w=uf® +ufP  (j=1,2,3), (17b)
where expressions for o{’ and o{?’ may be obtained as
o = =83 af" /83, (17c)
ol = (A x+Ay+A;)-8y 0P /Sy (j=1,2,4,5,6).
(174d)
3 Simplifications and Solutions for Symmetric

Composite Laminates Under Uniform Axial Extension

The formulation and solution method outlined previously
are for composite laminates with arbitrary lamination under
general loading conditions as described in [8]. In practical
engineering structures and components, composite laminates
are usually constructed with certain material, geometric, and
structural symmetries. Significant simplifications of the
formulation and solutions can be achieved due to the
lamination. symmetry conditions. To illustrate these sim-
plifications and the basic nature of the solutions, symmetric
angle-ply and cross-ply composite laminates subjected to
uniform axial extension along the z-axis, ¢, = ¢, are con-
sidered in this section.

Journal of Applied Mechanics

3.1 Symmetric Angle-Ply [+0],, Composite Laminates.
Consider an angle-ply composite laminate consisting of
unidirectional fiber-reinforced laminae with symmetric © and
— O fiber orientations and geometry; i.e., for each ply above
the midplane, y = 0, of the laminate there always exists a ply
at the corresponding position below y = 0 with the same ply
orientation and thickness. It can be easily shown that the
reduced stiffness matrix S;; of each ply in laminate structural
axes has the following properties:

8y=8,=38;=8;=0 (j=4,6). (18a)

The © and — © fiber orientations in the laminate lead to the
relationships of S;; in the adjacent plies as

S =8k, G, j=1,2,3); S =8V, (i=4,5,6);  (18b)

§iP == 8+D, (j=1,2,3), (18¢)

where the superscripts refer to the quantities associated with
the kth and (k + 1)th plies, respectively.

Under the uniform axial strain, the composite laminate
possesses the following symmetry and antisymmetry con-
ditions of deformation:

u(x,y,z) =u(x,-y,z), v(xy2)=-v(x,~¥2),

w(x,»,z) =w(x, = ,2). (1%a)
u(x,y,z) = —u(—x32), v(xyz)=v(—x3.2),
w(x,y,z2) = —w(—=Xx,5,2). (19b)

Equations (194,b) may be written in equivalent forms leading
to the boundary conditions as follows:

u,, (x,0,2) =v,, (x,0,2) = w,, (x,0,z) =0, (20a)
U,y (0,9,2) =v,,(0,y,2) =w,, (0,y,2) =0. .(200)

The relationships given by equations (18) and (20) together
with the imposed end conditons ¢, = elead to

AN =A§D = 4§ =0, (21a)
A =e/Si9), (a=k, k+1). (21b)

Also, by using equations (9)-(13) and equations (18a-c), it can
be easily shown that

wf) =wff+D, (220)

aft) =aff+) = - e /1251 3P,

and that all other unknowns are equal to zero.

Thus, the particular solution for the symmetric angle-ply
laminate under the loading condition takes the following
forms:

(22b)

o) =7 =70 =1{£) =0, (23a)
0,5”) = —eSs53/(S33 552), (23b)
S5 S e
0(")=<1+~—32—.53-)—, 23c¢
: 53 8/ 55 @3)
and
S, S ex
U(p)=( _ 953 12)___’

5575, s, @9

S S\ ey

V(p)=( _ 9% 22)_
5575, )5, @)
W =, 23

where the superscript « (a = k,k+1) in ¢f?, UP, V@),
W®) , andthe kin S{) and S{¥) are dropped in proceding
equations for convenience.
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Thus the complete solutions for stresses and displacements
in a symmetric angle-ply composite laminate can be written in
explicit forms as

Ox = E dn .fln (x,y;sn)r (24a)
eSs;
0y = Y dy fon (X,738,) — S5 (24b)
Tye= 3 Gy fan (X,7380)s Q4c)
n
Tox = Edn fSn (x’y;an)9 (24(1)
Txy = Edn fGn (x’y;an)’ (249)
Sai 0
gz=_e_____31_gf_, (j=1,2,4,5,6), (24f)
S S
and
Ss3 S\ ex
= ; Si3— —% — 2
u ;dn &in (X,}’ 5;1) + ( 13 Ss2 S33 ( 5[1)
Ss3 gzz ey
v=),d, 82, (X,0:8,) + (S - ) =, 25b)
‘\; £ B8, /Sy
(25¢0)

w= Edn &3n (x’y;‘sn) +ez,
n

where the unknown constants d,, are to be determined by
matching the preceding solutions with remote boundary
conditions.

3.2 Symmetric Cross-Ply Composite Laminates. In the
case of a symmetric cross-ply composite laminate, the for-
mulation and solution procedure for the boundary-layer stress
problem can be simplified further. By virtue of the material
and lamination symmetry, the interlaminar and in-plane shear
stresses, 7,, and 7y, are uncoupled with other stress com-

ponents in the formulation. Following the same procedure
given in the preceding section, we can determine in a similar
manner the constants in the particular solution. It can be
shown easily that the following relationships hold for the
cross-ply case:

k+1) k)
afk = afk+ o = [SS3 - Si_3 ] _.__—i:——-— , (26a)
sig s d2SfP - St 0]
A® =ALD =4 =0, (a=k,k+1), (260)
AR S =AF*D S =e, (26¢)

with all other constants a; being zero.

The particular solutions for stress and displacement in the
symmetric cross-ply composite may be shown in a manner
similar to those in Section 3.1 as

o) =1p) =1 =10 =0, @7a)
S{k+1) Sk e
o =[ ER € } _ , @7b)
S0 s 1S -8+
S S(k+1) S k)
o = (1m e [ - —53—]),(27@
S3 (S —Sf+0y LD sip
and
T . IS
[S{5) —8+b) Lsgg+n s S/
(27d)
V(P>=( _ S» [S%H) _S_I(Q]+_S£>ey
(S = Sff01 Lsgg+v sp 1 85,/
@7e)
w® =0, Q7

where the superscript o (a = k,k+1) in o, UP, V&),
W S, and S; is dropped in the preceding equations for
convenience. The complete solution for the symmetric cross-
ply composite laminate can be established in a manner similar
to equations (24) and (25).

4 Boundary-Layer Stress Intensity Factors
The complete solutions for the stress and displacement

A==k

Fig. 1 Coordinates and geometry of asymmetric [6/- 0/~ 6/0)
composite laminate under uniform axial strain ¢,
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fields given in the previous sections are shown to possess the
forms of equations (24) and (25) with the constants d,, to be
determined by a proper method through matching remote
boundary conditions. Since the boundary-layer stress field in
a composite laminate is singular in nature, the near-field
stresses may be written in a general form as
3 .

g; = [D,klzl +Di(k+3) 216(1] + O(higher-order,
k=1

nonsingular terms), (=1,2,3,....6), (28)
where Z, and Z, have the origin located at the intersection of
the free edge and the interface of the composite laminate (Fig.
2). The coefficients D;, and Dj .3 are associated with the
eigenvalue 6, and dependent on loading geometric and
lamination variables of a given composite laminate. The
exponent §; in equation (28) is the order of the boundary-
layer stress singularity defined in reference (8].

In the context of elasticity problems with singularities, the
singular terms in the solution dominate local response of the
solid. Thus the singular terms in equations (24) and (28)
govern the boundary-layer stress field and are of major
concern in this study. Coefficients of the Z§i and Z§! terms
depict the intensification of the edge stresses in the boundary-
layer region. Since the interlaminar stresses are most crucial
along the ply interface due to the discontinuities in geometry
and material properties and become singular at the in-
terface/edge intersection, it is possible to characterize the
amplitudes of the asymptotic boundary-layer stresses by
introducing the near-field parameters, K;, as

Ki=lim x~%10;(x,0:8) (=123,....6). (29)
s

The K; are dependent on geometric variables (e.g., laminar
thickness, number of plies, etc.), lamination parameters (e.g.,
fiber orientation, ply stacking sequence, etc.), loading modes,
and environmental conditions (e.g., temperature, moisture,
etc.).

It is noted that the fundamental structure of the boundary-
layer stress solution shown in equation [28] resembles that of
an elastic crack problem except that the order of stress
singularity &, and higher-order eigenvalues are different
between the two cases. (In fact, it has been shown [10] that a
degenerated case of the present boundary-layer stress problem
can lead to the well-known edge-delamination problem in
composite laminates.) The nature of the K; defined in
equation (29) is similar to that of the so-called crack-tip stress
intensity factors in linear-elastic fracture mechanics. Thus, in
this context, it may be appropriate to denote the K; as the
‘‘boundary-layer stress intensity factors’’ or ‘‘free-edge stress
intensity factors’’ in composite laminates. The sign and
magnitude of the boundary-layer stress intensity factors are of
significant physical importance, since they may control the
near-field response, i.e., fracture initiation and failure modes,
along boundaries of composite laminates.

5 Numerical Results and Discussion

To illustrate the solution scheme and the fundamental
nature of boundary-layer stresses, commonly used symmetric
angle-ply and cross-ply graphite-epoxy composites under
uniform axial extension ¢, = e are examined. Ply elastic
properties of each graphite-epoxy lamina and geometric
variables of the composite laminates used in references [1-8]
are employed here (i.e., £, = 20 X 10° psi, E; = E;, = 2.1
X 108 psi, Gy r = Gp, = Gy, = 0.85 X 108 psi, vp7 = vy, =
v, = 021, by = h; = h = 0.25 in., b = 8h). These par-
ticular material and geometric constants are selected, because
they have been used extensively in previous approximate
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Fig. 2 Free-edge geometry and the interface between o(! and 0@
plies

studies of the bondary-layer problem [1-7]. Thus solutions
obtained in this study can be readily compared with existing
approximate numerical solutions available in the literature.
Due to space limitation, only the results for the symmetric
[45/ — 45/ — 45/45] graphite-epoxy composite are given in this
paper. Solutions for symmetric cross-ply laminates and for
composites with other ply orientations, geometric, and
lamination variables will be reported later.

In what follows, accuracy and convergence of the present
solutions are established first. Comparisons with existing
approximate solutions are made to ensure the validity of the
current method of approach. Fundamental characteristics of
the boundary-layer stress field are studied. Boundary-layer
stress intensity factors and distributions of in-plane and in-
terlaminar stresses are examined in detail. The boundary-
layer width in a composite laminate is defined on the basis of
strain-energy density consideration.

5.1 Accuracy and Convergence of the Present Solution.
Since the complete solutions are required to satisfy the remote
boundary conditions and laminate symmetry conditions, it
can be easily shown that the following relationships must be
held along the surfaces of y = +#k and of x = b (Fig. 2) in the
symmetric angle-ply laminate:

rE dy fo (e, h6,) =S /155 531, (30a)
3 Y d, S (x,138,) =0, (30B)
Y da fo Gahs8,) =0, (30¢)
(Edn Iin (e, = h38,) =0, Gla)
3 Y dn ) (%, — 138, =0, (31b)
Y d. 5 - h38,) =0, (310)
;

Y du ) (b.y38,) =0, (2a) -
S N da ) (byi8,) =0, (a=1,2) (32b)
| Y1d. 5 (by;8,) =0, (320)
&

where /;, denotes differentiation of g;, according to equations
(20a,b), respectively. The constants d, are then evaluated by a
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Table 1 Maximum mismatch* in boundary collocation for [45/ — 45/ —
45/45] graphite-epoxy under uniform axial strain

Prescribed Relative

oih) (psi)t from

No. of Tractiont Mismateht+
Stattos " Tema 00 BRSSO oo

25 ~8.158280 0.010201

35 -8.177839 0.007828

38 45 -8.242364 -8.187168 0.006696
55 -8.201219 0.004992

65 -8.,209751 0.003956

25 -8.159152 0.010095

35 ~8.174614 0,008219

54 45 -8.242364 ~-8.184179 0.007059
55 ~8.199372 0.005215

65 -8.209355 0.004004

25 -8.159168 0.010093

35 ~8.174698 0.008209

70 45 ~8,242364 -8.183901 0.007092
55 -8.199213 0.005235

65 -8.208830 0.004068

25 -8.159152 0.010095

35 -8.174781 0.008199

86 45 ~8.242364 ~8.184185 0.007058
55 -8.199273 0.005227

65 -8.208373 0.004123

*at point A (f.e., x =0, y ® h) in Figure 2,

TStress scaled by €, x 108,

o = mx|c)<,")+ céh)l.

boundary collocation method. Truncated forms of the
eigenfunction series solution are used to satisfy the foregoing
boundary conditions in the least square sense at a given
number of selected collocation stations.

Using equations (30), (31), and (32) and following a
standard boundary collocation procedure, the following
system of M linear equations for the unknowns d, can be
established:

M

) (D 1) () 1) (D (2) ,(2)
E d, UAB omf 2+ S amf an+Sf 6 6")ds+§cz) (Himlin
n=1

IR IR ds | I 151 s

eSgls) (1
=|:;—(W:|SAB z,ndS, (m=1,2, e .M; (33)
S5y S33 a=1fory >0, and
a=2fory <0)

where the integrals in equation (33) are evaluated numerically
by standard Gaussian quadrature. Once the constants d, are
obtained, the stress and displacement fields can be determined
explicitly from equations (24) and (25). It is clear here that
accuracy and convergence of the solutions for stresses and
displacements are related to truncation of the eigenfunction
series and the number of collocation stations. The term
“convergence”’ refers to the condition in which relatively
constant solutions are ensured when proper numbers of terms
in the eigenfunction series and collocation points are used.
The accuracy and convergence study of the solution is
carried out by examining the mismatch between the truncated
eigenfunction series solution. and the remote traction
boundary conditions and by comparing the present boundary-

layer stresses with existing approximate solutions for the’

finite-dimensional composite. In the  [45/—45/—45/45]
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Fig. 3 Boundary-layer stress intensity factors K; (i = 1, 2, 3) as a
function of number of the terms used in eigenfunction series (86
collocation stations)

graphite-epoxy laminate, the maximum mismatch appears
always to be the transverse normal stress o, at the intersection
of the free edge and the upper lateral surface (i.e., at point 4
in Fig. 2). The interlaminar normal stress aj,") (equations
(23b) and (24b)) resulting from the uniform-axial-strain end
condition has the value ¢{”? = 8.242364 x 10° ¢, (psi) along y
= A, and is required to be cancelled by the homogeneous
solution. The resulting ¢{® at point 4 (i.e., x = 0, y = k) by
using different numbers of terms in the eigenfunction series
and different numbers of stations in the boundary collocation
procedure is given in Table 1. Also shown in the Table is the
maximum relative mismatch of the transverse normal stress
Ao, /0P, which provides a measure of accuracy and con-
vergence of the present approach. It is clearly seen from Table
1 that the maximum mismatch in the current solution is very
small. The numerical results seem to be insensitive to the
number of collocation stations used due to the relatively
simple geometry and boundary conditions. The homogeneous
solutions apparently converge to the prescribed boundary
stress ~ 0" within 1 percent as the number of terms used in
the eigenfunction series exceeds 30.

The solution convergence is further studied by examining
the near-field edge stresses and associated boundary-layer
stress intensity factors for the composite laminate. The
solutions for boundary-layer stresses and stress intensity
factors are found to be insensitive also to the increase in
numbers of terms in eigenfunction series and collocation
stations. For illustrative purposes, typical solution con-
vergence of the first three boundary-layer stress intensity
factors, K1, K,, and K3, as a function of the number of terms
and collocation stations is shown in Figs. 3 and 4 for the
[45/ — 45/ —45/45] graphite-epoxy composite. It is clearly
seen from Fig. 3 that all of the K; remain virtually the same
when different numbers of terms of the eigenfunctions are
used in numerical calculation (in this case, the number of
collocation stations is 86). The influence of the number of
collocation stations on the values of K; is found to be
similarly negligible (Fig. 4); all the K; remain unchanged as
the number of collocation stations increases from 40 to 86
(here 56 terms are used). The excellent solution convergence
and stability provide a solid foundation for further studying
the detailed nature of the complex singular boundary-layer
stresses.
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Fig. 4 Boundary-layer stress intensity factors K; (i = 1, 2, 3) as a
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Fig. 5 Comparison of the present laminate elashcny solution for
interface stresses g, 7y, and ry; (along y = *) with approximate
numerical solutions

5.2 Comparison With Existing Approximate Solutions.
Boundary-layer stresses in a composite laminate determined
by the present eigenfunction expansion approach are com-
pared with existing approximate numerical solutions available
in the literature. In Figs. 5 and 6, distributions of in-plane and
interlaminar stresses along the ply interface y = A of the

[45/ — 45/ —45/45] graphite-epoxy under uniform axial strain-

€, are shown by solid lines. Approximate solutions obtained
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Fig. 6 Comparison of present laminate elasticity solutions for in-
tertace stresses oy and 75, with approximate numerical solutions

by Pipes, et al. [1] using a finite-difference analysis and by
Wang, et al. [4] a constant-strain-using triangle finite element
approach are shown also by dotted lines in the figures. These
solutions are in good agreement in the region away from
laminate edges, and converge to what is predicted with
classical lamination theory (C.L.T.) [11].. As the laminate
boundary is approached, discrepancies among the solutions
become very significant due to the presence of the boundary-
layer stress singularity, which the previous approximate
numerical solutions fail to include. (The accuracy of the
current solution is further supported by an independent study
based on a singular hybrid finite element approach [12]).
Thus, near the laminate edge, the stress field is completely
governed by the singular terms K;x® in the solution.
Numerical approximate solutions for the problem such as the
finite-difference solution [1] and the conventional finite
element results [4] approximate the singular stress field in a
piecewise manner. As pointed out by Tong, et al. in [13],
solution convergence in elasticity problems with singularities
by conventional finite elements is independent of refinement
of the mesh and increase in the order of element formulation.
The comparison between the present laminate elasticity
solution and the finite-element approximation shown in Figs.
5 and 6 and elsewhere [12] tends to support this thesis.

It is noted further that in the evaluation of interlaminar
stresses along the ply interface the conventional finite element
approximation generally requires tedious and elaborate ex-
trapolation schemes, which by themselves may introduce
numerical errors in the final results. On the contrast, the
present laminate elasticity theory provides, in addition to the
inclusion of the correct stress singularity, exact analytical
solutions for all stress components along the ply interface
without the need of any extrapolation.

Comparison of through-thickness distributions of the
boundary-layer stresses with the approximate solutions is also
made. For example, distributions of the most dominant in-
terlaminar shear stress 7,, along the y-direction are shown in
Fig. 7, as calculated by different approaches. The current
solution for 7,, is observed in good agreement with the finite
element results [4] away from the interface in the far field,
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say, at x/b = 0.89; however, they differ appreciably as the

20 y interface is approached. At the free edge, x/b = 1.0, the

difference between the present results and that of Pipes, et al.

L \ ) [1] becomes significant. The finite difference and finite

3 4@h L% element approximations yield finite values for 7,, at the

% \ — X laminate edge, but the current eigenfunction solution becomes
z

]

2b b=8h unbounded as x — b and y — A, due to the presence of the
T stress singularity. The discrepancies apparently result from
Y . x/b=1.0 b= 0.996 the aforementioned approximations involved in the previous

[x/b=0.8 i T solutions. That is, the stresses along the ply interface are
obtained by approximate averaging and extrapolation

- . = 2.0 : : . .

0.0 7 1.0 T 10 (ps) schemes without the consideration of the singular terms,
g : whereas the present solution includes the stress singularity and

/ o satisfies exactly the interface continuity and traction boun-

dary conditions, which give an exact elasticity solution for the
Present boundary-layer problem.

Y 72 CJIE:; :: 21{, %H 5.3 Fun_damental (_Iharacteristics of the Boundary-Laygr
F Field. Basic characteristics of the boundary-layer response in
a composite laminate may be best elucidated by the overall

0.0 distributions of the edge stresses in a laminate cross section.
Fig. 7 Comparison of the present elasticity solution for Interfaminar  The overall distributions of in-plane stresses, gy, o;, and 7,
stress 7,; through laminate thickness with approximate numerical  over the x—y plane are shown in Figs. 8, 9, and 10, and
solutions distributions of interlaminar stress components g, 7y, and
7,, are given in Figs. 12, 13, and 14 for the [45/ —45/ ~45/45]
graphite-epoxy system under uniform axial strain ¢,. These

0.2

B T T T o T o
X
Fig. 8 Distribution of in-plane normal stress dy{oxlez x 10~8 psi) in
the upper left quadrant of a cross section in [45/ ~ 45/ — 45/45] graphite-
epoxy composite laminate
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[ 16b
3
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3
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]
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Fig. 9 Distribution of in-plane shear stress #y;(ryzle; x 10 -3 psi) in
the upper left quadrant of a cross section in [45/ ~ 45/ ~ 45/45] graphite-
epoxy composite laminate
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Fig. 10 Distribution of in-plane normal stress 4,(c,/e; x 10 =3 psi)in
the upper left quadrant of a cross section in [45/ — 45/ — 45/45] graphite-

epoxy composite laminate
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Fig. 11 Through-thickness distributions of in-plane stresses 7,, and

g, in [45/ — 45] - 45/45] graphite-epoxy composite laminate

figures cover a portion. of the upper left quadrant of the
laminate cross section. Each contour linein the figures, i.e.,
the isostress contour, represents the stress component g; of a
constant magnitude normalized by a scaling factor 10° ¢,. The
y-axis in the figures is the laminate free-edge boundary, and
the x-axis is actually the interface between the 45 and — 45 deg
layers. The nonuniform distributions of the in-plane stresses
shown in Figs. 8, 9, and 10 clearly reveal significant per-
turbation of the C,L.T. stress field in the neighborhood of a
ply interface near the laminate boundary. More precise
description of the variation of the in-plane stresses through
the laminate thickness is given, for example, in Fig. 11, in
which uniform distributions of in-plane stresses along the y-
direction are severely altered near the laminate boundary as
the ply interface is approached. Complicated distributions
and high magnitudes of intensification of interlaminar
stresses in the boundary-layer -region are clearly shown in
Figs: 12, 13, and 14. Detailed information on the through-
thickness distribution of interlaminar stresses is obtained; for
example, the interlaminar shear stress 7,, is given in Fig. 7.
Near the composite laminate edge, the singular boundary-
layer stress field may be characterized by the presently in-

Journal of Applied Mechanics

troduced parameters K;. For the composite laminate under
consideration, the boundary-layer or free-edge stress intensity
factors are found to have the following values:

K, = 0.57298E0, K,=—0.16443 E2,
K,=—0.75345E]1, Ks= 0.14440E 1,
Ky=—-029523E—1, K¢= 0.0,

where the K; have the dimension [psi-in—?%] in accordance
with the definition given in equation (29). The correctness of
the boundary-layer stress intensity factors has recently been
verified by an independent study [12] using a singular hybrid
finite-element approach. The high negative value of K, in-
dicates the development of significant compressive in-
terlaminar normal stress o, along the 45 and —45 deg ply
interface. This is evidenced in Fig. 6, where the compressive
interlaminar normal stress o, is clearly shown by the solid line
and is noted to be opposite in sign to the results obtained from
the previous finite-element-approximation [4].

In general, the K; associated with interlaminar stresses are
found to be much larger than those with in-plane stresses in
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Fig. 13 Distribution of interlaminar shear stress #y;(ryzle; x 10 =3
psi) in the upper left quadrant of a cross section in [45/ — 45/ — 45/45]

graphite-epoxy composite laminate

symmetric angle-ply composite laminates. This indicates the
significance and dominance of the interlaminar stresses in
controlling the local response and fracture initiation in the
vicinity of laminate edges. In symmetric [8/—6/—0/0]
composite laminates K, is found to vanish for all fiber
orientations, whereas in symmetric cross-ply laminates such
as the [0/90/90/0] and [90/0/0/90] systems, K, and K are
identically zero due to the material and lamination symmetry
conditions. Details of the influences of fiber orientations,
stacking sequence, geometric variables, and other lamination
parameters on the magnitude and sign of X; will be reported
later.-

Careful examination of the results obtained in the study
leads to the establishment of the following fundamental
characteristics of the boundary-layer stress field in a com-
posite laminate:

1. The state of stress in the boundary-layer region is
generally singular and inherently three-dimensional. The
strength of the boundary-layer stress singularity 8, depends
on elastic properties and fiber orientations of adjacent plies,
as discussed in reference [8].

2. The intensification of bohndary-layer stresses near
laminate edges is governed by the boundary-layer or free-edge
stress intensity factors. The K; depend on ply elastic con-

558/ Vol. 49, SEPTEMBER 1982

stants, lamination parameters, geometric variables, loading,
and environmental conditions.

3. The stress field recovers almost completely to what
classical lamination theory (C.L.T.) predicts in the far field.
Near the laminate edge, in-plane stress components in the
neighborhood of a ply interface differ significantly from
those predicted by C.L.T. inside individual lamina, due to the
presence of the free edge.

4. The interlaminar normal and shear stresses cannot be
obtained by classical lamination theory, but can be deter-
mined exactly by the present laminate elasticity solution. The
development of the interlaminar stresses is very localized near
laminate boundaries, and the stresses become singular at
composite edges.

5. Failure modes and mechanics in the commonly en-
countered edge delamination or transverse cracking problems
may be controlled by the sign and magnitude of the boundary-
layer stress intensity factors. A composite with a high
magnitude of positive K, may be more prone to fail in a
delamination mode, whereas a composite with a negative K,
may fail either in an interlaminar mode or in intralaminar (or

-transverse) cracking depending on the relative magnitudes of

K4,K5 andKl,Kg.
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Fig. 14 Distribution of interlaminar shear stress 7y (ryyle; x 10-3
psi) in the upper left quadrant of a cross section in [45/— 45/ — 45/45]
graphite-epoxy composite laminate

5.4 Strain Energy Density Distribution and Boundary-
Layer Width. The rapid development of interlaminar stresses
is found, as discussed in the previous sections, to be restricted
to the neighborhood of laminate edges. The region in which
severe perturbation of classical lamination theory occurs is
often referred to in the literature as the ‘‘boundary-layer
width (or thickness).”” The complex state of high stresses in
the boundary layer is inherently three-dimensional and cannot
be determined by C.L.T. Since the size and nature of the
boundary-layer stress perturbation are of vital importance in
controlling fracture initiation and strength degradation of
composite laminates, it is necessary to define the boundary-
layer width on a rigorous basis.

Pipes, et al. [1] previously defined the boundary-layer
width as the distance from a laminate edge at which the in-
terlaminar stress 7,, is about 3 percent of the value calculated
at the intersection of the ply interface and the free edge by an
approximate finite-difference procedure. Since the theoretical
value of 7,, at the intersection is unbounded due to the
presence of edge stress singularity, the validity of this
definition is somewhat questionable. Furthermore, if the
value of 7,, is used to define the boundary-layer width, it
would lead to a significant problem in the cases of symmetric
cross-ply laminates because both 7, and 7,, are identically
zero everywhere in the composites. Thus, in this study, an
alternative definition of the boundary-layer width is in-
troduced on the basis of strain-energy density consideration.

Examining the strain energy-density distribution E(x,y)
along the interface y = h* in the [45/—45/—45/45]
graphite-epoxy laminate (Fig. 15), one immediately observes
that the E(x,h*) remains relatively constant in the far field
and has a nominal value E obtainable from C.L.T. and that
its value increases drastically, in fact, by an order of
magnitude in the present case, as the free edge is approached.
The nominal value of E(x,h*), i.e., E,, is used as a reference
here for defining the boundary-layer width. In this paper, the
boundary-layer width, B, is defined as the distance away from
the edge, where the strain energy density along the ply in-
terface is 3 percent higher than the value of E, obtained in the
far field. Generally, E(x,h*) differs slightly from E(x,h~)in
a symmetric angle-ply composite laminate due to the
discontinuous in-plane stresses at y = A+ and k2~ ; thus, an
average value of B is designated as the width of the boundary-
layer region. Based on this definition, the boundary-layer
width for the [45/—45/-45/45] grahite-epoxy under
uniform axial strain is found to be approximately 2.2 ply
thickness. It is noted that the boundary-layer width depends
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Fig. 15 Strain energy density distribution E(x,h *) along 45/ - 45 deg
ply interface in [45/ — 45/ — 45/45] graphite-epoxy composite laminate

on geometric variables, lamination parameters, loading
modes, and environmental conditions [14]. The boundary-
layer widths for composite laminates with other stacking
sequences, fiber orientations, and ply thickness will be
reported in future papers.

6 Summary and Conclusions

The complete laminate elasticity solution for the boundary-
layer problem in a finite-dimensional composite has been
obtained. The homogeneous solution in an eigenfunction
series and the particular solution in a polynomial form have
been fully determined for a given composite laminate system.
The solution procedure has been outlined for composites with
general lamination variables. Detailed solutions for the
boundary-layer field have been presented for commonly used
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symmetric angle-ply and cross-ply composites. Accuracy and
convergence study has been conducted to ensure the validity
of the results and the efficiency of the current approach. To
illustrate the solution method and to elucidate fundamental
characteristics of the boundary-layer stress and deformation,
detailed information on a [45/ — 45/ —45/45] graphite-epoxy
lamiante under uniform axial strain has been presented. Based
on the results obtained, the following conclusions may be
reached:

1. The states of stress and deformation in the boundary-
layer region are inherently three-dimensional. They cannot be
determined accurately by classical lamination theory nor by
any approximate method without including the edge stress
singularity. The current laminate elasticity solution provides
accurate information on the singular nature and exact
distributions of the boundary-layer stresses.

2. Comparing the current elasticity solution with previous
approximate numerical solutions, we find that all solutions
are in good agreement in the far field but significant
discrepancies occur in the boundary-layer region, due to the
fact that near the laminate edge the stress field is completely
governed by the singular terms, which the previous ap-
proximate solutions fail to include.

3. The singular boundary-layer stress field may be
characterized by the presently introduced ‘‘boundary-layer
stress intensity factors’’ or ‘‘free-edge stress intensity fac-
tors.” The K; are functions of lamination variables,
geometric parameters, and loading conditions. The boundary-
layer stress intensity factors may be used to evaluate the
criticality of various geometric and lamination variables in a
composite and their influences on interlaminar (delamination)
and intralaminar (transverse cracking) fracture at laminate
edges.

4. The boundary-layer width which characterizes the size
of the domain where classical lamination theory does not hold
is defined by considering the strain energy density distribution
along the ply interface. The boundary-layer width depends on
all of the lamination and geometric variables, loading modes
and environmental conditions. In the [06/—0©/—0/6]
graphite-epoxy composites, the case of © = 45 deg possesses
the maximum boundary-layer width, B/A = 2.2,

5. The present formulation and the method of solution are
also valid for asymmetric composite laminates under other
loading conditions, since bending, twisting, and rotational

560/ Vol. 49, SEPTEMBER 1982

components of deformation are included. The results of these
more complex situations will be reported in future papers.
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On the Logarithmic Singularity of
Free-Edge Stress in Laminated
Composites Under Uniform
Extension

The stress singularities at the free edge of an interface between adjacent layers in a
laminated composite are studied. Each layer of the composite is assumed to be of
the same orthotropic material with one of the principal axes being the fiber
direction. The angle 8, however, which is the fiber orientation, varies from layer to
layer. The composite is subjected to uniform extension in the plane of the layers. At
the interface between adjacent layers having fiber angles (0/90), (0/-8), and a
family of special combinations of (8/0') shown in the paper, the singularity of the
type k*r® (5<0), seems to be the only possibility. For an interface with other
combinations of fiber orientations in the the adjacent layers, it is shown that an
additional singularity of the form k(In r) exists. Since the constant k* depends on
the stacking sequence of the layers and the complete boundary conditions, and may
vanish in some cases, the existence of a k*r® singularity at a free edge is not certain
until a complete problem is solved. In contrast, the constant k, which is called the
logarithmic stress-intensity factor, is independent of the stacking sequence of the
layers and the complete boundary conditions. Its value is determined once the fiber
orientations on both sides of the interface are known. Therefore, at the interface
between adjacent layers for which k#0, the free-edge stress is inherently singular.
Moreover, the singularity is logarithmic.

1 Introduction

A free edge in a composite is the intersection of an interface
plane (between any two layers) and the free surface of the
composite. The unusually large and possibly infinite stress at
the free edges is one of the factors responsible for
delamination when the composite is subjected to external
loading. Many investigators have analyzed the stress near the
free edge [1-9]. An analytical solution which is valid for the
whole composite is practically impossible to obtain. Several
approximate numerical solutions are available which show
good agreement between them for points away from the free
edge. For points near the free edge, numerical solutions are
not capable of predicting an infinite stress when it exists, and
this is where the discrepancies between various approximate
solutions occur. Wang and Choi [8] used an eigenfunction
expansion technique to determine the stress at the interface.
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However, the completeness of the eigenfunction expansion is
an open question [10]. In fact, the existence of the logarithmic
singularity discussed in this paper implies that the eigen-
function expansion in terms of r® powers may not be com-
plete. It is doubtful that the addition of (/n r) terms would
make the eigenfunction expansion complete. As pointed out
in [10, 11}, singular terms of (/n r)?> and (/n r)? etc., may also
exist.

While the nature of the singularity, be it *r® or k(Inr), ata
free edge is independent of the stacking sequence of the layers
in the composite and the complete boundary conditions, the
unknown constant in the singular solution is not. This
unknown constant is k* in the case of the r® singularity and an
arbitrary constant «; (not k) in the case of the (In r)
singularity. This suggests that one might use a special finite
element at the free edge (with regular finite elements
elsewhere) so that the exact nature of the singularity is
prescribed in the special element while the unknown constants
associated with the special element at each free edge are
determined by solving the complete boundary-value problem.
If £* so obtained happens to be zero at a particular free edge.

For composites whose layers are isotropic elastic materials,
use of the biharmonic function, or the Airy stress function,
seems to be the universal approach in the analysis of the stress
singularities. (See [10, 12, 13], for example.) There appears to
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Fig.1 Geometry of an angle-ply laminated composite

be no universal approach in analyzing the stress singularities
in anisotropic elastic materials. Lekhnitskii [14] introduced
two stress functions to analyze general anisotropic materials.
His approach was used by Wang and Choi [8] to study the
thermal stresses at the interface in a layered composite. Green
and Zerna [15] employed a complex function representation
for the general solution. Their approach was used by Bogy
[16] and Kuo and Bogy [17] in conjunction with a generalized
Mellin transform to analyze stress singularities in an
anisotropic wedge. In this paper we use the approach that was
originated by Stroh [18] and further developed by Barnett and
others [19-21] for studying the surface waves in anisotropic
elastic materials.

2 Formulation of the Problem

Consider a laminated composite that consists of a finite
number of anisotropic elastic layers perfectly bonded at the
interface, Fig. 1. Each layer of the composite lies in a plane
parallel to the (x;, x;) plane and is a fiber-reinforced com-
posite material in which the fiber direction makes an angle 8
with the x;-axis. The composite is subjected to an extensional
strain e, in the x;-direction. We assume that the composite is
sufficiently long so that, at least in the region near the x; =0
plane, the displacement u; (except that u; has an additional
term e;x;) and hence the strain ¢; and the stress g; are in-
dependent of x;. The strain-displacement, stress-strain, and
equilibrium equations of each layer are

e; = (Ou;/0x;+du;/dx;) /2 M
g',-j- = c('jkpekp (2) .
30,-1/6x1 + ao'i2/ax2 =0 (3)

where repeated indices imply summation, and
Cijkp = Chpi = Cjikp @)

are the elasticity constants.
For the purpose of numerical calculations later on, we may
also use c¢;; instead of ¢, and write equations (2) and (4) as

O','=C,'j€j, Cy=¢Cj (5)
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Fig.2 A free edge between two adjacent layers (/0 )

where
011 =0, 03 =022, 03 =033
(6a)
04 = 023, Os =013, 0Og=012
€1 = €11, €2 = €22, €3 =¢€33
(6b)
€4=2€3, €5=2¢13, € =2€n

We will also write the inverse of equation (5) as
€ =5;j0;, S;=S5j )]
where s;; are the elastic compliances.

When the extensional strain e; is applied in the x;-direction
a general solution for equations (1)-(3) can be obtained by
letting

U; vif(Z) +d3€e3x; ®
Z = X, +px, ¢)]

where §; is the Kronecker delta, p and v; are constants, and f
is an arbitrary function of Z. Substituting into equations
(1)-(3) we have

oy =15;df(Z)/dZ +cy33€3 (10)
Dy =0 an
where )
75 = (Cyrt +DCia) Ve (12)
Dy = ¢y +P(Citja + Cia) + D% Cizir (13q)

For a nontrivial solution of v;, it follows from equation (11)
that the determinant of D, must vanish. That is

1Dyl =0 (13b)
This results in a sextic equation for p. Since the eigenvalues p
are all nonreal [14, 18], there are three pairs of complex
conjugates for p and three pairs of associated eigenvectors v;.

To analyze the singular nature of the stress at a free edge,
the origin of the (x;, x,) coordinates is placed at one of the
free edges, Fig. 2. The function f(Z) in equation (8) is chosen
tobe [8, 11]

T f(ZYy=Z'"Y/(1+9) (14

where 6 is a constant. Equations (8) and (10) for displacement
and stress can then be written as

U =C{ALv Z 0+ B0 Z Y /(14 8) + 8peax;  (15)
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Uij=E[ALTij,LZL5+BL‘Tij,LZL5l +C,-j3363 (16)

where an overbar denotes the complex conjugate; 4; and B,
are complex constants, and the subscript L identifies the three
pairs of eigenvalues. Unless otherwise indicated, I in
equations (15) and (16) and subsequently stands for sum-
mation over L from L =1-3. Using the polar coordinates (r,
¢), Fig. 2, Z may be written as [11, 22] -

Z=X1 +pr=r§‘ (17)

where

{=cos¢ + psing (18)

Equations (15) and (16) can then be written as
wp=r" L A v S B E )/ (14 8) + B3e3xs (19)

0y =rPE{ALTy S+ B 80 H e (20)
Similar equations may be written for the material with
elasticity constants c;’ be adding a prime to all quantities
except r, ¢, and 8. We see from equation (20) that if the real
part of dis negative g; is singular at r - 0.

By applying the stress-free boundary conditions

2D

at ¢ = = /2 and the interface continuity conditions at ¢ =0
()] =[us] =[13]=0 (22)
[o21] =[02] =[023]1=0 (23)

where [f]=f—f' represents the difference in f values across

the interface, we obtain 12 linear equations for A;, B;, 4, ',
B; ' which can be written as

r’K. (8)q=eb (29)

where K, is a complex valued square matrix whose elements
depend on §, b is a constant column matrix whose elements
are ¢33 and ¢33 7, and q is a column matrix whose elements
are A;, By, A;’, B, ' (L=1, 2, 3). The right-hand side of
equation (24) is constant while the left-hand side depends on r.
Therefore, to satisfy equation (24) we let §=0:

K:(0)g=e3b

0y =0=03=0

@25

and obtain a particular solution for q. However, this is not the
only solution for q in equation (24). If § is a root of the
determinant

IXK (=0 (26)

we see that q has the following arbitrary additional solution
K.(9)q=0 @7

Since the problem is linear, a linear superposition of solutions
associated with different q’s is also a solution.

Notice that the elements of K. () are the coefficients of 4, ,
B, in equations (19) and (20). Therefore, if § is a complex root
of equation (26), so is the conjugate §. To obtain a real value
for u; and o; from equations (19) and (20), we simply
superimpose the solutions associated with é and §. However,
when the root of equation (26) is real we may choose

B, =A; =(a, +id,)/2 28)
where a; and d; are real. Equations (19) and (20) then have
the real expressions

u;=r'*9{a, Re(v; {1 '*°%)

+a Im(u §t ) 1 /(1 +8) + 8633 (29)
Oy ="’SE(‘1LR€(TU,L &%) +5L1m(Tij,L§'L'5)] +Cij33€3 (30)

where Re and Im stand for real imaginary, respectively.
Equations (25) and (27) are then replaced by

Journal of Applied Mechanics

K©O)a = eb 31
K(®a = 0 (32)

where K is now a real valued square matrix and a is a real
column matrix whose elements are a;, d,, a,’, and "’
(L=1, 2, 3). Thereal root §is then obtained from

K@) =0

(33)

We will next discusss equation (26) or (33) and equation
(31) separately. Notice that equation (26) or (33) has nothing
to do with ;. Indeed, if e; =0 the formulation here reduces to
that of the plane strain problems considered in [22], and
equation (26) or (33) is identical to the one obtained in [22].
As we will see in this paper, the seemingly innocent ap-
pearance of the e; terms in the preceding formulation makes
the stress at the free edge inherently singular for certain
composites. Moreover, the singularity is logarithmic.

It should be pointed out that the formulation here tacitly
assumed that the eigenvalues p; of the elasticity constants,
equation (134), are distinct. For degenerate cases in which p,
is a multiple root, equations (15) and (16) have different
expressions. The correct expressions for equations (15) and
(16) when p; is a multiple root were given in [11] when f(Z)
assumes the special form of equation (14) and in [23] when
f(Z) is arbitrary.

3 TheRoots é

Two different illustrative composite materials are used for
the numerical calculations. Each layer of the composite? is
assumed to be made of the same orthotropic material.® The
orientation of the axes of symmetry (X,, x,, %3), however,
differs from layer to layer. Referring to the (X, x,, X;) axes,
the following engineering constants for the layers in the two
composites are taken from [6] and [24], respectively.

Composite W
(Typical high modulus graphite/epoxy, [6])

E, =E,=14.48 x 105 kPa (2.1 x 10° psi)
E5=137.9 x 10° kPa (20 x 10° psi)

(34)
G|2 = Gz3 = G31 =4.98 X 106 kPa (85 X 106 pSl)
vy = =3 =.21
Composite T
(T300/5208 graphite/epoxy, [24])
E, =FE,=10.62 x 10° kPa (1.54 x 10° psi)
E;=151.7 x 10% kPa (22 x 10° psi)
(35

G]2 = G23 =G31 =5.58 X 106 kPa (.81 X 106 pSl)

V21 =V31 =V = .28

In equations (34) and (35), E; are the Young’s moduli, G; the
shear moduli, and p; are the Poisson’s ratios [25]. Using

2The present analysis is concerned with the interface between any two ad-
jacent layers in a laminated composite. For simplicity, the terminology
‘‘laminated composite,”’ ‘‘composite,”’ etc., is used in this paper to refer to
these adjacent layers.

3 . . . .

; The tllleory presented here applies to composites in which each layer is an
anisotropic material. For numerical examples, however, we assume the layers to
be of the same orthotropic material.
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Table1 Roots® § for r® terms in composite W

076" 81 8 83 N 85
15/ -15 —.001 997 + 042 1.974 + 187 2,961 + 261
- 0/15 - ~.000 999 + 0234 1.995 + 085 2,991 + .134i
90/15 —.033 1.411 + .387 1.660 + .688 ¢ 2.835 + 1.758
60/ —60 —.023 831 + 2714 1.482 + .773 i 2.149 + 1.24614 2.942 + 1.7551i
0/60 ~.020 1.009 + .108 1.747 + 6591
90/60 —.011 942 + .201 1.917 + 6811 2.769 + 1.243 i

“zero and positive integers are also roots for §

Table2 Roots® 3 for r® terms in composite T

078" 8y 8

85 84 8

15/~ 15 ~.003 990 + 079
0/15 —.001 997 + 04414
90/15 —.052 .853
60/ - 60 —-.031 787 + 31410
0/60 —.034 1.023
90/60 —.015 1.781

29410 2.933 + .382i
1351 2.984 + 194
5720 1.650 + .665i
8171 2.093 + 1.33614
7034
+ .2431

2.846 + 1.8194
2.940 + 1.80617

1.940 + .738¢ 2.728 + 1.2431

9zero and positive integers are also roots for §

equation (34) or (35), the elastic compliance §; referred to the
(%1,%5, £3) axes can be computed [25, 26]. Its inverse, é; is
obtained by using the relations derived in [25). s;, ¢, 557,
and ¢;* associated with various § and 0" are then determined
from equations derived in [22, 27]. Equations (135) and (11)
provide the eigenvalues p,, (L=1, 2, 3) and the associated
eigenvectors v;; . For Composite W all three eigenvalues p,
are purely imaginary for any ply angle 0 [22], while for
Composite T two of the three eigenvalues are complex for |61
less than 71.5377 deg. The roots of equation (26) for some
(0/6") combinations are listed in Table 1 for composite W
given by equation (34) and in Table 2 for composite T given
by equation (35). Double precision was used in the
calculations but we have rounded the roots in Tables 1 and 2
to four digits. Both complex and real roots were found. Since
complex conjugates of these values are also roots of 1K I, we
list only complex roots with positive imaginary parts in Tables
1 and 2. Detailed information on locating the complex roots
can be found in [27].

Most interesting of these roots are the positive integer
values of 8, which seem to consistently appear for all (6/6')
combinations for both composites. There appears to be a
negative real root for 8, but there are no other complex roots
with a negative real part. Since the negative 8 is the one
contributing to the singular stress, we present in Figs. 3 and 4
the negative § for all possible combinations of (6/6’) angles.
Curves of constant é are given only in one quarter of the
(6/6") plane since the curves in the remaining three quarters
are a repetition of the curves shown. We see that the (0/90)
composite, which has the same 6 value as the (90/0) com-
posite, has the largest negative value of 8. The negative &
values appear to be simple roots of equation (33), and hence a
of equation (32) is unique up to a multiplicative constant, say
k*. By substituting a of (32) into (30), we may write equation
(30) as

0, =k*rPo,* () (36)

where o; depends on ¢. The analysis presented here provides
the order of singularity 6 and o;;*. k*, which may be identified
with the stress-intensity factor if elements of ¢;* are nor-
malized, can be determined only by solving the global
boundary-value problem. For instance, one may use a finite
element scheme in which a special element, whose stress is
given by equation (36), is introduced at the free edge. If k*
associated with a free-edge point happens to be zero after
solving the global boundary-value problem, there is no
singularity of r® at that particular free-edge point. Therefore,
a singularity of the form given by equation (36) at a free edge
is not certain until the global problem is solved.

564 /Vol. 49, SEPTEMBER 1982

90

75

45 |-
o' 30

15 §-

-0.0334

-15 . )

-45 P N

~90 I I I} s
0 15 30 45

©
Fig.3 & of the r? singularity for composite W

4 Uniform Stress Solution (¢; #0)

The solution of equation (31) for a would have been
straightforward were it not for the fact that 6=0 is a root of
equation (33), and hence K(0) is singular. Therefore, a
solution for a in equation (31) exists if and only if [28]

1"b=0 (37
where T denotes the transpose and 1 is a left eigenvector of
K(0):

1’K(©0)=0 (38)

It turns out that there are two left eigenvectors of K(0).
Equation (37) then must be satisfied for both 1. For (0/90),
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(6/ — 6), and a special family of (§/6")* composites, numerical
solutions indicate that equation (37) holds, and equation (31)
has a particular solution e;a‘?) and two arbitrary solutions
a® and a®:

(39

where oy and o, are arbitrary constants. Substitution of
equation (39) into equations (29) and (30) with §=0 yields

a=ea® +oya0 +,a®

U, = €U; (p) + o u,'(l) + azu,‘(z) (40)
Uij = EgO’ij 2] +a1 Oij(l) (41)
where
u; P =X{a, P Re(v; Z)+a, P Im(v;; Z;)} +83x; (42a)

u; " =L{ay M Re(v; L Z1)+8, W Im (v, Z1)), (n=1,2)

42b)
(47} (» =E{aL (p)Re(T,'j,L)'f"dL (p)Im(T,'j,L)} +cij33 (42C)
U,'jU)=E{aL(l)Re(T,'j‘L)+5L(I)Im(T,‘j‘L)] (42d)

Equation (17) has been used in reducing equations (42a, 42b).
The reason ¢;@ is absent in equation (41) is because we have
chosen a® and a® such that u;® is a rigid body rotation and
hence 0;;? associated with #; vanishes. Notice that ;" and
o; ¥ are constants. By equation (41), o, is constant and we
have a uniform stress solution. For composites other than
(0/90), (6/—6), and the special family of (6/6'),which has
already been mentioned, it was found that equation (37) does
not hold and hence no uniform stress solutions exist.
Numerical calculations for the composites given by (34) and

4This special family of (§/6°) composites is shown in Figs. 5 ‘and 6 by the
curve k=0 which begins at (0/0) and ends at (90/0).
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(35) for (0/90), (6/ — 6), and the special family of (/6’) show
that ;! of equation (42d) have the expression

000
oy = 00 1 43)
010

when a) of equation (39) is properly normalized while o;; *’
has the form

0O 0 O
0jj P = 0 5'22 0 (44)
0 0 oy

The values of &y (=08y5') and &y (=) for (8/—10)
composites are given in Table 3. It is interesting to notice that
for (15/ — 15) of composite W, &,, is more than five times the
value of &3;. In other words, the interlaminar normal stress at
the free edge of the interface is more than five times the
applied extensional stress. This interpretation, of course, is
based on the assumption that no singularity of r® is present.

We also calculate &, and @;; for (0/90) composites.
However, the results will be presented in a later section when
we discuss the solution for composites other than (0/90),
(67 — 6), and the special family of (6/6").

5 Uniform Stress Solution (¢; #0) — Alternate Method

In this section we reconsider the uniform stress solution
obtained in the preceding section by using an alternate ap-
proach. With this approach, we not only obtain explicit ex-
pressions for ,, and &;; of equation (44), but we also see
clearly why a uniform stress solution fails to exist for com-
posites other than (0/90), (6/ — ), and the special family of
6/6).

For the composites considered here, the material in each
layer is symmetric with respect to the (x;, x,) plane and hence
[25, 26],

514 =516 =534 =826 = 534 =836 =554 =555 =0 45)

By applying these material symmetry properties along with
the stress-free boundary conditions, equation (21), equation
(7) can be written fori=1, 3, 5 as

€1=5120,+51303 (46)
€3 =830, +53303 47)
€5 =S50y + 85303 48)

Solving for ¢; from equation (47), and eliminating o3 in (46)
and (48) we have

03 = €/533 —(55,/533)0, (49)
6 = Rieg+ R0, (50)
€5 = R5€3+R5202 (51)
where
R, = 513/53
Ry, = S1p—513832/53
(52)
R;s = 553/53;
Rs; = 853 —85353,/53

The interface continuity conditions of equation (22) are
equivalent to
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Table3 &, and 33 of equation (44) for (8/ — 6) composites

g 15 deg 30 deg 45 deg 60 deg 75 deg
Composite Gay=077" 191.14 29.887 8.2424 1.4187 —1.2079
w T3 =033’ 35.231 7.2214 3.4618 2.2766 1.8203
Composite Fapy=0xn' 71.464 16.660 5.9075 2.2697 0.8352
T d33=033" 23.032 6.5434 3.3082 2.2137 1.7821
The unit for o;; is 6.894757 x 10% kPa (10° psi)
1+8 1+6
[e1]=1{es]=1[es]=0 (53) ui=r (Inr+a/a5)z{aLRe(vf,L§'L )
aé)glbytlaxllii equations (23) and (53) to equations (50) and (51), e Im (v, 1 0) /(4 8+ b 62)
[RIZ](72+[R1]€3 =0 (54) Oij=r5(1n r+6/36)E[aLRe(T,-j,L§‘L‘5)
[Rs;]o; +[Rsle; =0 (55) , 63)
+a Im(ry §0°)) +eymes
F 1 ites, i.e., (0/90 ites, . U .
for cross ply composites, ic., (0/90) composites, g o onc62) and (63) differ from equations (29) and (30) by
R;=R;'=Rs; =Rs;'=0. Hence equations (55) is au Fact £ 3/3%). If bsti . i
tomatically satisfied and equation (54) yields a lactor o (n r+ ). we su stitute equations (62) an
(63) into the free-surface conditions, equation (21), and the
0= —&[R1/[R),] (56)  interface continuity conditions, equations (22) and (23), we

For (6/ — 6) composites, R;; =R,,’ and R; =R,’. Equation
(54) is automatically satisfied and equation (55) provides o,:

0, = ~ &3[R;5)/[Rs,] (57

Equations (54) and (55) are also compatible if they are linearly
dependent. This, as we will determine later, occurs for the
previously mentioned special family of (6/6’). For other
(8/0") combinations, equations (54) and (55) contradict each
other. This indicates that a uniform stress solution due to the
prescribed e; extension does not exist. It also explains why
equation (37) does not hold for composites other than (0/90),
(6/ —0), and the special family of (6/6").

When a uniform stress solution exists, o, is obtained from
equation (56) or (57), o3 is obtained from equation (49), while
g, is arbitrary. Thus the stress can be expressed in the form of
equation (41) with o;(") and o, given by equations (43) and
(44). 5, in equation (44) is the coefficient of ¢; in equation
(56) or (57). With &,, so obtained, 5,; is determined from
equation (49).

6 Logarithmic Singularity

If equation (37) does not hold, a uniform stress due to a
uniform extension e; does not exist. In such a case, instead of
using equations (15) and (16) we use the following solution:

a _
U;= % {E (ALU,"LZLI-HS‘FBL Ui,LZL1+5)/(1 +6)} +E36,‘3X3

E1))

a _
= % {E(ALTU,LZLB +BL’7','j,LZL6)} +C,'j3363

where A, , B, are now functions of 8. It can be shown that
equations (58) and (59) satisfy equations (1)-(3) with p, v;,
and 7; given by equations (134), (11), and (12). If § is real,
then using equation (28), we may write equations (58) and (59)
as,

]
u; = % {r”a E(aLRe(Ui,L YN

A Imu 5 N/ B) +essaxs (60)

(39

gij

d -
%= 35 {ra E (apRe(ry, {1+ d Im Ty &1 5))} +ciazes (61)

where a;, @, are real functions of 6. Performing the dif-
ferentiation, we obtain
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obtain 12 equations which can be written as (cf. equation (24))
ré(in r+a/05)K(8)a(8) = e;b (64)

where a, whose components are ¢, ,d;, a,’, d,’, is now a
function of 6. This equation holds for arbitrary r if we let
6=0, and

K(0)a(0)=0 (65)
35 (K209} lseo=63b (66)
For simplicity, we write equations (65) and (66) as
Ka=0 (67
(dK/dé)a +K(da/db)=e;b (68)

where it is understood that all quantities on the left-hand side
of (67) and (68) are evaluated at 6= 0. Equations (67) and (68)
consist of 24 equations for a and da/dé. If a solution exists,
substitution of a and da/dé back into equations (62) and (63)
with 6 =0 provides the desired solution.

Before we discuss the solution of (67) and (68) in the next
section, we write equations (62) and (63) in full with §=0:

up=(nryZ{a,Re(v, Z, )+ d; Im(vi  Z,)}
+E{a Re(v  Zo(Infy — D)+ a, Im(v;. Z.(Ing — 1))
+(day/dé)Re(v; Z;)+ (ddyp/dé)Im (v, Z1))} + €36,3x; (69)
oy=(nnLla,Re(r; Y +a Im(r;,.))

+Z{a Re(r;)Int )y +d Im (7 In{,)
+(day/d8)Re () + (dd/d8)Im (1, ) ) +Cyzzes (70)

We see that ¢; has a logarithmic singularity. Again, equation
(17) has been used in deducing equation (69).

7 The Logarithmic Stress-Intensity Factor

The system of equations, equations (67) and (68), has a
unique solution for a if (see [10])

dVIKI/dsN #0, N=n-m, (71)

where n and m are, respectively, the order and rank of K. For

the composites considered here N=2. However, it is rather

- difficult to prove or disprove equation (71) analytically or

numerically in view of the fact that K is a 12 X 12 matrix.
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Tabled &, of equation (79) for composite W, (0/8)

6’ 15 deg 30 deg 45 deg 60 deg 75 deg 90 deg

k 0.0022 0.0033 0.0042 0.0040 0.0025 0
311(0) 0.0221 0.0145 0.0102 0.0056 0.0016 0
a11'(0) -0.0222 —0.0149 —0.0112 —0.0067 —0.0021 0
22(90) 190.43 29.599 8.0106 1.2162 -1.3911 —2.1000
22(0) 190.45 29.613 8.0208 1.2218 - 1.3895 —2.1000
' (—90) 190.47 29.628 8.0310 1.2274 ~1.3880 —2.1000
733(90) 59.990 26.216 21.682 20.256 19.708 19.559
33(0) 60.000 26.222 21.687 20.258 19.708 19.559
333°(0) 35.132 7.1872 3.4312 2.2440 1.7848 1.6590
G33’'(—90) 35.137 7.1903 3.4340 2.2461 1.7856 1.6590
323(90) 0 0 0 0 0 0
G23(0) Q 0 0 4] Q 0
523" (—90) 0.0003 0.0006 0.0007 0.0004 0 0
513(0) ~0.0035 ~0.0052 —0.0065 —0.0063 —0.0040 0
713'(0) 0.0034 0.0048 0.0059 0.0059 0.0039 0
712(0) 0.0140 0.0092 0.0065 0.0035 0.0010 0
The unit for k and oy is 6.894757 x 10° kPa (106 psi)

Table5 &, of equation (79) for composite T, (0/¢")
8’ 15 deg 30 deg 45 deg 60 deg 75 deg 90 deg

k 0.0349 0.0610 0.0729 0.0658 0.0394 0
711(0) 0.2203 0.1919 0.1335 0.0695 0.0192 0
g11'(0) —0.2218 —0.1990 —0.1467 -0.0817 —0.0238 0
G22(90) 62.232 13.729 3.3929 0.0314 —1.2148 —1.5400
322(0) 67.452 13.921 3.5264 0.1009 —1.1956 —1.5400
22" (—90) 67.672 14,115 3.6623 0.1729 —1.1753 —1.5400
333(90) 40.825 25.844 22.950 22.009 21.660 21.569
713(0) 40.948 25.952 23.025 22.048 21.671 21.569
d33°(0) 22.241 6.0686 2.8463 1.7151 1.2441 1.1088
G33"(—90) 22.260 6.0653 2.8494 1.7218 1.2474 1.1088
(723(90) 0 0 [} 0 0 0
523(0) 0 0 0 0 0 0
G23'(—90) 0.0036 0.0115 0.0118 0.0062 0.0011 0
713(0) —0.0549 -0.0959 —0.1145 —0.1034 —0.0619 0
13°(0) 0.0498 0.0893 0.1076 0.0997 0.0612 0
712(0) 0.1444 0.1258 0.0875 0.0455 0.0126 0

The unit for k and 0;;is 6.894757 x 10%kPa (105 psi)

Instead, we regard equations (67) and (68) as a system of 24
equations for a and da/dé, and solve the system numerically.
We find that a is unique while da/dé has a particular solution
and two arbitrary solutions.

Noting that N=2, one can see that K has two right
eigenvectors a'? and a@ such that

Ka®™ =0, (n=1,2) (72)

If a is the unique solution of equations (67) and (68), it must
also be a solution of equation (67), and hence a is propor-
tional to a right eigenvector. Without loss of generality, let
a(¥ be the eigenvector to which a is proportional, i.e.,

3

Since a is unique, & is uniquely determined if al) is properly
normalized. The fact that da/d5 has two arbitrary solutions is
obvious from equation (68) because the coefficient of da/dé is
K which is singular of order two. If e;(da/dd)® is a par-
ticular solution of da/dé, we have

da/dé= €3 (da/dé) (LUNE o a® + aza(z)

a=ke;alV

74)

where o, o are arbitrary constants. With equations (73) and

(74), equations (69) and (70) can be rewritten as

U; =Ke3 [(ln r)u,-“) + u,-(*”) }+e U; » 4 oy u,‘(l) + O{zu,'(z) (75)
0= k€3 ( {In r)a,-j“) + O'ijw) ] + €3 0jj () + o O'ij(n (76)

where u; (0, 1;?, and ¢;\V are defined in equations (42b) and

(42d), while

Journal of Applied Mechanics

u; P =L{(da,/d6)® Re(v; . Z;)

+(da./dd) P Im (v, 1 Z1)) + 8,3%; (77a)
u® =L{a, VRe(v; Z, (Ing; —1))
+a, W Im (v, ZL(Ing, — 1)) (77b)
0; ") =XT{da,/d8)P Re(1;,)
+(dd,/d®) P Im(1;,.)} +cyss (770)
0,9 =L{a, O Re(ryInt )+ a, ViIm(r;ink,)} (77d)

Again the reason o; is missing in equation (76) is due to the
fact that ;@ is a rigid body rotation.

Although the solution obtained here is for composites other
than (0/90), (8/ —6), and the special family of (8/6'), ap-
plication of the present solution to these three cases yields
k=0. Hence a =0 by equation (73), and the solution for da/dé
from equation (68) is identical to the solution for a in
equation (31). It follows that (da/d5)? of equation (74) is
identical to a® of equation (39), and that u; P}, ¢;% in
equations (77a) and (77¢) and equations (42a) and (42c) are
also identical. Thus, the solution obtained in equations (75)
and (76) reduces to that given in equations (40) and (41) when
the composite is (0/90), (8/—0), or the special family of
670").
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Fig. 5 kof he k(in 3 singularity for composite W. The unit for k is
6.89457 x 10 kPa (10° psi).

When k#0, we see from equation (76) that o; has a
logarithmic singularity unless e; =0. Therefore, unless ¢; =0,
the stress is inherently singular for composites for which £=0.
Moreover, the singularity is logarithmic. Since the larger the
value of & the stronger the logarithmic singularity, £ may be
regarded as the ‘‘logarithmic stress-intensity factor.”” It
should be pointed out that the singularity of k*r?, (6<0), as
analyzed in Section 3, may still exist for all composites.
However, the determination of the intensity factor £* requires
a global solution while £ in equation (76) does not.

For the purpose of presenting numerical results, we write
equation (76) as

Uij:{k63 (ln r)+a1}o,~j(l)+e3zﬁjj(¢) (78)

where

59 =koy® + ;P 9

For the composites considered here, o) has the form given
in equation (43) if al? of equation (73) is properly normahzed
Although o; ®) is constant, ¢;® is not. Hence 3; (¢)and 5;
(¢) depend on ¢. In Tables 4 and 5 we list the value k£ and
,;(¢) and ;' (¢) on the interface (¢ =0) and on the free-edge
surface (¢= £90 deg) for the (0/0’) composites. Notice that
T 1 =0;,=0,3=0 at ¢=90 deg. Similarly
0 =8 =03"'=0 at ¢=-90 deg. Hence these com-
ponents are not listed in the tables. Also, since 5, = &y,
031 =0y, and &y, = Gy = at ¢=0, only 5,,(0), 5,,(0), 02;(0)
are listed. Similar tables for other (#/6’) combinations can be
found in [27].

For (0/90), (87— 6), or the special family of (6/6’) com-
posites, k=0, and equations (78) and (79) reduce to

- (80)
81)

— 1 G
gy = ala,-j()+e3a,-j

G; = oy »)
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Fig. 6 k of tge k(in r) singularity for composite T. The unit for k is
6.894757 x 10 kPa(10 psi).

G; is now independent of ¢. This agrees with the result ob-
tained in equation (41). The numerical calculations of &; for
(0/90) composites are included in Tables 4 and 5, while those
for (6/ — 6) composites were given in Table 3.

Again notice that &,, for the (0/15) composite in Table 4 is
many times larger than d3; and @,;’. In other words, the
interlaminar normal stress at the interface is many times
larger than the applied axial extensional stress. This may not
be important here since the logarithmic singularity is present
fOI' Gr3.

Finally, the values of k for all possible combinations of
(6/6') are presented in Figs. 5 and 6. Again, curves of con-
stant k are given only in one quarter of the (/6') plane
because the curves in the rest of the plane are a repetition of
the curves shown. We see that there are three contour lines
along which k£ =0. The first line is along §’ = 6. This is a trivial
case because 6’ =6 implies that the layer on both sides of the
interface have the same fiber orientation, and hence there
exists no real interface and no logarithmic singularity. The
second line is along 6’ = — . This is the (§/ — §) composite and
the analysis presented earlier predicted that k=0 for this
composite. The third line along which k=0 starts at (0/0),
runs slightly above the horizontal line 6’ =0, and ends at
(90/0). This is the special family of (6/6') composites referred
to earlier. For this family of composites, equation (37) holds
and equations (54) and (55) are compatible. Notice that (0/90)
is a member of this family because the singularity of (0/90)
and (90/0) are identical. Figures 5 and 6 show that the largest
absolute value of k occurs at (90/6’) where 6’ is near +15
deg. Thus for the composites considered here, the logarithmic
stress singularity is the strongest for the (90/15) and (90/ — 15)
composites.

8 Concluding Remarks

The analysis presented here shows that the stress near the
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free edge of the interface in a (6/6’) composite subjected to an
extensional strain of ¢; is given by

aij=k*r‘so}“j+{k63(1nr)+a1]oij“)+e36,-j (82)

where 6<0, k*, k, o; and 0;;(") are constants while o;;* and 3,
depend on ¢. Knowing the fiber orientations # and 6, the
analysis presented here provides all quantities in equation (82)
except k* and o, which have to be determined by solving the
complete boundary-value probelm. Therefore, the existence
of the r? singularity depends on the stacking sequence and the
complete boundary conditions while the existence of the (/n r)
singularity does not. For composites other than (0/90), (6/ —
6), and the special family of (6/8') shown in the paper, it was
shown that k=0, and hence the free-edge stress is inherently
singular.

It should be pointed out that if §<0 is a double root of
equation (33) one would have, besides the r® singularity, a
singularity of the form r® (/nr), [11]. For the composites
considered here, § <0 appears to be a simple root of equation
(33). It should also be noted that even though the layers are
assumed to be of the same orthotropic material for the
numerical illustrations, the theory presented here applies to
any anisotropic layered composite.
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Thin Orthotropic Spinning Disk

A system of two ordinary coupled differential equations with periodic coefficients
of the Mathieu type for two temporal perturbation parameters is derived. A closed-

form solution of the system in terms of elementary functions is found and
discussed. A condition for the wave stability involving the coefficients of anisotropy
is established. Illustration involves a specific range of these coefficients.

Introduction

The last two decades have seen a revived interest in the
nonlinear phenomenon involving transverse vibrations and
circumferential waves occurring in thin membrane-like
spinning disks [1-5]. Most of the earlier work concerned the
isotropic materials, but the development of composites en-
dowed with certain types of anisotropic structure made it
useful to reconsider the problem in a more general, i.e.,
anisotropic, setting. The conclusion of the studies was rather
encouraging: it appeared that the anisotropy of the material,
through an appropriate choice of elastic moduli, influences
strongly the induced motions and stresses in the spinning disk.
This involves, in particular, the circumferential transverse
waves whose stability with respect to a specific perturbation is
the topic of the present paper.

As is well known, the waves induced by the rotation of the
disk propagate both forward, in the direction of rotation, and
backward. The latter are primarily responsible for failures of
the disks, and their sustenance is chiefly attributed to the
presence of the atmosphere, thus far ignored in theoretical
studies.

In [6], we discussed the stability of circumferential waves in
a disk of orthotropic material with respect to a temporal
perturbation of motion. We arrived at a system of two or-
dinary differential equations for two perturbation
parameters. The equations were of the second order, coupled,
with periodic coefficients, and were examined in two of their
simpler alternatives. In the present paper, we wish to discuss
the solution of the equations in a complete form. It turns out
that, despite the complexity of the equations, their solution
can be put into a closed form in terms of elementary, prin-
cipally trigonometric and hyperbolic functions.

We first record the main equations governing motions of an
anisotropic membrane-like spinning disk free from external
tractions. By confining the investigation to the mode with two
nodal diameters and no nodal circles, we impose small per-
turbations on the time functions appearing in the expression
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for the deflection. An analysis of the solution of the so-called
‘‘variational” equations for the perturbation parameters,
gained by an appropriate trigonometric transformation, leads
to a condition for the stability of motions dependent on the
coefficients of anisotropy of the material of the disk.

General Equations

To make this study relatively self-contained, it is helpful to
recall that the transverse deflections of a spinning orthotropic
disk are governed by two equations [2], one of which is the
equation of motion and the other one of compatibility of
deformations. The equations are:

(1 a¢+162¢)62w+(1 aw+162w)62¢
r or r2 9¢* ar? r or r* 06 ar?
d 1 ow 0 1 d¢ 1
_2_._(_____ .___(_ _)_—_ 02r2vy 2
ar\7 36 ) \T a0/ 2TV
ow ?w
—p? —p2 2 o,
Py TP e O
and
a4¢ pz 34(1) k2 a4¢ 2 33¢ p2 a3¢
art r2 artegr = 4 a9t roor r arog*
__ki 3%¢  p+2k* ¢ kK d¢
r2 ar? ré a0 P or

_E[_1(6w+1 62w>62w+1(82w)2 5
e ar r 86*/ arr " r2\arag @
2 aw 62w+1(6w>2] 02
7 a0 orad | r* \ a6 PR

respectively, where w = w(r,0;f) is the transverse deflection
of the membrane-like disk, V? is the plane Laplacian,
k? = E,/E,, p* = (Ey/Guy)~2py, and s = k?+2py—3.
Furthermore, E, and E, designate Young’s moduli in the
radial and hoop directions, respectively, G,; is the shear
modulus, p is the mass density of the material of the disk, and
vy is Poisson’s ratio associated with the radial tension. 2 and
¢ are the constant angular velocity of the disk and the stress
function, respectively. Finally, we have the known relation,
E, Vg = Eg Vr.
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As the boundary conditions, we take
Trr(bse;t) =0’ Tro(b)o;t) =0’ (3)

which express the absence of external radial and hoop trac-
tions at the edge r = b of the disk. Our investigation involves
the mode of propagation of circumferential waves with no
nodal circles and two nodal diameters. This mode is of special
importance, inasmuch as it corresponds to the gravest mode
of vibration in the linear case; it is represented in the ex-
panded form by

2
w(rg;t)=A ( % ) [cos 260 cos 2¢ct F sin 26 sin 2ct], 4)

where the upper (lower) sign refers to the backward (forward)
traveling wave, and 4 denotes the amplitude of the wave.
Following [5], we impose on the deflection w(r,8;¢) of the
disk two slight temporal perturbations, §,(#) and §,(¢), of the
time functions cos 2ct and sin 2c¢t obtaining

2
w(r,0;t,6) =A ( i ) {cos 20 [cos 2ct + 8, (1]
b ®)
+ sin 28] F sin 2ct + 8, (£)] }.
We say that the wave motion is stable with respect to the given
perturbations if the solutions of the ‘‘variational’’ equations
satisfied by the perturbations 6, (¢) and 6,(¢) are bounded
functions of time. On the contrary, we say that the motion is
unstable if the solutions of the equations are unbounded
functions of time'. We restate that in equation (5), as well as

'More precisely, it is required that the perturbations remain small at all
times. This guarantees smallness of the deviations of the perturbed deflections
from the original ones, and roughly corresponds to the Liapounov criterion of
stability (cf., e.g., [8], p. 133).
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Parameter y versus the coefficient of orthotropy k

everywhere throughout this text, the upper (lower) sign is
associated with a backward (forward) traveling wave.

A lengthy computation using an orthogonalization
procedure (see [6]) results in the following equations, central
to our subsequent discussion, and obtained from equation (1):

6+ [d+vy(1+cos27)]8, = Fysin27e8, +(1 —d) cos 7,

8; +[d+y(1—cos27]6, = Fysin27+8, F(1 —d) sin 7. ©
Here,
E,A*(5k-3) G-r)@?
T=ae itk T e 6a)

7=2ct,

and the prime superscripts denote differentiation with respect
tor.

We note that in the isotropic case in which £ = 1, thereis d
= l and

- EA? 5-v_,
c 0D + 3 Q (6b)
(see [6], equation (20)).

The left-hand members of equations (6) are clearly of the
Mathieu type. Although linear, they exhibit two unwelcome
features: variable coefficients and coupling. For those who
recall the intricacies involved in the analysis of the seemingly
innocent looking standard Mathieu equation (cf., e.g., [7]), it
comes rather as a surprise that the system (6) admits a closed-
form solution in terms of elementary functions. To
demonstrate this, it is more convenient to discuss the system
(6) in its homogeneous form. This follows from the ob-
servation that the particular integrals of the system are

8 =Bcosrt, 8=FBsinv, ¢
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where 8 = (1 —-d)/(d+2vy—1). Inasmuch as the foregoing
expressions constitute bounded functions of 7, they do not
influence the stability of the solution of the system (6), and
may, therefore, be put out of mind. We are thus left with the
system, or more exactly with two systems:
67 +{(a+vycos27)d, = £ysin27+4,,
(CED]
85+ (a—vycos27)8, = =ysin 27§,
where a = d-++. Now, it is easy to see that if the solution of
(8+)is 6{ and 85", say, then the solution of (8 —)is 6;7 = &;
and 6; = —65 . In terms of stability, it therefore suffices to
consider but one of the two systems, say (8 + ), associated with
the backward traveling wave. Thus, all conclusions reached
with regard to the stability of the last named wave also
characterize the behavior of the forward traveling wave (with
accuracy to the appropriate sign).

Since this result holds for the orthotropic materials, all the
more it holds for the isotropic one. Consequently, the
isotropic case solution, in the otherwise brilliant paper [5],
implying simultaneous stability of the backward traveling
wave and instability of the forward traveling wave cannot be
correct. Actually, the equations (19) in [5] for 6 and &5 (de-
noted there be ¢, and ¢,) are free from error, while the
equations (23) for 6; and 6, (denoted there by ¢; and ¢,) are
not. This may be verified by observing that expressions (23) in
[5] do not satisfy the governing equations (22) in [5] (at least
the present author was unsuccessful in demonstrating such
satisfaction). Likewise incorrect becomes, based on the in-
correct result in [S], that portion of the sentence in [6]
(following equations (32b) in [6]) that concerns the stability of
the forward traveling wave.

We now apply the ‘‘rotational’’ transformation

u=06,sin 7+8,cos 7, v=~4,cos T —§,sin 7, ¢)]

and by simple manipulations cast equations (8 +) in the form
u+2(a+Du” +[(@a—1)? —y*ju=0, (10)
v +2(a+ D" + [(a—1)2 -7*lv=0, (11)

in which the functions involved become separated and the
coefficients constant. In the isotropic case, we havea = 1+,
and one recovers the solution (19) derived in [5].

For the sake of argument and to avoid too many
technicalities, let us confine our discussion to the case in
which the orthotropy of the material is not too excessive. We
thus assume that the coefficient of orthotropy k? = E,/E, is
contained in the half-open interval [0.36, 9], say. This in-
cludes such materials of rather different mechanical
properties as plywood (k2 = 0.5 or k? = 2, respectively) and
borsic-aluminum composite (k2 = 0.4 or k? = 2.5, respec-
tively).

As seen in Fig. 1, in the corresponding interval, in which 0.6
=< k < 3, the coefficient v is positive. Consequently, @ > 0,
and the discriminant A of the characteristic equation
associated with equations (10) and (11) is positive, A =
4a+~* > 0. With these data in mind, the roots of the
characteristic equation become

oy =~ =0 =[—(a+1)+@a+y)"]", (12)
oy =~y =ify =il(a+ 1)+ da+v2) "], 13)

As a consequence, one arrives at three alternatives of the
solution characterized in Table 1.

It is immediately seen (without recourse to the explicit
solution) that the alternative (I) represents an unstable

572/ Vol. 49, SEPTEMBER 1982

Table 1 Three alternatives of the solution

[0 {an (11D
Roots 2> (a-1)? v =(a-1)? v <(a-1)?
o) real pos. 0 imag. pos.
) real neg,. 0 imag. neg.
a3 imag. pos. imag. pos. imag. pos.
oy imag. neg. imag. neg. imag. neg.

motion, as follows from the existence of the real positive root
a;. The same concerns the isotropic case (alternative (II)) on
account of the presence of the double root oy = «a; = 0 that
implies a term proportional to 7. On the contrary, alternative
(I11) characterizes a motion that is stable. Alternative (I) being
the most diversified, it is of interest to record the associated
solution explicitly as follows:
&, =C[sinh B, resin 7 + \; cosh 8,7 «cos 7]
+ C,fcosh B8, 7 esin 7 + N\ sinh 3,7 «cos 7} (14
+ C;[sin B, 7 esin 7 + N, cos 3,7 <cos 7]

+ Cyfcos B, 7 esin 7 — A, sin B, 7 «cos 7,

8, = C,[sinh 8,7 ecos r —\, cosh B;7 =sin 7]
+ C,[cosh 8,7 +cos 7 — A, sinh 8,7 +sin 7] (15)
+ C;[sin B,7 ecos 7 — N, cos 3,7 esin 7}
+ Cylcos 8,7 °cos 7 + N, sin B, 7 +sin 7])
where
P+a—y-1 _ 283,
28, —Bt—a—y+1’
B—a+vy+1 _ 23,
26, B—a—vy+1’

)\1=

(16)
)\2 =

Conclusions

It is shown that, in the orthotropic case, the stability
conditions for forward and backward traveling waves are the
same. Consequently, the isotropic case solution derived in [5],
and implying the opposite, is partially incorrect. Also in-
correct is the respective inference in [6] based on ([5].
Illustration given involves limited values of the elastic
parameters, but the study may be extended to a more
exhaustive analysis of the related characteristic equations.
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Efficient Pulse Shapes to Deform
Beams With Axial Constraints

W. J. Stronge’

Michelson Laboratory,
Naval Weapons Center,
China Lake, Calif. 93555

The transient motion of a simply supported, rigid-plastic beam in response to a
uniformly distributed pressure pulse of arbitrary shape is determined. The beam is
subject to an axial force in addition to the transverse pressure. This axial force is a
parameter that can approximate constraint forces resulting from deformation of

beams with fixed or elastically restrained ends. The pulse shape that maximizes
deflection at the center of the beam is determined for a specified applied impulse.
When a transverse pressure applies a limited amount of impulse to the beam, an
impulsive load causes the largest deformation. Axial force decreases the defor-
mation but has no effect on the most efficient pulse shape.

Introduction

In some dynamic loading systems, the pressure applied to a
workpiece can be a controllable function of time although the
total impulse applied is fixed. In these systems, what pressure
pulse shape, p(#), results in the largest central deflection of
plastically deforming beams?

For small deformation of rigid-plastic beams, an impulsive
pressure has been shown to be most effective in causing
deflection [1, 2]. This same pulse shape will be shown to be
most effective also when the beam is subjected to constant
axial force in addition to the transverse pressure. By setting
the axial force equal to the yield force, this analysis can ap-
proximate the deformation-dependent constraint force
resulting from ends fixed against axial displacement. This
approximation is consistent ‘with approximating the hyper-
bolic yield condition of a rigid-plastic beam by a rectangular
yield condition. The technique used to determine the most
effective pulse shape is based on the calculus of variations and
is more direct and generally useful than an earlier proof [1].

The effect of pulse shape on the response of rigid-plastic
structures was previously investigated by Symonds [3] and
Youngdahl [2, 4]. Youngdahl showed that two variables,
impulse and an effective pressure are sufficient to determine
the dynamic plastic deformation of four structural elements
subjected to time-dependent pressures. Krajcinovic [5] proved
this correlation to be exact for time-independent deformation
modes and a good approximation for higher pressure loadings
where time-dependent deformation modes exist. Hence, when
a specified impulse is applied, deformation is a monotonically
increasing function of effective pressure. This is only true
with axial forces if appropriate parameterization of the axial
force is used.
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Cambridge CB2 1Pz, England.
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The beam with an axial force is significantly different from
Youngdahl’s examples in having an internal-energy
dissipation rate term that depends on deflection. The element
stiffens with increasing deflection. This term becomes in-
creasingly important with larger deformations, irrespective of
whether the axial force is imposed or develops from fixed-end
conditions.

This investigation does not address the coupling between
axial force and bending moments in plastically deforming
sections. Those interactions are eliminated by an ap-
proximation to the yield condition that is used for analytic
simplification.

Analytical Model

The simply supported beam shown in Fig. 1 is subject to a
suddenly applied, uniformly distributed pressure, p(¢). This
beam is of unit width and has a mass, p, per unit length. It is
initially straight and at rest.

Consider a beam composed of a rigid perfectly-plastic

plt)
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Fig.1 Low and high pressure deformation modes
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Fig.2 Beam segment being analyzed

material so that the moment curvature relation is a step
located at the origin.? The static collapse mode for this rigid-
plastic beam with uniform loading is a single ‘‘plastic hinge”’
located at the center of the beam. The hinge separates two
rigid segments that rotate about the end supports.

Let the yield moment be M, . As long as the pressure is less
than the static collapse pressure, p, = 2M, /L?, the bending
moment throughout the beam is less than yield and no motion
occurs. When p > p,, motion begins. For convenience, time
is measured from the instant this inequality is first satisfied.
At ¢ = 0, depending on the pressure, either-one or two plastic
hinges are formed. If the initial pressure 1 < p(0)/p, <3
there will be a hinge at the center of the beam as shown in Fig.
1(a). If p(0)/p, > 3 the single hinge deformation mode results
in a moment M (x) > M, for some 0 < x < L. Consequently,
to satisfy the moment-curvature relation, two symmetrically
located hinges shown in Fig. 1(b) will occur. Between the
hinges, M (x) is constant. The double hinges move along the
beam as a function of both applied impulse and time. As
deformation proceeds, the axial force, N, remains constant
along the length. (It is assumed there is only transverse motion
of the beam.) Toward the end of the loading pulse, as pressure
and beam momentum decrease, the hinges move toward the
center and coalesce. When the motion remains flexural, the
final stage is always the single hinge mode.

To analyze the motion of the beam, assume a kinematically
admissible velocity field.

u(xt) =U(1) x<s
, )
ul(x,t)=U(t) [(L~x)/(L—s)] xX>s

where # is the transverse velocity and U(¢) = u(0,?) is the
center velocity. Symonds [3] has shown this velocity field is
exact for monotonically decreasing pressures but only ap-
proximate otherwise. (With increasing pressures and outward
moving hinges, # varies for x < s although # is constant in
this region.) Using the assumed velocity field, the law of
momentum for half the beam about the end results in

pUIL? —(L—s)2/3]=LI/2~—ZS; (M+NU)dt @)

where I = [§2Lp(7)dris the total impulse applied since ¢ = 0,
M is the bending moment at a plastic hinge, and N is the axial
force.

For an axially loaded beam, hinge moment and axial force
are related through the yield function. In a rigid-plastic beam
with rectangular cross section, the yield condition is

L= IMI/My+(N/N)? 3)

2 Conditions for real structures wherein the rigid-plastic material idealization
is useful have been discussed by Symonds [6].

Ina rigid-plastic beam, the axial force, N, reduces the yield moment, My =
Mo(l — f(N/No)) where Mo is yield moment (with no axial force), No is yield
force (with no moment), and f'is a function of cross-section shape.

5741 Vol. 49, SEPTEMBER 1982

Fig.3 Yield surface of rigid-plastic beam

The fully plastic hinge moment or axial force in a beam of
rectangular cross section and unit width would be

M0=00H2/4, N0=00H (4)

where o, is the yield stress and H is the beam depth.

Hence, the yield condition is the pair of parabolas shown in
Fig. 3. Axial force reduces the moment at a plastic hinge. This
model of beam response is limited by the yield condition and
“flow rule” to displacements U/H =X ¥ for a fixed-end
constraint. For larger displacements with this boundary
condition, the hinge moment is zero and a ‘‘plastic string’’
deformation mode prevails [7].

The hyperbolic yield condition is shown as a solid line in
Fig. 3. Jones has shown that a square approximation to this
yield condition (the dashed line) results in considerable
analytic simplification [8]. This approximation generally has
the effect of decoupling bending and axial forces in the
yielding segments and makes these forces independent of
deformation. With the prescribed loads, forces at a plastic
hinge will be

M=M,, NXN, &)

The associated axial strain rate field will have ¢ = 0 for N <
N, corresponding to an imposed axial force at beam ends that
can move axially. When N = N,, é > Ofor —L <x < L
corresponding to beam ends fixed against axial displacement.
In the case of N = N,, Jones has demonstrated that cir-
cumscribing squares overestimate the forces and result in
smaller beam displacements than the parabolic yield condition
predicts. Likewise, inscribing squares underestimate the
forces and result in larger beam displacements than the
parabolic yield condition predicts. The difference between
these bounds on the solution would be less for N < N,. The
square yield condition approximation has been used
throughout the following analysis.

Evolution of Deformation
A solution for the initial low pressure, single hinge mode of

deformation will be

U(t) =S; ¢ cos w(t—7)dr (6a)

!
U(t)=¢—wgo<bsinw(t—~1)d7', t=t, 6b)
where ¢(2) = 3(LI(t) — 4M,t)/4pL? is the velocity
resulting from impulse in excess of the minimum required to
maintain static collapse with N = 0 and «? = 3N/pL? is a
measure of the axial force. This single hinge mode of
deformation continues until the applied pressure increases to
an extent that the condition for a rigid segment M(x) < M,
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can only be satisfied with hinges located outward from the
center. The time, f, that double hinges first occur with any
pressure pulse can be calculated from the condition
d*M(0,t) /dx* = 0 while M(0,t) = M,

30 (a
0=L%p(t,) ~6M, ~ “o- | * [LI(r) ~4Myricos w(z, = r)dr

2
0

At the end of this initial, single hinge deformation mode, for
U, = U(¢,), P, = p(t,), the transition conditions are

U,=(p,L?-6M,)/6N for N>0 (8a)

. ’ﬂ
Ua=¢a—w50 ¢sin w(t, —7)dr (8b)
For ¢t > t,, motion proceeds in the double hinge mode until
a time, #,, after the pressure has dropped when the hinges
coalesce. During the double hinge phase of motion

. t
U(t)=U,,+U,,(t—t,,)+S’ (I-1,)/2pLdr (9a)
a

Uty=U,+(I-1,)/2oL, t,5t=Z, (9b)

With the rigid-plastic material and the assumed velocity field,
all deformation occurs at the plastic hinges although M (x) =
M,, N(x) = Nforx < s[7]. The hinge position during ¢, < ¢
< t, can be calculated from equation (2).

. . t .
s/L=1-[BU-2(U,~ ¢+, +w25: Udn)/U1V2  (10)
a

By setting s = 0, the time, ¢,, of hinge coalescence at the
center is determined.
. . p
0=, ~Un) ~ (b=8) +a?| "Uar  ap
a
The final stage of deformation, f, < ¢ = ¢, is again in the
single hinge deformation mode. Center velocity will be

. t
U= _“’250 Udr+é—ry, t,=tS1 (12a)

y .
'y=—w2S0 Udr+¢,—-U, (12b)

Recalling the expression for U,,
Y= Ub - Ua
is the change in central velocity during the double hinge
deformation mode. Solving for the center displacement,
H

U=S0 (¢—y)cos w(t—7)dr, 1,515 (13)
The time when motion stops, f;, is obtained from the con-
dition that beam velocity goes to zero.

i
0=¢—’y—w§o (¢p—vy)sinw(t,—1)dr (14)

This final time depends on the entire history of loading
whereas, without an axial force, it is only dependent on the
total applied impulse.

The final center displacement given by equation (13) with ¢
= t; applies to general pulse shapes resulting from positive
applied pressures. The only restriction on shape is to pulses
that result in only a single period of time in the double hinge
deformation mode. Pulse shapes that maximize this center
displacement when a specified impulse is imparted to the
beam can now be found.

Best Pulse Shape for Specified Impulse

An impulsive pressure causes the largest deformation of
rigid-plastic beams from a specified applied impulse.
This statement follows from determining the impulse

Journal of Applied Mechanics
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function that results in an extremal for the final center
displacement U(¢;) = b.
i
6=S0 (¢—7v)cosw(t,~1)dt (15)
Since the pressure applied to the beam is restricted to

positive values, the applied impulse is a monotonically in-
creasing function of time.

051(t) 21, 16)
This inequality constraint augments the relation for the final
beam center displacement. A technique for solving con-
strained optimization problems of this type, called the slack-
variable method, was suggested by Valentine [9]. Defining a
new constraint variable, V, where

V2=I(I,~1) 20 an
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an augmented functional can be formed from (15) and (17).
The integrand of this functional is

F= (LI—4Myt—4pL2y/3)cos w(t,—t) + NI (I, —I) =V 2]
(18)

where AN(¢) is a Lagrange multiplier. In this formulation,
dependence of the limit of integration, #;, on the control
function, f(¢), can be eliminated by a transformation on
time, ¢ = Bf,, so that the time variable has values in a fixed
range 0 S 8 € 1[10]. After this transformation, the range,
t;, can be regarded as a parameter with the result

1
o= FU®), Va8 (19)
where
F=[LI-4Mqt,8—4pL?y/3]t coslwt, (1 - B)]
FNB I —I) V7] 20)

Euler equations for variables I and V (which are necessary
conditions for an extremal) are

0=Ltscos wty (1 —B) + (I —2I) @1
0=2\V 22)

To satisfy the second equation, either A or V is zero. Since A
= 0 results in no admissible solutions for equation (21), these
equations imply that the optimal solution is the equality
constraint associated with equation (17); I(¢) = I, for¢ > 0.
Hence, a pressure applied to a Dirac delta function in time
results in the largest deformation for a specified impulse.

Beam Response to Specific Pulse Shapes

To illustrate dependence of final deformation on pulse
shape, beam response to rectangular, triangular, and ex-
ponentially decaying pressures pulses has been obtained. In
these pulses, both maximum pressure, P, and characteristic
pulse duration, 7, are variable. (Since the impulse is specified,
higher pressure corresponds to shorter pulse duration.)
Figures 4 and 5 show the final displacement non-
dimensionalized by total applied impulse, I, = {§2Lpdt, to be
a monotonically increasing function of maximum pressure 45,
Thus, in agreement with the preceding proof, short high-
pressure- pulses are more effective than longer low-pressure
pulses.

Pulses of equal duration and maximum pressure but dif-
fering shape still result in differing final deformation. Be-
tween two triangular pulses shown in Fig. 5, the more
compact around ¢ = 0 results in more permanent defor-
mation. (In the terms of Youngdahl, the effective pressure p,
= I?/Q2f}stpdt) is larger.) The difference in effect between
the two pulse shapes is greatest for low pressures because
then, most deformation occurs while the pulse is acting

4This nondimensionalized displacement is not a monotonic function of
pressure for all load parameters, e.g., wr.
P is the maximum transverse pressure and P, = 2M,, /L2 is the static
collapse pressure.
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whereas with higher pressures, sufficient beam momentum is
developed so deformation continues after pressure is
removed.

The effect of axial force on the deformation enters through
the parameter w. Since deformation with axial force dissipates

~more energy than without, axial force reduces the defor-

mation from a specified impulse.

Conclusions

An optimization technique based on the calculus of
variations has been used to determine most effective pressure
pulse shapes for deforming beams. Results from small
deformation theory for optimal pulse shape to plastically
deform a rigid-plastic beam have been extended to include
axial forces that can arise from end restraint. Addition of a
linear function of displacement to the energy dissipation
during deformation represents addition of a constant axial
force acting on the beam. This additional load does not
change the pulse shape that maximizes deformation. With a
specified impulse, an impulsive pressure causes the largest
deformation,

The effect of the axial force is to initiate a double hinge
deformation mode at a lower pressure and, for any pressure,
to locate yield hinges closer to the ends than would occur
without the axial force. The cumulative effect is to decrease
both the total time of deformation and the final beam
displacement in comparison with an unrestrained beam.
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The Compressible Elastica on an
Elastic Foundation

The nonlinear two-point boundary-value problem describing the compressible
elastica on an elastic foundation is formulated exactly within the context of the
technical theory of bending as a set of eight first-order differential equations plus
appropriate initial-point conditions and terminal-point conditions. The problem is
then solved by a shooting method that determines two missing quantities. Graphs of
load versus displacements and load versus the missing quantities are presented for
various combinations of the system parameters. These results show that the
presence of the elastic foundation enables the member to sustain unsymmetric (as
opposed to antisymmetric) shapes in its postbuckled state, and that bifurcations
Jrom the straight configuration to symmetric buckled modes and bifurcations from
symmetric buckled modes to unsymmetric ones depend on two system
parameters—a compressibility measure and the foundation modulus. For a given
compressibility and foundation stiffness, equilibrium paths are plotted globally,
enabling unsymmetric paths to be extended from one bifurcation point to another,
with the result that the complete postbuckling process can be traced. Finally, a

discussion of path shapes as a function of foundation stiffness is given.

Introduction

The classical theory of buckling of a bar on an elastic
foundation assumes small rotations of the cross sections and
neglects axial strain (compressibility) at the axis of centroids
(also called the “‘center line’’) of the bar. For a prismatic bar,
it consists of a linear fourth-order differential equation, the
eigenvalues of which are the buckling loads corresponding to
the number of half waves into which the bar buckles. An
energy solution of the problem with this same level of ap-
proximation is given by Timoshenko and Gere [1]. A recent
paper by Kuznetsov and Johns [2] utilizes the classical fourth-
order differential equation to study the initial postbuckling
behavior of an incompressible beam-column on an elastic
foundation.

Although the linear theory is adequate in many practical
problems, it is incapable of dealing with the postbuckling
range, where interesting events such as bifurcations can occur.
In certain geophysical applications, where plates constrained
by a surrounding matrix are subjected to large compressive
forces, the compressibility may have a significant effect, and
the postbuckling behavior may determine the final outcome
of events.

A study of the effect of compressibility on the elastica
without any transverse forces acting was published by
Huddleston [3]. Two related papers by the same author
followed—one on an incompressible prebuckled arch with
transverse (vertical) loads acting [4], and one on a com-
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pressible prebuckled arch also with transverse loads acting [5].
The present paper, an extension of those investigations,
contains a formulation of the theory for a compressible
elastica with transverse forces acting, and deals specifically
with the problem of the elastic foundation. The theory im-
poses no restrictions on the size of the displacements and
hence makes possible an analysis of the entire postbuckling
range. It combines a corrected moment-curvature relation
with unrestricted equilibrium equations and furthermore
accounts for the effect of center line stretching on distributed
force intensities.

The Boundary-Value Problem

Figure 1(@) shows a highly buckled member that is assumed
to be constrained by a reactive foundation (symbolized by a
spring). The x-axis is taken along the undeformed center line
(axis of centroids) of the member, the coordinate x being used
to locate a generic cross section at D that displaces to D’ (with
coordinate §) during the deformation. In some applications,
the force P is an applied force producing a displacement é. In
others, 8 is an impressed displacement causing a reactive P.
The displacements at D’ are u, and u,, the inclination is 6,
and the distance along the center line is 5. Figure 1(b) shows
an elemental length ds (originally dx) located at D’. It carries
a normal force N, a transverse shear Q, and a bending couple
M, as well as distributed forces p, and p, per unit of original
length.

The exact differential equations (exact within the technical
theory of bending) are obtained by modifying the classical
Bernoulli-Euler formula for axial strain, expressing the exact
geometric relationships for the displaced element, and
utilizing the differential equations of equilibrium derived for
the deformed and displaced element, as was done in [4]. The
complete system of equations is as follows:
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A
Vx

(b}

Fig. 1 The compressible elastica constrained by a reactive foun-
dation. (a) Entire strut. (b) Elemental length ds at pointD’.

@ %’:—y=(l+%>sin0 :

3) —%:(1+%)cos€ :

W 2o ! “4)
s) %=§§—1 :

6) %:—Q%—px cosf—p, sind |,

@) %%=N—Z% —p, sinf+p, cosé ,

where E is Young’s modulus, 4 is the cross-sectional area,
and I is the moment of inertia (all three of these parameters
may vary with x).

The foregoing is a general formulation which includes
distributed forces with both x and y-components and allows
for any type of foundation medium. In the problem con-
sidered in this paper, however, it is assumed that during

deformation the foundation springs shift freely in the x--

direction so as to remain vertical and exert only y-forces, but
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that they remain attached to the member at fixed points along
the center line. In symbols,

=0 ,
py=—ku, |, (B)
RHA =P ’

where k, is the foundation modulus in units of force per unit
of displacement per unit of original length (k, may still vary
with x). It is obvious from equations (B) that the foundation is
now assumed to be of continuously reacting type and not like
a set of discrete springs. It is also assumed to be a linear
foundation, although any other type of elastic response could
be easily incorporated into the solution procedure. Finally,
the foundation is assumed to be of the Winkler type (i.e., the
reactive forces at adjacent points are not coupled as in a
continuous medium). ’

The boundary conditions at 4 and B’ can be stated as
follows:

1) 60 =6, 6(L)=? "

@ u,© =0 u, (L) =0

3 &0 =0 E(L)=1

@ s(0) =0 s(L)=7 + (C)
(%) u,(® =0 u,(L)=?

(6) NO) =-—Pcosfs—Ry, sindy  N(L)=?

(7) QO =-Psinf,+Ryy cosfy  Q(L)=?

8 MO =0 M(L)=OJ
Method of Solution

The boundary-value problem formulated in the preceding
section can be solved using a shooting method by noting that
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Fig.3 P-écurves for C = 0.001 and various values of K;

there are two missing input quantities, 64 and R, needed to
create a complete set of initial conditions, and that there are
two terminal conditions, on u, (L) and M(L), which supply
target values. All solutions in this paper have been obtained
by using a two-level regula falsi to systematically adjust the
two input quantities until the two output quantities are within
prescribed tolerances of their target values, and the errors in
the computed points have been made so small as to be totally
indiscernible on the resulting graphs.

Results

The example chosen in this paper takes I, A, and k, as
constants in x (say Iy, Ay, and &/, respectively). All variables
are nondimensionalized in appropriate ways, and, in the

process, two-dimensionless system parameters emerge: a
compressibility measure defined by
Iy
C= , D
A, D)
and a foundation modulus defined by
k,L*
K= L E
= "y, (E)
To nondimensionalize the load P, the Euler load defined by
w2 EI
Py=—7 (F)
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is used. Finally, all displacement quantities with dimensions
of length, such as the y-deflection A of the midpoint of the
strut, are nondimensionalized by dividing by the original
length L.
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Fig.7 Global P-4 curves for C = 0.001 and K; = 100.0

Figure 2 shows curves of load versus midpoint displacement
for C = 0.001 and various values of K. All of these curves
represent buckled shapes with symmetry about the midspan.
Figure 3 shows curves of load versus axial displacement for
the same cases as Fig. 2. On it appear the bifurcation points
where the deflected position leaves the straight position and
where unsymmetric modes branch off from the symmetric
modes for the cases K, = 100.0 and K, = 400.0.

The stability or instability of the various equilibrium states
can be determined from Fig. 3, which shows the applied force
plotted against its own displacement. Thus, the area under the
curves represents the total energy added to and stored in the
system (consisting of strut and foundation springs). The
system will follow the path that minimizes this energy unless
prevented from doing so by external constraints.

For example, under ‘‘testing machine’’ conditions, in which
6 is impressed and P is measured, the straight member
(identified by the straight line in Fig. 3) is a stable equilibrium
state until the first bifurcation is reached, after which the

580/ Vol. 49, SEPTEMBER 1982

straight configuration (corresponding to the continuation of
the straight line) becomes unstable. Similarly, the symmetric
deflected shape is a stable state until the next bifurcation point
is reached, after which it also becomes unstable and the
unsymmetric shape becomes the stable configuration.

Figure 4 shows curves of load versus axial displacement in
the case of symmetric configurations for K, = 100.0 and two
values of C.

Figure 5 shows curves of load versus end rotation for C =
0.001 and three values of K, while Fig. 6 shows curves of
load versus dimensionless end reaction for the same three
cases. Values of 6, and Ry, determined from these figures
allow one to assemble a full set of initial conditions for an
initial-value problem, which, when solved, produces a
complete description of the member in its deformed state.
From this solution, all quantities of interest can be deter-
mined.

The bifurcations mentioned previously appear again in
Figs. 5 and 6, first from the straight configuration (vertical
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Fig. 10 Global P-Ry, curves for C = 0.001 and K; = 100.0

axis) to a symmetric deflected shape (curves intersecting the
vertical axis) and then from the path of symmetric shapes to a
path of unsymmetric shapes. The curves for the unsymmetric
mode are plotted to the point where the strut reaches a self-
equilibrating configuration (force P zero) that is symmetric
with respect to the x-axis in Fig. 1.

To understand how the member arrives at that state, and
what happens subsequently, it is necessary to recognize that at

Journal of Applied Mechanics

each bifurcation point there are two alternative branches on
the bifurcated curve that the system may follow. Fur-
thermore, there are many possible configurations cor-
responding to reflections and inversions of the buckled strut
about the horizontal and vertical axes, as well as to multiple
values of 6, obtained by adding and subtracting multiples of
2. All of this is best illustrated by plotting the P-6,4 curves in
a global fashion, as is done for the case of C = 0.001 and K
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= 100.0 in Fig. 7. First consider a symmetric shape produced
by a force P/Py with absolute value 1.61 just before the
system bifurcates to an unsymmetric path. Figure 8 shows
four possible configurations corresponding to four regions
correspondingly labeled in Fig. 7. Now suppose that the
system is in Region I of Fig. 7 and reaches the bifurcation
point C. Figures 9(a) and (a’) show two possible shapes after
bifurcation, when the force has decreased to 1.60 along either
of the unsymmetric paths CBA and CDE in Fig, 7. Thus, if
the system follows path CBA, it will successively achieve the
shapes illustrated in Figs. 9(b)-(g), all occurring while the
force P is decreasing. The case in Fig. 9(d) is the self-
equilibrating, symmetric configuration mentioned previously.
After that, the force required for equilibrium becomes
negative (i.e., acts toward the right on the moving end). If the
force decreases still further, while the moving end continues
toward the left, the system will achieve the shape of Fig. 8(c)
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Fig.11 Global P-5 curves for C = 0.001 and K¢ = 100.0

when P/Py is at —1.61. As in the classical treatment of the
elastica, it is assumed here that the moving end of the member
can pass the fixed end.

Figure 10 shows global curves for load versus end reaction
for the same combination of parameters as the previous three
figures, with the unsymmetric path discussed before again
labeled CBA. Figure 11 shows global curves for P/Py versus
6/L, where & is the displacement of the moving end. Path
CBA is also labeled in this figure. Under testing-machine
conditions, in which é is impressed and P measured, one can
trace the entire buckling process from Fig. 11. The system
starts at the origin. From there, the force builds up to just
over 2.0 while the member remains straight, and then drops
back to about 1.61 as the member buckles into a symmetric
shape. It drops still further to zero and then becomes negative
after the member has bifurcated to an unsymmetric shape. At
about —1.61, the member again becomes symmetric and
remains so while the force drops to just under —2.0. At that
point, the member becomes straight again as the force in-
creases rapidly to zero, leaving the member unstressed and
with 8/L at exactly 2.0. The path segments followed in this
sequence represent stable equilibrium states.

It is apparent from Figs. 5 and 6 that the curves for K; =
100.0 cross the horizontal axis only once, while the curves for
the other two cases cross it twice. This means that the other
two experience a self-equilibrating configuration that is not
symmeric about the x-axis before going through a negative-
force phase and returning to zero force with a shape that is
symmetric about the x-axis. Subsequently, they go through a
positive loop before continuing on to the bifurcation point in
the negative-force region.

To illuminate the differences in behavior, Figs. 12 and 13
show graphs of end angle and end reaction, respectively,
plotted against K, for the condition P = 0 (C again=0.001).
For K, below about 136, there is only one intersection with the
zero-force axis. At about 136, there is a “‘bifurcation’’ to two
intersections. At K, = 349.80, the two intersection points
with the 64 -axis coincide.

A final comment about Figs. 12 and 13 is that at K,=0
there is no reactive foundation at all. In that case the self-
equilibrating shape is the same as the closed-loop elastica
without foundation rotated 90 deg.

P=0.0
5 /\ \ €=0.004
08 \
\——~ Member unsymmetric
0.7 N
\\L
—
/ \
L1 Member symmetric Haa
about x~axis T\
06 \
05 -
0 100 200 300 400 Kf

Fig. 12 . Variation of 04 with K; for self-equilibrating configurations
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1 Introduction

Cable kinking is well recognized as a significant problem in
the use of cables for oceanic applications. In oceanic ap-
plications, a cable loop occurs because of torsional stress due
to the helical strength member when tension on the cable is
temporarily reduced. When the cable is retensioned, the loop
will decrease in diameter, will kink, and may cause the cable
to be damaged.

Little investigation has been reported on this cable kinking
phenomenon, and the relation between cable mechanical
properties and cable kinking has never been clarified com-
pletely. Previous analyses [1-4] using force equilibrium were
reported from a viewpoint that the cable loop would kink or
reopen. These results only show the tendency that cable
kinking seldom occurs when the cable is easy to twist and hard
to bend. However, these analyses could not clarify the un-
stable phenomenon of cable kinking completely. Ross [5]
investigated cable loop formation due to torsional stress from
the energy transfer viewpoint and clarifies the condition of
cable loop formation.

The present paper shows that the cable loop formed due to
torsional stress could then tighten or reopen under the sub-
sequent energy transfer. Results are obtained by a principle of
minimum potential energy to determine cable loop stability.
Results show that kinking occurrence mainly depends on
residual twist in the cable loop.

2 Cable Kinking Phenomenon

Figure 1 shows a kinking phenomenon diagram. As the
submarine cable strength member employs helical stranded
wires, torsional strain is induced under tension. Then, if the
tensile load is decreased, perhaps due to wave motion, a
reversed torsional load is induced which also can cause a loop,
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Cable Kink Analysis: Cable Loop
Stability Under Tension

Submarine cable kinking is a continuing design problem. Cable kink occurs when a
cable loop forms due to torsion and tension action, and then tightens under sub-
sequent tension increase. This paper describes cable loop stability under the sub-
sequent tension and clarifies the kinking mechanism. Results show that kinking
occurrence mainly depends on residual twist in the cable loop.

(0} = = —
Twisted
(b)
P —F
(C ) -t [ ‘@ ] —e
P P
Fig.1 Kinking phenomenon diagram

as shown in Fig. 1(b). This phenomenon is instability from
transfer of torsional strain energy to bending strain energy,
because a cable loop absorbs one twist of the torsion during
formation. After cable loop formation, as shown in Fig. 1(d),
the loop will decrease in diameter and kink, shown in Fig.
1(c), if the loop is a stable loop when the cable is retensioned.
However, when bending strain energy increase and the cable
loop becomes unstable in the process of decreasing in
diameter, the cable loop will reopen and strain energy
transfers back from bending strain energy to torsional strain
energy.

This paper investigates cable loop stability in the process of
decreasing in diameter, going from Fig. 1(b) to Fig. 1(c), and
clarifies the cable reopening condition that the cable loop is
unstable in the process of decreasing in diameter.

3 Cable Kink Analysis

To simplify the problem, cable kink analysis uses the
following assumptions:

(1) Cable weight is neglected.

(2) Cable elongation under tension is neglected.
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(3) Cable deformation is exactly elastic.

The coordinates used for the analysis are shown in Fig. 2.
Tension P applies parallel to the x axis (¢ =0). The cable loop
crossing point is at x=0, §= — /2. It is assumed that the
cable loop transfers from the condition, shown in Fig. 2(a),
which only stores bending strain energy to the condition,
shown in Fig. 2(b), whose part of bending strain energy
transfers to torsional strain energy when the crossing point of
the cable loop shifts a little in the z direction.

Cable loop shape is assumed to be as follows.

X=(x,z) = (rcos, rsind, z) 1
[Célllrvature k and torsion ¢ are obtained using (1) as follows
@R HE P+ @V +407) +12
=2+ @)= (P 27272 e [P+ (r)?
@Ry @
d=12' {r2—4rr" +30")Y2 —2r'r" +6(r')*)
+z27(@rr’ +rr” =3rr")+z7 {r2 e’ +2(r')? 1]
o[r+A4r2(r' 2 =23 " +r2(r' 2 +r2( (2?2 + (z')* 117 (3)
where ()’ and ()" indicate d/d () and d%/do*(),
respectively. Twist of the cable loop is obtained as follows [7].
T=10+¢ @)

where 7, indicates residual twist which the cable loop cannot
absorb when it forms from the twisted cable straight con-
dition shown in Fig. 1(@) in the fixed end condition.

Strain energy in the cable loop can be calculated using
equations (2) and (4). Banding strain energy V; and torsional
strain energy V', in the cable loop are defined as follows.

L
= — 2
Vs SO 2E1,< ds (5)
L 1 5
VT_SO ~2—GJT ds (6)

where EI is bending rigidity and G/J is torsion rigidity.

Displacement AL of the cable end from the condition
shown in Fig. 1{@) to the condition shown in Fig. 1(b) is
defined as follows, if ds, is the x-direction vector of the
segment vector ds of the line:

L
AL=L,-L, L0=H0dsx . 9

Work W done by the external force P is obtained as follows,
assuming cable tension P is constant during the loop for-
mation:

W=PAL 8)

Potential energy E of the cable loop, shown in Fig. 2(b),
due to general deformation by both bending and torsion, is
given by

E=Vy+Vi—W 9)
Cable loop stability is investigated using this potential energy

E.
Cable loop curves are assumed to have the following forms:

r= Y af,(0), Z= ), big(0)
; L

i=1

(10)

where f;(6), g;(6) are functions to be specified. Cable loop
equilibrium is obtained by the following simultaneous
equations using (9).
oE oE
— =0, —=0
aa,' 3bj

noj=11, ... .m.

an

wherei=1,2, ...
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{a) No cable loop reopening

(b) A little cable loop reopening
Fig.2 Analysis model

Equilibrium stability (X=X,) determined from (11) is in-
vestigated by second differential calculus for potential energy
under the criterion

i X=X, isin stable equilibrium, if Fyox,>0
ii X=X, isinneutral equilibrium, if Fy_x, =0
fii X=X isin unstable equilibrium, if Fy_x, <0

where F'is the determinant

_| 0*E (12)
| 3a,0b,
4 Approximate Numerical Results Using Helix

Assumption

Although equation (10) is considered as the general
deformation of the cable loop, only the first term in (10) is
considered in order to simplify the problem for the cable
shape shown in Fig. 2. Therefore, the following displacement
is assumed:

z=R66, O=b=nw
r=R {z=0, - 2<6=<0 (13)
z=Rér, wn=<l<-7

where displacement in the z direction is assumed to be very
small for simplicity, which is 0<é<1. This assumption
applies just when the cable loop begins to reopen. Outside this
cable loop region, the cable shape is assumed to be straight for

simplicity.
The curvature « is obtained from equations (2) and (13) as
1 1
2= — ———, 0<<
“TR 1+ b<m
1 T 3
x2=ﬁ, —550<0,7r<05;j7r (14)

The torsion ¢, which is induced by cable loop reopening, is
obtained from (3) and (13) as

1 &
(b—-]—e'w, O<sfs7w
=0, 0<0, =w<# (15)

The differential is length ds, obtained as follows:
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d0[R2 (dz)] _ {R(1+62)‘/1d0,05057r 16

dao Rd§,6<0,m<8

Using equations (5), (6), and (14)-(16) the bending strain
energy Vp and torsional strain energy V', are obtained as
follows, considering that curvature in the straight cable (6 < —
w/2, 3/2w <) is zero and that cable torsion of the region
(6<0, 7<) isonly 74:

1 =EI

V=2 — (1+
=35 g 1+

1 wEl

52)-32 4
) R

an

6 2 1
Z 2y1/2 4 - 2 1
V= 27rGJR(R1+62+'rO) 1+6) +ZGJ'rO L, (18)

where
Li=L- So (1+6%)"2Rd8

The work W is considered to be divided into W, and W,.
W, indicates the work during cable loop formation from the
condition shown in Fig. 1(@) to the condition shown in Fig.
1(b). W, indicates the work during a small cable reopening
from the condition shown in Fig. 2(a) to the condition shown
in Fig. 2(b). W, is obtained as follows:

27
W, =P<-— So RdO) = —2[IRP (19)
The angle B of segment motion in the z direction during a
small loop reopening is given as follows, assuming § to be
very small:
daz
=— 20
b rdf @9
W, is obtained as follows from (20), considering segment
displacement in the x direction:

w, =PSO (cosf3— l)cos(; +0) ds

LS| d 2
=PSO 3 (—E—) sinfds = PR§2(1 + %)% @y

rdf

The potential energy E is defined as follows, using (17)-(19)
and (21), and considering small terms up to the third order:

wET < 3 ) xGJ

E= 1——62
R 2R

— 8+ —;— 7GJTo8(1 — 8%)

1
+ 2 GJry*L+27PR—PR&* (22)

From (19), equilibrium of the cable loop is obtained from the
following simultaneous equation:

oF 3nET wGJTy ©GJ7, < 3 2)
— = — =6 )—2PR
% 7R o+ R o+ 2 1 5 & 8
=0 23)

7rGJ

oE 1rEI< 3 > 2P =0

U -5
aR R? 4(S

Stability of the equilibrium determined by (23) and (24) is
investigated using (12).

@4

*E J’E
382 380R
(25)
3*E 3*E
3RS OR?
Equilibrium stability depends on the sign of F as noted at (12).

4.1 Results When 1,=0. In this case, the cable loop
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does not have residual twist. Equilibrium is determined as
follows, using (23) and (24).

6=0 R=~EI/2P (26)
Then, at equilibrium, Fis given by
T2 GJR? 3 1\ EI
Y {1 - (E + }) EJ} @7

and we have the following cases:

EIl  2n
| if F>0, thatis — < —="
P ats = <312

then 6=0 is a stable equilibrium. Therefore, the cable loop
shown in Fig. 2(a) is stable and a kink will occur.

EI 27
ji if F=0,thatis — =
vl 8G6IT 32
then 6 =0 is a neutral equilibrium.
27

EI

iii if F<O0,thatis GJ > )
then 6=0 is an unstable equilibrium and the cable loop is not
stable. The cable loop deformation transfers to another stable
equilibrium, which is determined by solving the problem
exactly without the assumptions of equation (22). In this case,
the loop will not kink and reopen, since the stable equilibrium
may be § >0, because equilibrium does not exist (6 <0).

Equation (27) indicates that kinking is difficult when bending
rigidity (EI) is large and torsion rigidity (GJ) is small. This
result agrees with results in references [1-4].

The following relation is obtained [8] when the cable is a
homogeneous elastic body:

E

= 28
2(1+v) @8
For a circular cable of diameter d, I and J are defined as:
I=7d*/64 J=nd*/32 29)

Introducing (28) and (29) into (27), F<0 is obtained when
Poisson’s ratio » is assumed to be 0.3. This result indicates
that a homogeneous elastic cable will not kink without initial
twist.

4.2 Results When 7, >0. In this case, the cable loop has
residual twist 7. Equilibrium is determined by solving the
simultaneous equations defined by (23) and (24). However, if
the second small terms (§?) is neglected in (23) and (24) to
simplify the problem, then

- g GJ,
Ro=~EI/2P ,8,= . - (30)
xGJ 3wEI
- —2PR
( R, 2R, 2 ")

Using (28) and (29), the following relation is obtained is cable
is a homogeneous elastic body:
GJ EI
TGT 3L bRy <0
R, 2R,
Equation (31) indicates that the equilibrium 6= §, determined
by (30) has §, positive. Equilibrium stability at §=4§; is in-
vestigated using (25) rewritten as follows, considering (30)
and neglecting the second small term (83):
2wEI 3zEl wGJ 3
F)d=6,= (—- -~ xGJ 6—2PR>
O RIR T R TR, TR, TR

<0 (32)

@31

" This result indicates that equilibrium at =8, is unstable.

Therefore, there is no stable equilibrium in §>0 in the
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neighborhood of =0, when the cable loop has residual twist.
However, experiments show that a cable loop has stable
equilibrium in the neighborhood of §=0 when accompanied
by cable loop rotation as shown in Fig. 3.

Cable loop rotation is investigated using potential energy.
When the rotation is ®, work W, done by external force is
defined by i

W, = — Pd® 33)

It is assumed that cable torsion ¢ caused by rotation angle ®
occurs equally throughout the cable loop, i.e.,

&
*= 2R
Using (34), torsional strain energy V' is obtained as follows.

34

2n 1 1
Vi= So 3 GJ (1, — ¢)*Rdo+ 3 GJ73L, 3j5)
where
2%
L2 = L - SO Rdo
Bending strain energy Vj is defined by equation (14) as
aEl
V= R (36)

Potential energy E is determined as follows, using (19), (33),
(35), and (36):
E= VB+ VT— Wl - Wz

«El  GJI®?

1
= — (i3] — 2
R + AR GJ®7, + > GJ73L+27RP+ Pd® (37)

Equilibrium is obtained as follows, using equations (11) and
@37N:

B, = g’;" (GJro— Pd) (38)
EI 172
Ro= [ZP— (GJr, —Pd)Z/GJ] 39
Stability of this equilibrium was investigated, using (12)
Fnb:cpo »R=Ry =% 0 (40)
0

Equation (40) indicates that the equilibrium determined by
equations (38) and (39) is stable. Figure 4 shows an outline of
the potential energy change when GJ7,>Pd. In this case,
when the cable loop has initial twist, Fig. 4 shows that stable
equilibrium exists where the cable loop rotates at angle &,.
Figure 4 also shows that the equilibrium at §=46,>0 is un-
stable and the cable loop would not reopen from 6=0.
Equation (38) indicates that the rotation ®, decreases with
increasing external force P. As a result, the sign of rotation ®
becomes minus, when GT7, <Pd. In this case, the potential
energy change outline is shown in Fig. 5. This figure shows
that stable equilibrium exists at =0 between the cable loop
rotating region and the cable loop reopening region. These
results indicate that cable loop would kink when the cable
loop has residual twist since there is no stable equilibrium for
§>0in the neighborhood of 6=0.

4.3 Initial Displacement Effect. Numerical results show
that the cable loop reopens and would not kink if the cable
loop completely absorbs the cable twist, which indicates that
the cable loop has no residual twist, if the cable is a
homogeneous elastic body. However, if the cable loop cannot
absorb the cable twist completely, which indicates that cable
loop has residual twist, then the equilibrium shown in Fig.
3(a) is stable and the cable would kink. However, some ex-
periments, which are shown in Fig. 7, show that cable loop
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Fig.4 Schematic figure of potential energy change

E
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\/7

Stable equilibrium >

Rotating region
of cable loop

Fig.5 Schematic figure of potential energy change

reopens, even if cable loop has residual twist, when the cable
loop diameter decreases due to external force. This is opposed
to numerical results. The reason can be explained by the
following analysis.

Even if cable loop does not reopen, initial displacement in
the z direction exists due to cable diameter d. This initial
deformation 8, is determined by (13) as

6, =d/mR (41)

Therefore, when the cable loop forms as shown in Fig. 1(b),
there exists a § value, determined by (41), which is not actually
§=0. Equation (41) shows that 8, increases and approaches
unstable equilibrium at §=4,, when the cable loop radius
decreases due to external force. When 6, becomes larger than
8, the equilibrium transfers to another equilibrium state,
which exists in the 8> 8, region, and the cable loop would
reopen, which is shown in Fig. 5. The condition that the cable
loop reopens is obtained by the condition 8 <6,
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Fig.6 Cable loop displacement modes

Fig.7 Experimental results for displacement modes

iy
- = GJTO
d 2
= 42)
7R, ( *GJ 3AxEl PR )
R, 2R, 0

Equation (42) is rewritten, using (30), as follows.

R <[2{(1+3 EI 1} d]l/z

0 w\n% 2/ GJ To
These result shows that the cable loop reopens when the cable
loop radius satisfies the condition determined by (43) under

the tension if the cable loop has residual twist.
New parameters are defined by the following equation:

43)

™

4

o= ———————,
( 1 4 3> GJ
T 2 EI
T};an cable loop stability is divided into three regions, when
azZl.

Py=GJry/d (44)

a When P<P,, the cable loop rotating deformation, as
shown in Fig. 3(a), is stable. In this case, the rotation angle &
decreases, according to the increase in external force.

b When P, <P < aP,, the condition (&=0), shown in Fig.

588/ Vol. 49, SEPTEMBER 1982

1(a), is stable. The cable loop diameter decreases according to
the increase in external force.

¢ When P> «Py, the cable loop reopens.

These displacement modes are shown in Fig. 6(a).
Cable loop stability is divided into two regions, when e < 1.

a When P<aPy, cable loop rotati’ng deformation is stable.

b When P> aP, cable loop reopens.

These displacement modes are shown in Fig. 6(&). If the cable
is a homogeneous elastic body, then a <1 is obtained by (28)
and (29) and results in the second case apply.

This investigation shows that the cable loop reopens if it has
residual twist. However, this result does not mean that the
cable loop will not kink. Kinking depends on the cable loop
reopening radius determined by (43). The cable receives
damage because of kinking only when the cable reopening
radius decreases and the cable loop deformation falls into the
plastic range. Then, bending rigidity (£]) decreases suddenly
and it becomes more difficult to reopen the cable loop.

5 Discussion and Conclusion

Figure 7 shows experimental results for cable reopening
displacement modes. Test samples were jacketed optical fibers
of very small diameter which are easy to investigate. Ex-
perimental reopening modes agree with calculated
displacements shown in Fig. 6. In these displacements, the
cable loop reopening radius is an important factor in cable
kink phenomenon. When the cable loop reopens in elastic
deformation, the cable loop does not receive damage.
However, when the cable loop reopening phenomenon gives
rise to plastic deformation, the cable is easy to kink and
receives damage. Here the bending rigidity (EI) of the cable
decreases suddenly and cable kink occurs easily. Calculated
results show that the cable reopening radius decreases ac-
cording to the increase of residual twist. This result means
that cable kink occurs easily when cable has residual twist.

Since this paper reports investigations on kinking
mechanism using several assumptions to simplify the
problem, it is necessary to compare the theoretical results with
experimental results in detail and to correct the kinking model
in order to clarify the kinking mechanism completely. It is
also necessary to investigate cable loop formation, because
residual twist on the cable loop is related to cable loop for-
mation, which is the most important factor in cable kink
occurrence.
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An Improved Semi-Implicit Method
for Structural Dynamics Analysis'

A semi-implicit algorithm is presented for direct time integration of the structural
dynamics equations. The algorithm avoids the factoring of the implicit difference
solution matrix and mitigates the unacceptable accuracy losses which plagued
previous semi-implicit algorithms. This substantial accuracy improvement is

achieved by augmenting the solution matrix with two simple diagonal matrices of
the order of the integration truncation error.

1 Introduction

The direct time integration of large structural dynamics
equations is a challenging problem because the task requires
the extensive use of both computer resources and engineering
manpower. There are basically three approaches: implicit,
explicit, and semi-implicit methods. In implicit methods, the
new state vector is obtained by solving the coupled difference
equations, which involves the factoring of the solution matrix
and back and forward substitutions. It is hoped that the price
paid for such extensive calculations per each time increment is
unconditional stability without the restriction of the time
increments. In explicit methods, the new state vector is
computed by using the known state vector sets plus the forcing
function vector. Hence, the calculation sequence is con-
siderably simpler than for the case of implicit methods.
However, the maximum time increment for all the explicit
methods is restricted due to the inherent stability limits.

Recently, implicit-explicit methods have been proposed by
several investigators [1-7], to exploit the different spatial
distributions of low and high-frequency response patterns in
the structure. Here the high-frequency domains (elements,
degrees of freedom) are treated by implicit methods while the
dominant low-frequency domains are treated by explicit
methods. Implicit-explicit methods have thus significantly
reduced computations especially for large-scale structural
dynamics problems. However, the attendant solution matrix
pertaining to the implicitly partitioned domains still has to be
assembled and factored whenever a new step size is chosen or
a new stiffness matrix is required in nonlinear analysis.

In semi-implicit methods, the new state vector is obtained
by invoking a Jacobi-like solution procedure, thus avoiding
the matrix factoring. In that sense the semi-implicit methods
can be likened to explicit methods. The idea is then to
maintain the unconditional stability of implicit methods while
simplifying calculations as in explicit methods.
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It was shown by Trujillo [8] that his semi-implicit algorithm
is unconditionally stable provided the stiffness matrix is split
symmetrically into the lower and the upper triangular
matrices for the Jacobi-like approximation. However, the
symmetrically split semi-implicit algorithm showed an
unacceptable accuracy for practical time-increment ranges.
He then tried to split the stiffness matrix unsymmetrically,
which improved the accuracy but with the loss of un-
conditional stability of the symmetrical splitting. Park and
Housner presented an alternative semi-implicit algorithm [9],
which shed light on why unsymmetrical splittings give rise to
restricted stability limits and why the accuracy can be im-
proved by unsymmetrical splittings. They identified the cause
of accuracy degradation of the symmetrical splitting due to
the violation of rigid-body preservation requirements and
proposed a guideline on how to split the stiffness matrix in
order to preserve key rigid-body motions by unsymmetrical
splittings.

In this paper an improved semi-implicit method is
presented, which adopts symmetrical splittings of stiffness
matrix by adding two diagonal matrices which are in the order
of the truncation error of the integration algorithm. The
essential feature of the proposed algorithm hinges on the
approximate factorization utilizing the concept of penalty
matrix. Suppose one wants to solve the coupled difference
equation which is dependent on parameter 6, viz.,

A+ 8?Au-=g (1.1)
A Jacobi-like solution for (1.1) can be devised as
A+ LY+ 8 V)u=g (1.2)

where L and U are lower and upper triangular matrices,
respectively. Equation (1.2) can be rearranged in the form

I+8A+6*'Cu=g 1.3)
Hence, the factored difference equation (1.2) gives
u—0 as §—o0 1.4

unless C is singular. On the other hand if L and U are chosen
such that
Cu=0 forall & (1.5)
then one obtains
u=I+5A)"'g (1.6)

for considerably wider ranges of the parameter . This is the
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essence of the proposed algorithm. In this paper this is ac-
complished by augmenting the solution matrix by two simple
diagonal matrices, which are easy to construct.

2 Precursors of the Proposed Semi-Implicit Method

The linear undamped structural dynamic equations can be
written in the form

M ﬁ,,-f—Kll,,:f,, 2.n

where M and K are the diagonal mass, and stiffness matrices,
f is the applied force vector, u, is displacement vector, and the
superscript dot () denotes time differentiation. Equation
(2.1) can be integrated by a pair of one-step formulas

W,y =, + Ao, +(1—Ol)li,,) (2.2)
l-in+1 = lin +h(6ﬁn+l + (1 _6)ﬁn) (23)

where « and § are real coefficients, and 4 is the time step size.
Time discretizing (2.1) by (2.2) and (2.3) yields

Eu, =g 2.4)

where
E=M+58k & =afh? (2.5)
gr1 = (M - hza(l —B)K)H,] +hMZ:‘n + ahz(ﬁfn—H + (1 —"6)1:11)
(2.6)

In general, the solution matrix E as given by (2.4) is fully
coupled and consequently the implicit solution (8 # 0) of the
difference equation (2.4) require the factoring of E. To
alleviate the effort required for factoring the solution matrix
E and at the same time to preserve the unconditional stability
of the implicit integration formula, Jacobi-like solution
procedures have been proposed [8, 9]. The essence of these
procedures may perhaps be best explained from the viewpoint
of approximate factoring of the solution matrix E as
illustrated in the following.

Let us split E as
E=M + K" +§82KY .7
and rearrange (2.4) as
M+ 8K, =g, — 6*KYu? (2.8)

where K? and KY are lower and upper triangular matrices so
that

K=K’ +KY 2.9)
Note that if KY uZ term in the right-hand side of (2.8) is
predicted, the solution for u, by (2.8) requires no fac-
torization. At this point Trujillo’s method and the Park and
Housner method diverge in that the former [8] updates the
velocity and the right-hand side vectors, and alternates the
next step solution

(M+52Ku)un+1=gn+l _BZKLu‘IZ+l (210)

In the Park and Housner method [2], instead, an additional
iteration is performed for u,,, viz.,

M+5K%u,V =g, —82K’n, (2.11)
then the velocity w, is updated. For comparison of the two
methods, the Park and Housner method should use twice the
step size of the Trujillo method.

It can be shown that the Park and Housner method can be

rearranged as
M+ 8K+ 5 KEM 1KY, W =g, + KM~ 'KV (2.12)
where the velocity is updated by (2.2) and
uf,’:u,,,l (213)

and a similar expression can be derived for the Trujillo
method.
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From the viewpoint of approximate factorization (2.12) can
be written in the form

(E+5'Cu,=g, +5Cuf (2.14)
where
C=K!M~'KY 2.15)
Note that unless C is singular one obtains from (2.15)
u,—uj as —oo (2.16)

since 6* C dominates over E. Experience has shown that even
for intermediate stepsize ranges, 8*C often dominates over or
becomes of the same order of magnitude as E and con-
sequently unacceptable error makes the solution meaningless.
This dominance can be abated by employing a penalty con-
cept:

Cu=0 2.17)

This is the essense of the proposed semi-implicit method.

3 New Semi-Implicit Method

Let us rearrange (2.14) using (2.13) and modify it to the
form with a=="%

[E+5*C,]Au, =, G
where
62
g‘,,z(SMl.l,,,|—62Kll,,,1+"2—(f"+f,,‘1) (32)
1
Aun:—?(un'_un—l) (3-3)

and the velocity is updated by (2.3). In the selection of Cn the
following three conditions are imposed for stability, accuracy,
and simplicity. They are:

i C,, is symmetric.

2 The singularity requirement of €, is compromised for
computational simplicity by

¢, u,_,=0 (3.4)

3 €, is obtained from C, by adding two diagonal
matrices in the order of C,,.

The first condition implies
K =(KY)! (3.5)

The second and the third conditions are realized by in-
troducing two diagonal matrices m and k to yield

Py

52
Cou, = [m+k+(KL+ Tk)(M

52
+64m)“(KU+?k)]u,,4,=O (3.6)
Equation (3.1) can now be expressed in factored form
I+ KM (1 + 62 K¥)Au, =g, (3.7)
where
M=M+§m (3.8)
. 1 L
I(L=(KL+7k)M‘l (3.9

N N &
K=MK + k)

It is noted that the symmetricity of C,, is necessary for
stability as detailed in Section 4. The second condition C,
u,_; = O achieves a similar effect on the accuracy of the
semi-implicit solution as the singularity of C, with simplicity.
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The addition of two diagonal matrices m and k is the simplest
modification to ensure that C, u,_; = O holds (see Appendix
A for details). This completes the description of the proposed
semi-implicit method.

4 Stability Analysis

The stability of the new semi-implicit method (3.1-3.9) can
be examined by seeking a nontrivial solution in the form

1+z \*
“n+k=< 1—2 ) u,
where Re (2) <0 for stability. To this end let us rewrite (3.7) in
an expanded form with f = O

“4.1)

M+ 6°K+6°C,_)u, —u,_,)=2Mu,_, —26Ku,_; (4.2)
The appropriate formula for updating u, is:
W, =W,_; +86(, +i, 1) 4.3)
or,
w,=1u,_;—M 'K, +u,_,) 4.4)

by substituting the accelerations from the equations of motion
(2.1). The velocity term u,,; from (4.2) can be eliminated by
using (4.4) so that one obtains

M(un+l —2ll,, +un~l)+52K(un+l +2un +un—1)

+8Cp(uy g —u,)—8*C,(0, ~u, )=0 (4.5)
Now, it is noted that by virtue of (3.6) one can express
¢u,=C, 1u, ;=0 (4.6)

Furthermore, the third and fourth terms in (4.5), when
combined with (4.1) become, respectively,

1+z2

Cn(un+l_“n)=( 1—2 _l>énul1 (47)
and
N 1+z2 .
& )= (e =) Gt @

both of which become zero vectors from (4.6). This implies
that the effect of introducing the penalty matrix C does not
propagate to the subsequent integration steps. By invoking
(4.6-4.8) in (4.5) and introducing (4.1) one finally obtains

Ju, =0 4.9)
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where

J(z)=Mz* +6°K

(4.10)

since the stiffness matrix K is semi-positive definite for stable
structures and the diagonal mass matrix M is positive matrix,
J(z) is a positive polynomial. Therefore, the algorithm is
unconditionally stable for linear (or linearized) structural
dynamics systems. It is also important to point out that the
conditions (3.4) not only enhances the accuracy but also
guarantees unconditional stability.

5 TImplementation and Numerical Experiments

Even though the determination of the fictitious diagonal
matrices m and k appears to be a horrendous task, it is
relatively simple requiring about one matrix-vector
multiplication. For each ith row of (3.6) one has (see Ap-
pendix A for details)

a
am?+bm; +c+(d+am)k; + Tk,2=0 ¢
It is a simple exercise to show that there exist real m; and k;

that satisfy (5.1). In practice, three simple sets of (m;, k;) have
been considered:

if ¢=0 then m;=k;=0 (5.2)
if a=0 then bm;+dk;+c=0 (5.3)
and
if asc#0 then m;+k;=0 (5.4)
1

or m;+ —2—k,«=0 (5.5)

with constraints
M;+8m; >0, M, +8[K;/2+8(m; +k;/2)] >0 (5.6)

The present semi-implicit method was applied to solve the two
example problems in [8] and they are shown in Figs. 1 and 2,
respectively.

For the first example problem the time increment up to 4 =
0.20 gives almost no discernible error to the converged
solution. Also, the time increment # = 1.0 gives an identical
result as could be obtained by a fully implicit method, which
turns out to give about 8 percent phase error after three
periods. In addition, a normalized cantilever beam with three
equal beam elements was tested by the present algorithm. The
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maximum time increment by the central difference method is
0.32 and Fig. 3 shows two solutions for # = 0.25and # = 1.0.
Both of the results are quite satisfactory and it is expected that
the time increment margin between the explicit and the semi-
implicit methods will become wider if more elements are used.

6 Applications to Static Equilibrium Problems

The present method can be easily modified to solve the
static equilibrium equation

rip,u)=f—S) 6.1)
by augmenting appropriate o damping matrix in the form
D=aM+ 8K 6.2)

where S(u) is the internal force vector.

A preliminary benchmark experiment indicates that the
method has potential as an effective dynamic relaxation
method since the iteration steps sizes are easy to change and
the only factor for stepsize restriction is its overshoot
possibility due to large relaxation step sizes.

7 Concluding Remarks

An improved semi-implicit method is presented for the
solution of both the dynamic and static equilibrium
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equations. The method does not require matrix factorization
and hence the adjustment of the time-step increments can be
made at any step-advancing and/or iteration cycle. This is not
the case with fully implicit or implicit-explicit methods
without reforming the solution matrix and refactoring.

The unacceptable poor accuracy associated with previous
semi-implicit methods has been successfully abated without
loss of stability and without regard to matrix profile
variations. This is accomplished by augmenting the solution
matrix by two simple diagonal matrices, which are easy to
compute and are in the order of the truncation error. The net
effect is'analogous to introducing singular penalty matrix in
other physics and engineering problems such as constrained
optimization, incompressibility effect in solid, under in-
tegration in finite-element formulation.

So far the results from the simple problems are promising
and the applications of the method to nonlinear static and
dynamic problems are presently being carried out. It is hoped
that a stand-alone module based on the present method will
lead to programming simplicity and the desired reliability in
that one method is used to solve both static and dynamic
structural mechanics problems.

One potential area of the applications of the method is in
the finite element-based fluid mechanics problems. Here, the
widely known alternating direction methods are not ap-
plicable because it is not possible, in finite-element for-
mulations of fluid mechanics problems, to partition the
matrix in terms of the usual direction-sensitive derivatives. It
appears, therefore, that the present method may provide
potential computational pay-off by providing simple
triangular splittings. This and other possibilities are now
under active considerations.
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APPENDIX A
Proof of the Existence of Real Matrices m and k
The ith row of (3.6) can be written as
i—1 N
m,-u,»+k,-u,-+ EKll(E ,u,)/M + — (EK,ﬂl[)M
Jj=1 I=j
52 i-1
+ Z_:l (Kk; u,/M)+ K,,u,k /M + = EK,,u,k /M,
& .
+-iju,-/M,'=0 (Al)
Equation (4.1) can be simplified as
a
am? +bm; +c+(d+am)k; + —4—k,-2=0 4.2)
where

a = &u (4.3)

b = Mi(u;+5bg) A.4)

c = co+Mbo (4.5)

Journal of Applied Mechanics

62
d = Mu+ 5Ky + — E Ky (A.6)
=i+1
& .
E ( (E ! M+ = K,u,/M,-) (A7)
i= =j

Ki

¢ = ?l 'Z'Kilul (A4.8)

There are three cases for which the existence of real m; and k;
must be examined.

Casel c¢=0.
For this case (A4.2) reduces to
(am; +bym; + (% ki +am; +dyk; =0 (4.9)

Certainly, m; = d; =0, which is the simplest, satisfies (3.6).

Case2 a=0.

This case reduces (4.2) to linear for both m; and k;.

bm; +c+dk; =0

As long as b and d are not concurrently zero (4.10) has a
solution. ¥ = d = 0 can occur when {u; = 0,i-1, ..., N}.
For this particular case one finds from (4.5), ¢ = O.

Otherwise, either b or d can be made nonzero by adjusting 6.
In practice, this situation has rarely occurred.

Case3 a=0andc#0.
For this case there exist real m; and &; if

Q=(d+am;)* —(am? + bm; +¢) (A.1D)
is non-negative. This requirement is simplified to
Qad—bym; +(d* - c)=0 (A.12)
which can always be satisfied unless
(2ad-b)=0and d* —c=<0 (A.13)

Again this indefinite case can be avoided by varying
parameters if necessary. This proves the existence or real
augmenting matrices m and k.
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Introduction

The Laplace transform is well known as an effective way to
obtain a solution of ordinary or partial differential equations
by converting them into algebraic equations. Tables may be
available for the inverse Laplace transform when analytic
computations are applied to comparatively easy differential
equations. However, cases may occur where this procedure is
no longer applicable because of the difficulty of calculating
residues. In other words, the inverse Laplace transform
cannot often be solved analytically even when a solution of
the ordinary differential equation resulting from the Laplace
transform of a partial differential can be found. For this case
a numerical calculation of the inverse Laplace transform must
be applied. As far as the authors know, examples of
numerical analysis with the Laplace transform have been very
few. Krings and Waller [1] gave a numerical solution of linear
partial differential equations with two independent variables x
and ¢ applying the method of Laplace transform coupled with
an algorithm of the Fast Fourier Transform (FFT) developed
in 1965 by Cooley and Tukey [2]. Manolis and Beskos [3]}
applied the Laplace transform to a solution of dynamic stress
concentration around holes. Their method consists of ap-
plying the Laplace transform with respect to time to the
equation of motion and solving the formulated equation
numerically in the transformed domain by the boundary
integral equation method.

On the other hand, the authors have been deeply concerned
with an instability of toroidal field coils for Tokamak-type
fusion reactors [4]. The magnetoelastic buckling of the
toroidal field coils was first proved by Moon [5] to be closely
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Finite Element Analysis of
Vibration of Toroidal Field Coils
Coupled With Laplace Transform

A numerical analysis of a vibration of toroidal field coils in a magnetic fusion
reactor is shown here on the basis of the finite element method coupled with Laplace
transform. Lagrangian consisting of kinetic, elastic strain, and magnetic energies
was utilized to deduce equations of motion of the coils. The equations were solved
numerically by applying the Laplace transform to a formulation with respect to
time and the finite element method to one with respect to space. The Fast Fourier
Transform algorithm was utilized for a calculation of the inverse Laplace transform
to obtain a nodal vector of the coil’s displacement in the original domain.
Numerical results reasonably explain a dependency of the coil current on a
Jrequency of the coil.

related to a vibration characteristics of the coils in a magnetic
field. Miya and Uesaka [6] first showed a finite element
analysis of a harmonic vibration of the toroidal field coils that
have lateral supports. The vibration of the toroidal field coils
in a strong magnetic field is too complicated in geometry and
boundary conditions to solve analytically, which suggests
application of the finite element method. The analysis of the
harmonic vibration of the toroidal field coil gives us only a
series of natural frequency from a solution of an eigenvalue
equation. An extension of the work requires us to develop the
numerical method to solve a forced vibration of the coils. To
obtain the solution, the Laplace transform was applied for the
discretization of the partial differential equation with respect
to time, while the finite element method was applied for the
discretization with respect to space. One reason for the ap-
plication of the Laplace transform is the fact that time-savings
in the computation of the vibration can be expected with use
of the Fast Fourier Transform algorithm. Also the Fourier
transform cannot be successfully applied to the equation of
motion with no damping because of singularities at natural
frequencies of the vibration,

A necessity for the dynamic analysis of toroidal field coils
arises from the fact that the toroidal field coils experience
transient electromagnetic forces due to the transient poloidal
magnetic field generated by the Ohmic heating coils and a
rapid change of plasma current. In addition, the structural
response of the coils to an earthquake must be known for the
structural design of the toroidal field coils.

Theory of Coupled Vibration of Toroidal Field Coils
With Toroidal Magnetic Field

Basic Equations. Each of the toroidal field coils ex-
periences attractive forces from the rest of the coils when the
coil currents flow in the same direction. The attractive forces
that are common in actual toroidal field coils of a magnetic
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fusion reactor are balanced since the coils are symmetrically
arrayed in a torus. However, the balance of the forces could
be broken when an external force such as an earthquake or
electromagnetic .force induced by a ftransient poloidal
magnetic field acts on the coils. If a coil current exists, the
motion of the coil is strongly affected by the coil current itself
as experimentally shown by Moon [5]. The experimental
result showed that the squared frequency decreases linearly
with the squared coil current. The same relation was proved
for a harmonic vibration of the toroidal coils by Miya and
Uesaka [6] on the basis of the finite element analysis. Thus
our concern in this paper is placed on showing a numerical
solution of a forced vibration of the toroidal field coils. A
characteristic feature of the numerical solution is such that the
Laplace transform is applied for a discretization of equation
of motion with regard to time while the finite element method
is applied for the discretization with regard to space.

The energy method is easier for the finite element for-
mulation of the motion of the toroidal field coils than the
method of force balance. For that purpose Lagrange’s
equation can be used. To construct the Lagrangian, kinetic
and elastic energies as well as a magnetic energy should be
taken into consideration. The kinetic energy 7T is given by

1 d 2
T= Ezi;ggp< a_”t”) h dxdy (1

where w is a small deflection normal to the coil plane. p and A
are the density and the thickness of the coil, respectively. The
elastic strain energy U is stored in the coil when the coil
deflects and is expressed as follows in terms of generalized
strain {e} and stress [o} as,

Es fle}7 (o} dxdy @
where
Pw 2w 3w
T - —_— e )
tel? = { oy’ axay} @)
{o}7 = (M, M,,M,} 4

M,, for example, is a bending moment around the y-axis as
usually defined in the theory of plate bending. The magnetic
energy is expressed with a vector potential A and current
density J as,

W= %ESSA-J h dxdy &)

A summation in equations (1), (2), and (5) is carried over all
the toroidal field coils.
The Lagrangian L is given by
L=T-U+W )
Thus the equation of motion is derived by the Lagrange’s
equation which is generally defined by

e ™
dt \ ow aw

where w=0w/9d¢ and F'is an external force acting on the coil.
A substitution of equations (1), (2), and (5) in equation (7)
yields

Ejjpwhdxdy+2 [ §f{e)7 (o} dxdy]

—E [ jA. Jhdxa’y] Y ®

This is the equation of motion of the toroidal field coils which
we aimed to obtain. The third term in the left-hand side of
equation (8) is coupled with movements of the rest of the coils
while the first and second terms are independent of the
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relative displacements between coils. Thus if the vector
potential A of the third term is calculated with consideration
of other coil’s movement, we can omit the summation Z; in
equation (8). Of all the toroidal modes, the pairing mode is
the easiest to occur as stated in reference [5], and is supposed
to occur for the present analysis. Finite element formulation
of equation (8) is too lengthy to show here since it is shown in
detail in reference [6]. And the detailed calculation of the
third term of equation (8), which is a perturbation of the
magnetic energy stored in the coil system, is given in
references [6], [7]. The result deduced in the paper is given by,

MI{G) + (K]~ K1) (q) = [ F) ©)
where
[M]=§} LNI" p[NI dxdy (10)
(K] = - )T PITIDIPIH] ! dedy (1)
ANIT O] 3INT”
[Km]=“[‘]x0°Aw ox ax AyO 3y
i)
% ¥ g+ A + 0 AN INI  dxdy (12)

where {g} is a nodal deflection vector and [N] is a shape
function which is given by

=[Nl{q}=IRI[H] ' {q]}
[R]=[1,%,y,x2,xp,%.x% xy (x+y),»°]
ax?

62

ay?
62

2

L oxdy

(13)
(14

~

r[R] (15)

-~
[D] is an elastic matrix, J,o and J,4 are x and y-components of
the current density, and A,, and A, are x and y-components
of the vector potential. A,, and A,, are coefficients of the
squared term w? in Taylor’s expansion of the vector potential.
The matrices [M], [K.], and [K,,] are called the mass matrix,
the stiffness matrix, and the magnetic stiffness matrix,
respectively.

Numerical Solution of Vibration of Toroidal Field Coil
With Laplace Transform

Application of Laplace Transform. The magnetically
coupled free vibration of a set of toroidal field coils can be
modeled by a linear chain of masses coupled by negative
springs and with periodic boundary conditions. Such a
harmonic motion is well known and is discussed in reference
[8].

According to the statement, the general motion of the set of
the toroidal field coils can be represented by N modes as,

N—1

}1 — E [Q}(,e/“’“’e’2”"/N
a=0

wherej=v —1, {Q}, is independent of time, and w, is a
frequency of the ath mode. A substitution of equation (16) in
equation (9) gives,

[— o [M]+ (K] - [K, DI{Q) = {F}, a7

The external force {F} is zero for the harmonic vibration.
This case leads to an eigenvalue problem. The frequency of
the ath toroidal mode, w,, is obtained as an eigenvalue of the
following equation,

(iK1 -

(16)

K- o M 1=0 (18)
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The effect of the toroidal mode on the value w, does not
appear explicitly in equation (18). However, the mode must be
considered when one calculates the perturbed vector potential
generated on a coil. Since thé smallest frequency w, is ob-
tained for a= (N—-1)/2 for N odd or a=N/2 for N even,
numerical analyses following this section were done for this
toroidal case. This case corresponds to a motion such that any
two neighboring coils approaches and departs in pairs.

The Laplace transform may be applicable to equation (9) as
follows '

[SZ[M] + [[Ke] - [Km] }]{Qs}

= (F,} +sIM1{qo} + M} {do} (19)
where
s=B—jw (20)
Let L be an operator of Laplace transform, and thus
Lig}=(¢]
L(Fl=(F,)

and {q,}, {4, ] are initial deflection and velocity of the nodal
vector. A solution of equation (19) is
(Qs) = [s*IM] + ([K.]~ (K, 131 ' [{Fs}

+siM1{qo} +M]I(go}] 21

The solution {Q;} is obtained for discrete values of
frequency ranging —k to k which gives significant value of

(Qs).

Application of the Fast Fourier Transform. The nodal
deflection{q} is obtained by the inverse Laplace transform of
{Q,} as follows,

1 B8+
(e =5=1 " 10, 1e ds @2)
W JB—joo
Introduction of equation (20) in equation (22) resuits in
e’ re i A
ta1= 1" 10.(B-jwe du @3)

If nontrivial change in Q,(s) does not occur beyond a
distance greater than k, then the largest wave number of
interest is defined by,

A=2x/k 24)
Thus the {g(¢#) } can be approximately calculated by the next
equation

e ok ‘
(a0 =2 [ 10, (6-jwe do @5)
or shifting the frequency from wto w + &
Bl 2k . i )
e =2 [ (0 Bjoriple P de  @6)

This integral may further be approximated by the summation,
as
Y S
1)}=—— el
la@®)=5% IZ;

{Qs (B+jk—jwy) Ye " 27
where
2k 1
Equation (27) can be simply rewritten as follows
N
{g()}= —%eﬁ’e"”‘”“‘m’ ) Qs (B+jk—jwr))
. CI=1
e—j(Zk/N) -1t (29)

596/ Vol. 49, SEPTEMBER 1982

while time ¢ is defined as

A
t=—(J—1)=1r(J—1)(J=1,2...) 30)
2 k
By substitution of equation (30) into equation (29) the
following equation is obtained

fg(n)}= geﬁ("/k)(J—l)ei(l/N)‘:r(an.

N
(Qs (B+jk—jay ) JeHmN =D -1

I=1
Equation (31) can be calculated using the algorithm of the
Fast Fourier Transform (FFT) which makes computing time
remarkably shorter compared with that of the direct in-
tegration method since the FFT makes use of special
properties of harmonic functions for the evaluation of
equation (31). The amount of computation is proportional to
(N)? for the conventional calculation, while that of the FFT is

proportional to 2N log, N.

€3]

Results of Numerical Analysis and Discussions

Verification of the Computer Code. For a verification of
a validity of the computer code made on the basis of
equations (19)-(31) the following one-dimensional dynamic
problem was solved.

moX(t) +Cox(t) +ko x(£)
=fo sin(we ) (u(t) —u(t—T;)) (32)
where u(t) is called the Heaviside’s unit step function and,

my=1.16x1073, C,=0.08, k,=4.49x10%, f,=1.39,
wy =50, and T =10 msec.
A solution of equation (32) is given by,
x(t)=A, e sin(A,t+A;)+Aysin(Ast+Ag)
0=<t=<Ty)
x(t) =B, e* sin(A,t+B,) 33)
(Ty=1)
—— . Exact solution
5 /'\}\
L \ ----- . FEM-Fast Laplace
3 Transform
4 - y/ \\
’E 3 B= 50
. k =5000
'_C_D 2 A= 0.63 msec
x

Displacement

-4

Fig. 1 Comparison of results by finite element method-fast Laplace
transform with exact solution (one-dimensional problem)
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where A, =-2.139, A,=0.620, A;=1.46x10"¢,
A, =4.154, Ag=0.31416, Ag=7.52%10"°, a=-34.37,
B, = —5.15, and B, = 1.95  10-.
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Numerical solutions were obtained with a parameter of 8
and k values in equation (31). A comparison between
numerical result from the FEM-FLT (Fast Laplace Trans-
form) method and the exact solution is shown in Fig. 1, where
B=750 and k=5000 were used. Since a time mesh is given by
At=mw/k, At=0.63 msec. Amplitudes of two oscillations
shown in the figure agree with each other within a few percent
of error while their periods agree almost completely.

In the application of the Laplace transform a proper choice
of the B and k values is crucial for obtaining a reasonable
result when computing the inverse Laplace transform. A
rough choice of the value is recommended by Krings and
Waller [1] as 3k/#N=<p=<10k/wN. For values of N=2% and
k=500 the criteria is 18.7<f8=<62.2. An examination of
convergence is shown in Fig. 2, where a convergent oscillation
is depicted with a dotted line for =10, 20, 50, 100 and an
oscillation with a solid line is divergent for 8=500. Although
cases with 3=10 and 100 do not satisfy the criteria given by
Krings and Waller [1], the dynamic displacements obtained
for the 8 of 10-100 agree completely with each other. The § of
500 is too far away from the criteria to obtain a convergent
solution. Thus the criteria given by Krings and Waller [1] may
be a sufficient condition for a convergent solution of the
inverse Laplace transform.

Vibration of Toroidal Field Coils, A plasma current
change would be one of two sources that could cause the
vibration of the toroidal field coils. The other is a change of
Ohmic heating coil current. In the present paper the change of
the plasma current is utilized. The plasma current is charged
slowly by the Ohmic heating coil current and may oc-
casionally disrupt very quickly. The major disruption could
more rigorously cause a forced vibration of the toroidal coils
than the Ohmic heating coil. The plasma current was assumed
to disrupt like a sine function as shown in Fig. 3(a). It is zero
after 10 msec. For this case the term {F} in equation (17) is
expressed as

{F) = (F;}sin(wt/21,) (34
and the Laplace transform of equation (34) is
7f/2T0
Fl={F — s7/240
{Fy}={ '}s2+(7r/27-0)2(1+e ) @35
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Fig.5 Electromagnetic force acting on toroidal field coil

The Laplace transform {Q;} of the nodal vector {g} is
obtained from equation (19) for a constant 8 and variable
frequencies w. An example of a frequency dependence of
Q! at a nodal point ‘“/”’ is shown in Fig. 3(b). Since the
following properties of symmetry are valid,

Re (Qis) = Re (Q—is)

L(Qi) = ~1,(Q-) (36)
1Q; ! is symmetric with regard to an ordinate in Fig. 3(b). To
obtain the nodal displacement {g)}, {Q.} must be inversely
transformed based on equation (31). A schematic example of
the results is shown in Fig. 3(c).

It should be noted here that the Fourier transform cannot
be applied to the vibration problem with no damping while
the problem with the damping such as shown in equation (32)
can be solved by its application. The reason is that the left-

598/ Vol. 49, SEPTEMBER 1982

hand side of equation (19) has singularities at the frequencies
obtained from |—w?{M]+{[K.1-1K,]1}1=0. For the
Laplace transform the term is not zero for nonzero S(s=06—
iw). Thus the harmonic vibration shown schematically in Fig.
3(c) cannot be solved by the Fourier transform.

A half of the toroidal field coil that is divided into
triangular finite element meshes is shown in Fig. 4. Its bore is
about 17mx I0m. Shape and dimension of the coil were
determined to be free of bending moment using Young-
Moses’s method [9]. The numbers of node and element are 66
and 80, respectively. Symbols denoted with BC1 and BC2 in
Fig. 4 mean that a straight portion of the coil marked with an
arrow of BC1 is completely constrained to a bucking post for
the case of BC1 and a lateral support is set at a nodal point
marked with BC2 as well as the straight portion for the case of
BC2. At the boundary conditions, both the deflection and the
rotation were constrained at those nodal points.

In Fig. 5 a distribution of electromagnetic force acting on
the toroidal field coil is shown, which js caused by an in-
teraction between the toroidal coil current of 60 MAT and a
poloidal magnetic field generated by a plasma current of 7
MA. The force acts normal to the coil surface resulting in a
huge overturning torque since the force distribution is an-
tisymmetric with respect to the x-axis. A vibration of the
toroidal field coils may be caused by a major plasma
disruption which is at the present stage thought to occur
occasionally, The maximum force per unit length of
8.34 x 10¢ N/m appears at a point of the straight portion near
Xx-axis.

The electromagnetic forces at two intersecting points (A
and B) should be zero because of antisymmetry as indicated in
Fig. 5. The plasma current was dealt with as a line current
when computing the magnetic flux density at portions of the
toroidal field coil.

Figure 6 shows some examples of the vibration of toroidal
field coils with a parameter of a sound speed VE/p where E
and p are equivalent Young’s modulus and density of the coil,
respectively. The coil consists of structural support, super-
conducting material, and insulation. It is very difficult to take
into consideration a complicated detail of the coil section even
for a numerical analysis. For brevity, a concept of equivalent
Young’s modulus and density was applied in this paper. The
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Fig.7 Frequency-current dispersion curves for an eight-coil full torus

deflection plotted as an ordinate in the figure is one at a point
marked with BC2 in Fig. 4. In this case the boundary con-
dition denoted with BCl was applied and thus the point
marked with BC2 is free of any mechanical constraint. Input
values as the equivalent Young’s modulus and the density
were given as those of copper as E=6.89x 10* MPa and
po=8.9% 10% Kg/m3. It is shown in the figure that a period of
the oscillation increases with a decrease of the sound speed
while an amplitude decreases with a decrease in sound speed.
This characteristic feature is understandable from a free
oscillation of an undamped mass-spring system.

Figure 7 shows frequency-current dispersion curves for an
eight-coil full torus. The left figure is for the boundary
condition denoted with BC1 and the right one is for the BC2
boundary condition. Blank circles show results from the
lowest of eigenvalues of equation (18) and blank triangles
show results from the FEM-FLT method which has been
developed in this paper. Both results seem to agree very well in
the figure. The frequency corresponding to zero current is a
natural one which is not affected by the toroidal field and they
are 1.17 Hz and 3.99 Hz for BC1 and BC2 boundary con-
ditions, respectively. The natural frequency increases by its
very nature with the number of mechanical constraint. It is

Journal of Applied Mechanics

also clear that the current corresponding to the zero frequency
in Fig. 7 is the same as the critical current which causes the
buckling of the toroidal field coil, as discussed in reference
[5]. They are 11.8 MA and 23.8 MA for BCl and BC2
boundary conditions, respectively. As is the case for the
natural frequency, the buckling current also increases with the
number of mechanical constraint. The figure shows an im-
portant fact that the linear relation between a frequency
squared and a current squared exists.

In Fig. 8 the lowest natural frequency calculated from
solutions of equation (18) and equation (31), which are ex-
pressed with the eigenvalue algorithm and the Laplace
transform, respectively, in the figure, is plotted versus density
and Young’s modulus of the coil. Two linear relations be-
tween the frequency squared and the inverse of density, and
the frequency squared and Young’s modulus, are implied to
be valid from the following equation,

f2=f02“4L112/VP
or
P=OE—-4LI*/V)/p

where f} is a natural frequency when the coil current 7 is zero

€0
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and its square is proportional to a ratio of E/p, Vis a volume
of the coil, and L is a coefficient of a deflection squared in a
Taylor series of a mutual inductance between the coils.
Equation (37) was deduced by Moon applying a modal
analysis to the toroidal field coils. Thus it could be expected
that the frequency squared of the coil shown in Fig. 4 is
proportional to the inverse of density and Young’s modulus.
Results shown in Fig. 8 prove the conjecture. These relations
are very useful for a rough estimation of the natural
frequency, which is needed for a structural design of a
toroidal field coil.
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The Dynamics of a Gyroscope
Supported by a Flexible Circular
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Plate

The dynamics of a rigid rotor supported on a flexible circular plate is investigated
and it is shown that the arrangement is capable of operating as a tuned free rotor

gyroscope. The performance characteristics of the gyroscope are evaluated and the
analysis shows that the steady displacment of the rotor may be used to measure
either the angular velocity or angular displacement of the supporting casing. For
both modes of operation the free motion and the response to a constant rate and a
vibratory input is determined.

1 Introduction

During recent years elastically supported gyroscopes such
as the Oscillogyro and the Hooke’s Joint Gyroscope have
been developed with the aim of replacing the more expensive
floated gyroscope. Offering simplicity of construction and
therefore lower manufacturing costs it is felt that the next
generation of high accuracy gyroscopes will be found amongst
instruments of this type. The Oscillogryo, originally
developed by Philpot and Mitchell at R.A.E. and later in-
vestigated by Walley and Maunder [1] has been the forerunner
of this class. Its construction [1] is simply a sensing element
usually in the form of a flat bar, elastically connected to a
drive shaft by means of a torsional hinge. By matching the
inertia coefficients of the sensing element with the suspension
stiffness the oscillo-bar may be tuned at its running frequency
to provide a direct measure of casing rotation. The Hooke’s
Joint Gyroscope [2] is a two-axis version of the Oscillogyro
and exhibits similar characteristics.

Despite the simplicity of these devices their performance as
inertial instruments has been limited because of their poor
response 1o harmonic inputs at twice the tuning frequency.
Much recent research has therefore considered instruments
that exhibit the tuning characteristic but are free from the
drifts associated with 2w vibration.

A suspension system based on heavy elastic beams has
recently been proposed by Maunder and Bulman [3] and this
has been shown in [4] to have tuning characteristics and 2w
immunity. The purpose of this paper is to show that other
elastic suspensions are possible by considering the case of a
rotor supported on a heavy circular plate.

2  Description of System and Analysis

Figure 1 shows the form of the elastically supported
gyroscope considered in this paper. The sensing element, in
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this case a symmetric rotor, is connected to the drive shaft by
means of a heavy circular plate. The inner and outer edges of
the plate are assumed to be rigidly clamped to the drive shaft
and the rotor, respectively.

Consider the set of case-fixed axes OXYZ shown in Fig. 2.
The origin 0 is fixed at the mass center of the rotor and axes
OX, OY, and OZ are aligned with the initial directions of the
rotor’s principle axes at O. In this datum state the plate is
arranged to lie in the OXY plane with its normal through its
center coincident with OZ. It will be assumed that the rotor
moves in rotation only and that its center of mass G always
remains fixed at O. In practice it is necessary to prevent axial
translation. This constraint is often achieved by connecting
the rotor to the drive shaft using a light axial strut. In the
analysis that follows, the stiffness of this strut will be

Drive Shaft
Plate
" Rotor
Fig.1 Gyroscope assembly
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neglected. This omission does not affect the results of the
investigation, Rotor motion relative to OXYZ is given by a
rotation nt about the spin axis OZ, to take OXYZ to
0X,Y,Z,, followed by small rotations ¢, about OX,, to take
0X,Y,Z,t100X,Y,Z, and ¢, about OY,, and to take
0X,Y,Z, to Oxyz. The axes Oxyz remain fixed to the rotor’s
principal axes. The input to the rotor is specified by an
angular velocity Q about the case-fixed axis OX.

3 Dynamics

To accommodate the displacements ¢, and ¢, the plate
deflects. To describe this deflection it is convenient to con-
sider the motion of the plate with respect to axes OX,Y,Z;.
Figure 3 shows the deflection W along OZ, of a typical point
P situated on the midplane of the plate and specified by polar
coordinates r and 6. Because the plate is assumed clamped at
its inner edge, the deflection must satisfy boundary conditions

w
W(r)=0 and ~(Z—r~(ri)=0 at r=r; )

Likewise, because of the rigid attachment to the rotor it
follows that the deflection and radial slope of the plate at
r=r, are constrained by the motion of the rotor to be of the
form

W(ro) = ro(¢sinf — ¢,cost)

=W @
r

Since the plate is assumed to have significant mass, the
general behavior of the rotor and plate assembly will be
determined by the modes that characterize the way the plate
can vibrate. However, because the plate’s outer edges are
kinematically constrained by the motion of the rotor, only
asymmetric modes with one modal diameter are permissible.
It can be further assumed that the fundamental of this set will
determine the behavior of the gyroscope.

The governing equations of motion will now be established
via Lagrange’s equations by assuming a plate deflection
compatible with the shape of this fundamental.

Since the deflected form of the plate must satisfy the
geometric constraints (1) and (2) an approximate solution may
be constructed by assuming W to be given by

W=y(r).{ ¢, sinf — ¢, cosf} 3)
where y (r) is chosen to satisfy boundary conditions

ro

d
¢=0 and l=0 at r=r;
or
and
d
y=r, and _63;{/—=1 at r=r,. 4)

Clearly there is more than one function Y () that can be
chosen to satisfy (4). For the purpose of the present analysis
we shall select ¥(r) to be the function that describes the static

1
% y
nt
X
(o) !
nt
Q nt )sz
%
11,
3 Q™7
z
Fig.2 System axes
Yt
-
v
8
z

Fig.3 Plate deflection

deflection of the nonrotating plate when the rotor is given a
unit rotation about O.X|. For this situation Y{r) can be shown
to be given by

1
202 + ) ln(rf) - — A )

W= (&)
2[r,-2(1 +ln( o

D+ rdn (-2 )-1)]

I v

If the kinetic energy T and potential energy V of the gyro
assembly are now determined using (5), then the equations
determining the rotor motion may be derived from
Lagrange’s equations. The total kinetic energy of the
assembly is determined by adding the kinetic energies of the

Nomenclature

AAC
E

14

rotor inertias about principal axes
Youngs modulus
Poisson’s ratio

o

3
p=_EF
12(1- %)

plate flexural stiffness

plate thickness

density of plate material
coefficient of thermal expansion
temperature

rotor spin rate

I ~NRT >
LI T | I |1
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w = tuning speed

W = plate deflection

¢, = rotor deflection about OX,
$, = rotor deflection about OY,
By = rotor deflection about OX
B, = rotor deflection about OY

¢ = vibration amplitude

s = frequency

n; = phase angle
P12 = natural frequency

Q = casing input about OX
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rotor and the plate. For small ¢, and ¢, the kinetic energy of
the rotor, Ty, is given by

Te = % [A(Jy — 1, + @) + A, + noy, +,)°

+C(n*—n¢, 2 —n*¢2 —2n¢ v, +2nd, b, +2nd,0,)]  (6)

where w, =Qcos ntand w, = — Osin nt. V
Likewise the kinetic energy of the plate, T,, is

1 r=r 2r
T = > phs ’ 50_0 [(Ww, —rn sinf)? + (Ww, — rn cosf)?

P =y
r=r;

14 2
+ ( TR + w7 sinf — w,r cosﬂ) 1r dr do @)

The potential energy of the assembly is associated with the
strain energy stored in the plate and using the results given in
[61 s given by

V_ngo SZT [<82W)2+< 1 #w 1 aW)2
© 2 Jrer Jo=o L\ 92 e T o
i 62W<1 *?w 1 aW>
o o\ e T T or
1 W 1 aw\?
o255
N G0 7 ae) 1o ®

h (o 27 AW \ 2 1 aWw\?2
+ 2 Sr:ri Se=o [0" ar > +000( r ao ) ]rdrdo

The quantities g,, and o4 represent the inplane radial and
circumferential stress fields due to centrifugal loading and
any thermal prestress introduced during assembly. The
relationships determining o,, and oy are well known [5}, and
for a thin disk rotating with angular velocity # are

ET C 3+
O = s +C0+—“—21——( V)pn2r2
1-» r 8
oET C (1+39)
= +Cy——— — 2,2 9
Te0 1—-» 0T 8 prr ©

The constants Cy and C; are determined by the fixing of the
plate at the drive shaft and rotor connections. If, for example,
the drive shaft and rotor are assumed radially rigid these
constants follow from the conditions that the inplane
deflections at r = r; and at r = r, are zero.

For this situation C and C, are given by

1+»
Co= e pn*(r} +r2)

and

C, = 1—8—"pn2r,.2r02. (10)

Although it has been convenient to derive the kinetic and
potential energies with respect to axes fixed to the rotor,
interpretation of the system dynamics is greatly simplified if
the rotor displacements are rewritten in terms of
displacements 8, and 8, about the case fixed axes OXYZ.
This transformation can be achieved by resolving ¢, and ¢,
along OXYZto give

By = ¢,cos nt— ¢, sin nt
B, =¢,sin nt+ ¢, cos nt (11)

If equations (5) and (11) are now substituted into (6)-(8) the
linearized equations defining 8, and B, follow from
Lagrange’s equation in the form

Journal of Applied Mechanics

d(&T) aT oV 12)

dar\ag,) "o o -
and may be written
(A +a)B, +n(C+2a), + K, —n*(@+ kB, = — (A +b)Q
(A+a)B, —n(C+2a)B, + K, —n*(a+k)IB, =n(C+2b)Q,

(13)
where
a = ph‘rrS:.or\//Z(r)dr
b = phwg:f’rw(r)dr
ko= o [(G8) + (519
(1
2ty
en g [H(G) e v
(2T (2]

Equations (13) allow the rotor and the suspension to be
treated as a single rigid body having two degrees of freedom
connected to the drive shaft by a massless suspension.

The parameter a represents the equivalent inertia of the
plate about the rotor’s principal axes Ox and Oy, and b is an
inertia factor that determines the portion of the plate loading
due to Q which is transmitted to the rotor. The quantity (X, —
n*k,) represents the stiffness of the equivalent suspension
where K, is the stiffness of the nonrotating plate and is a
function of preload and plate flexibility and k&, represents the
reduction in stiffness due to centrifugal loading. It should be
appreciated that the magnitude of k, is determined by the
inplane fixing between the drive shaft, plate, and rotor. For
example, if the rotor and the drive shaft are assumed rigid, k,
is positive. When rotor elasticity is considered its value
decreases and in the limiting case —unconstrained radial
displacement — &, is negative. It will be shown that the values
of K, and k,; are important and have a considerable influence
on the value of the gyro’s running speed.

The response of the gyroscope will depend on the input Q.
To obtain an understanding of the characteristics of the in-
strument it is necessary to evaluate the behavior of the rotor
due to standard test inputs. The free response and responses
to a constant rate and a vibratory input will therefore be
determined.

3.1 Free Motion. If Q@ = 0 the equations describing the
free motion of the gyroscope follow from (13) as

I

2
By E 6ojsin (pjt+nj)
j=1

By (15)

1

2
Y NiBojcos (ot + 1)),
j=1
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where p; is a natural frequency of free vibration and is given
by the roots of

[np;(C+2m))* - (K, —n*(a+k)) —p2(A+ @) =0
and

N =.IK,—n*(@a+k))—p;*(A+a))/np;(C+2a). (16)
The solutions of (16) yields two roots which are functions of
rotor speed n.

D= ———————2(54:_2(1‘;) [1 + [1 +

A(A +a)(K, —n2(a+k,) ] 2
n%(C+2a)* ] :‘ a7

When n = 0 the roots of (17) coincide at p,, = VK,/A+a.
As n is increased the roots separate. The highest natural
frequency p, increases steadily with » and at high speeds
approaches the nutational frequency Cn/A of the free rotor.
The lower frequency p; decreases with increasing » and for
large values of n approaches a value (K, —n?(a+k,))/nC. It
is of some importance to note that p; is zero when n = o =
[K,/(a+k)]'?. This indicates the existence of a tuning
condition and since the natural frequencies of the tuned gyro
correspond to those of an ideal free disk, i.e., p; = 0 and p,
= Cn/A, it may be implied that tuning produces a zero
stiffness suspension. When run tuned, the rotor tend to
behave as a free body decoupled from the motion of the drive
shaft and supporting casing.

It is shown that the tuning condition is only a function of
the plate parameter K,, k; and a. Since the value of k; is
influenced by the radial expansion of the rotor due to cen-
trifugal loading it can be appreciated that any preload in-
troduced by thermal stressing must be carefully calculated so
as to ensure tuning at the correct speed. Furthermore it is also
desirable to make (¢+k,) as large as possible so that the
tuning equation K, —n*(@a+k,;) = 0 is not ill conditioned.
Interpretation of k| indicates that this can only be achieved if
the radial stiffness of the plate is less then that of the rotor.
The greater the difference in radial stiffness the more well
defined is the tuning speed.

B, = &s°.

B=9
B,=0 (20)

The rotor spin axis maintains it initial offset without drift and
a stationary nodal diameter is produced in the disk.

3.2 Response to Constant Rate Input. When a constant
rate input @ is applied about the case-fixed axis OX, the
steady-state solution of (15) shows that the rotor takes up a
steady position about OY given by

n(C+2b)Q

6y=Ko——n2(a+kl)

21
The magnitude of 8, is directly proportional to the applied
rate and (21) indicates that the untuned gyroscope is capable
of functioning as a rate measuring device.
If the gyro is tuned, the character of the steady-state
response changes and can be shown to be given by

(C+2b

=W
C+2a )

By =

B, =0 (22)
In this instance a rate input produces a steady rotation of the
rotor about OX and in a direction that tends to maintain the
spin axis fixed in space. Thus if the rotor inertia C is selected
such that C > >2a and 2b, then (22) indicates that the tuned
gyro will provide a true measure of the casing displacement,
and thereby an inertial reference.

3.3 Response to Vibratory Input. Let the vibratory input
to the casing be represented by

Q=15 cos(st+1) 23)
where it will be assumed that n> > s®.
The steady-state response of the rotor is
[(A +BIK, — n*(a+ k)] —s*(A + a)] + n?(C+2a)(C + 2b)] sin(st + n)
(K, —n%(a+ k) —s*(A + a))? - (C+2a)*n?s?) 2

[(C+2a)(C+2b)n? — (A + a)(4 + b)s?]

B, = @

If the factors A, and A, are calculated, the shape traced by
the extremity of the rotor spin axis may be determined for
each mode of vibration. From (16) these ratios are given by \,
= 1 and \, = — 1. For the first mode and for rotor speeds n
< w the tip of the rotor axis traces approximately a circle in
the opposite direction to that of rotor spin. When n > w the
direction of the orbit changes and the tip of the rotor spin axis
moves in the same direction to that of rotor spin. In the
limiting case, when n = o the rotor spin axis remains
stationary. The motion of the rotor axis associated with the
second mode is again approximately a circle but this time the
displacement occurs in the same direction to that of rotor spin
for all values of n.

If the gyro is now tuned the solution of equation (13) takes
the form

By = Bo1 + Boz sin(p, ¢+ 13)
_ A _a P2d+a
B, = Bor — Boz ___——w(C+ 24)

For example, if at £=0 the rotor is displaced © about OX and
then released from rest it follows from (19) that the resulting
motion is simply

cos(p,yt +1;) (19)
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[(A +a)*s® —(C+ 2a)*n?]

sin(st + 7)

The foregoing analysis shows that the rotor responds about
both OX and OY and that the tip of the spin axis traces out an
elliptical orbit with frequency s. For the untuned gyro it
follows that resonance occurs when s coincides with a natural
frequency p;.

When the gyro is tuned the expressions for the 8, and 8,
simplify and are given by
5. = [{(C+2a) (C+2b)n?* —~(A+a) (A+b)s?]

* (A +a)2s2 —(C+2a)*n?]

g, = .dns (24—~ C)a—-b)

’ T A + a)?s* — (C+2a)*n?]
These expressions show that the tuned rotor will only resonate
when s is equal to the highest natural frequency,

pon(22)

and that the resonant motion occurs about OX and OY with
equal amplitude.

At this point it is useful to contrast the performance of this
type of gyroscope with that of other tunable instruments - the
Oscillogyro and the Hooke’s Joint Gyroscope — particularly

sin(st+ 1)

cos(st + 7). (25)
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in the case where the excitation frequency s is at twice rotor
frequency.

It is well known, [1], that if either the Oscillogyro or the
Hooke’s Joint Gyroscope are subjected to vibratory inputs at
frequency s = 2w a steady drift of the rotor spin axis occurs at
a rate proportional to the amplitude and phase of the
vibration. This phenomenon, referred to as 2w drift, limits
their performance. If we set s = 2w in equation (25) the
response of the gyro described in this paper becomes

A+C+2(a+b) .
B - AT Cida) sin(2nt + 1)
_ (a—b)
6), = 2 m . COS(2nt+ ‘)7) (26)

It is seen that this design of gyroscope is insensitive to 2w
vibrations insofar as no resultant drift of the rotor spin axis
occurs. This result can readily by appreciated by examining
equations (13). Because of the assumed symmetry of the rotor
and its suspension, the forcing term associated with the input
excitation is not modulated at twice running frequency — this
modulation occurs in the case of the single gimbal Hooke’s
Joint gyroscope and the Oscillogyro — and therefore does not
give rise to a steady torque that will be interpreted as a
constant rate input.

4 Conclusions

The dynamics of an elastically supported gyroscope con-
sisting of a rotor mounted on a heavy circular plate has been
considered, and approximate equations of motion have been
established using a mode shape consistent with the first mode
of vibration of the stationery plate. Using these equations it
has been shown that the gyroscope possesses two natural
frequencies, p, and p, which are functions of rotor speed #.

Journal of Applied Mechanics

The highest natural frequency p, increases, almost linearly
with n, whereas p; decreases. It has also been shown that it is
possible to tune the gyroscope by making p, = 0. This
condition is achieved by matching the dynamical charac-
teristics of the plate suspension with the rotor speed and
enables the rotor to behave approximately as a free spinning
body.

When an externally applied rate of turn is applied to the
supporting casing the steady-state displacement of the un-
tuned rotor is proportional to the applied rate and occurs
about an axis perpendicular to the input axis. The untuned
gyroscope therefore acts as a two-axis rate sensor. If the
gyroscope is tuned, the displacement of the rotor is
proportional to the applied displacement and occurs about an
axis so as to maintain the rotor in a fixed position with respect
to inertial space.

The response of the rotor to harmonic inputs has been
evaluated and it has been shown that the performance of the
gyroscope as a rate or displacement sensor is not seriously
affected by vibrations at twice rotor speed.
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Motions of Articulated Tubes,
Part 1: Linear Systems and Symmetry1

Three-dimensional motions of a two-segment articulated tube system carrying a
Sluid and having rotational symmetry about the vertical axis are examined for
bifurcating periodic solutions. As the flow rate through the tubes is increased past a
critical value, the downward vertical position of equilibrium gets unstable and
bifurcates into two qualitatively different kinds of periodic motions.
mathematical problem is more general than that occurring in the Hopf bifurcations
and the method of analysis used is the method of Alternate Problems. Since

The

physical systems invariably have some asymmetry, the analysis takes into account
these symmetry-breaking perturbations. In Part 1 of this two-part paper, symmetry
properties of the system and the linear stability are discussed.

1 Introduction

Recent developments in the study of flow-induced motions
of tubes carrying a fluid started with the work of Benjamin
[1,2] on articulated tubes. Much of the early work is con-
cerned with linear analysis of the stability of initially straight
tubes for motions in a plane. Among the references, the works
of Gregory and Paidoussis [3,4], Paidoussis and Issid [5],
and Herrmann and Nemat-Nasser [6] may be mentioned. For
linear analysis of three-dimensional motions of continuous
tubes there is the work of Lundgren, Sethna, and Bajaj [7].
Nonlinear analysis for linearly unstable planar motions has
been done by Holmes [8], Rousselet and Herrmann [9], and
Bajaj, Sethna, and Lundgren [10].

In this paper we study three-dimensional nonlinear motions
of articulated tubes. The analysis is made as simple as possibie
by treating the case of only two tubes. Furthermore, we
restrict the study to only those cases where the static solution
breaks up into periodic motions. Even under these restrictions
the system exhibits a wide variety of behavior.

The mathematical problem is a problem in bifurcation
theory in systems with rotational symmetry. It will be shown
that as the flow velocity is increased beyond a critical value,
the straight position of the tube becomes unstable and
depending on the remaining system parameters, develops into
two qualitatively different types of nonlinear periodic
motions. The equilibrium position loses stability because a
double pair of complex eigenvalues of the linearized system
crosses the pure imaginary axis from the left to the right half

I This work was supported by funds from the National Science Foundation
under Grant NSF-CME-7921351.

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS,

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL oF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, August 1981; final revision, March, 1982,
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of the complex plane. The nonlinear phenomena exhibited are
more complicated than those associated with Hopf bifur-
cations [11]. For example supercritical bifurcations [11] may
not be stable in contrast to the case of Hopf bifurcations.

This problem in addition to its intrinsic physical and
mathematical interest has the potential for secondary and
higher order bifurcations, perhaps, eventually leading to
chaotic motions reminiscent of the Bernard problem. Fur-
thermore, we here have the advantage of having to treat a
mathematical problem that is only finite dimensional. In this
context the present work can be viewed as a study of the
simplest bifurcation in this system.

The mathematical analysis given here is based on the work
of Bajaj {12, 13] on general discrete dynamical systems with
rotational symmetry, In the interest of brevity we give only a
few of the mathematical details and rely heavily on these
references.

In this first part of this work, the equations of motion of
the articulated tubes system are presented along with a
discussion of their symmetry properties. We also discuss the
stability of the downward vertical equilibrium position of the
tubes system. The nonlinear analysis for bifurcating solutions
is carried out in the second part of this paper.

2 Equations of Motion

In the following, we derive the equations of motion for
three-dimensional motions of a two-segment articulated tube
system. The system consists of a vertically hanging articulated
tube made of two segments. The fluid enters the tube at the
top and after its passage through the tube, it is discharged,
tangentially to the end of the tube, to the atmosphere. A
Cartesian coordinate system is fixed at the top of the tube
where the fluid enters with the Z-axis coinciding with the
downward vertical position. X and Y-axes then define the
position coordinates in the plane normal to the Z-axis.

The basic assumptions are as follows:
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1. The fluid is incompressible. The velocity profile of the
fluid at any cross section is uniform and the velocity of fluid
relative to the tubes is constant.

2. Both tubes have the same circular cross section and the
diameters of the tubes is small compared to their lengths.

3. The bending stiffnesses of the joints have radial sym-
metry and the elastic restoring forces are linearly dependent
on the angles between the center lines of adjacent tubes.

4. The joints have no torsional stiffness.

Following Benjamin [1], the equations of motion of the
articulated tubes system are given by

d a,e) e . IR
(=) - = = —MU®R+ Une—,
dt<6q,« ( 0 %a,

52 i=1,2,34 (1)
where g;, i=1,2,3,4 are the generalized coordinates, £ = T,
+ T, — V, — V,, T, and V| are, respectively, kinetic and
potential energies associated with the tube system itself, T,
and V;, are the corresponding quantities for the contained
fluid, R and R are, respectively, the position and velocity
vectors of the free end, 7 is the unit vector tangent to the free
end, and M and U are, respectively, the mass per unit length
and the velocity of the fluid relative to the tubes.

As mentioned in the Introduction, we will see that motions
of the system are of two qualitatively different kinds. One
kind occurs in a vertical plane passing through the Z-axis and
the other can be viewed as circular motion around the vertical
axis. These motions cannot be analyzed in a unified manner
with any form of polar coordinates since equations in these
coordinates become singular for motions passing through the
vertical axis. Therefore, a reference frame consisting of two
orthogonal vertical planes OXZ and OYZ has been used. If,
however, the motions passing through the vertical axis are
excluded, an alternate simpler procedure utilizing polar
coordinates can be used.

For the two-segment system, let us choose u,;, u,,, u#,;, and
u,, as the generalized coordinates. Here u;; and u;; + u;,
are, respectively, the position coordinates along the X-axis of
the end points of the upper and lower tube segments.
Similarly u,, and u,, + u,, are, respectively, the position
coordinates along the Y-axis. The system kinetic and potential
energies can then be shown to be

i

1 . . .
Tl + T2 = g (m+M) (11 +312)(u”2+u212+212)
1 . . . 1
+g(m MY (2 2+ 2, 2) EMU?(Il +13)

1 . . ..
+ 2 (m+M) L (hy g + Uy Uy +212,)

+MU(uyuy, + ity Uy +212;) (2

and

1 1
Vit Va=n+mg[ (S0 +0) -2+ 5 hia-2)]
1
+E(kl¢]2+k2¢22) 3)

where
2 2=02=ut+uy?) and 2,2 =05%—(u;p? +uyp?)

In (2) and (3), /, and /, are the lengths of the upper and lower
segments, m1 is the mass per unit length for each tube, k; and
k, are the bending stiffnesses of the upper and lower joints,
¢, is the acute angle between the upper tube and the Z-axis,
and ¢, is the acute angle between the two tube segments.

The position vector R and the unit tangent vector 7 defining
the generalized forces in (1) are

Journal of Applied Mechanics

R= (uy +up)i+ (uy +upn)j+ (2, +25)k 4
and |
T= ]_ (u12i+u22j+zzk)
2

where i, j, and k are the unit vectors along the three coor-
dinate axes.

We study small nonlinear motions of the system close to its
vertical equilibrium position; that is, when wu;, ¥, u,,, and
u,, are small and therefore retain only linear and cubic terms
in the equations of motion. We now introduce non-
dimensional variables and parameters:

u u u u
xulell—, x21=1—211, 12:1—122’ 22=—12;£,
= —,Kk=—, = ———, =U T . 5
a= oR= s BE T 3k, ®
(m+M) [ 3k, ]‘/1
=— d =t ———— .
G=—%k, &> an (m+ M1,

Taking into account (2)-(4), the equations of motion (1)
then take the form:

. 3. , ,
a*(a+3)%, + Eaxn +a*Bpxyy +2aBpx, +afo*(x;; ~xy,)
+a(a+2)Gxy + ey + 00y —Xp) = — @ (@+3)x;, (¥, + Xy ?

3
. .. . 2 2 . .
+x“x“+x21x21)—Eax“(xn + X%+ XX 13 + X X))

X , 1
—2aBpx ) (X1 Xp1 +XppX0) +X11 (%112 +x212){— 5”(“"‘2)0
2 1

aBp?
— k- +
37272

Bapz}

2 e
+x01 (2% +x50%) 37

1 .
"% (11 =x12) {1y =X 1) + (g1 —x30)? ) =~ BpaPxyy (xy X1y
+X21)52|)+0(Ix|5+ 'X|5), (6)
. 3 . . .
a*(a+3)%y + Pz + Bpatxyy +2aPxy + aBp* (X —x21)
+a(a+2)Gxy) + 16y + (X —Xpp) = —a?(@+3)x (¥, 2 + X 2

3
. .. s o e 2 . .
+ X1 X1 + X1 X51) — Eax21(x12 + X% XX 1 + X0 X5)

. . 1
—2aBpx5 (X 13 X15 + X0 X5) + Xy (X1, +X212){— Ea(a+2)G

2 1 2 1 Bap?
T3kt }+x21(x122+x222){5— 2 ]

1
% (X1 =X2) (X1 =X 12)* +(xy —X20)?) —Bpazxm(x”)é“

+X1%20) +0(Ix 15 + 1%1°), Y

Eaxu + X124 BoXiy + Gy + (X2 — X 1) = = X1 [(%122 + %2

+X12X 12 + X5 X0) + Ea(xuz"’lez + X101 X1y X2 %2)]

1 2 2y, L 2 2y, L
- 5(1 +G)xp (X +xn9)+ Exlz(xn +x314)+ 3 (x1 —x12)

{(xn —X12)% + (X —X)? ) — Box 1y (X 12 %15 + X2 X5)
+0(1x1%+ 1%1%), @

and

3 AXyy + Xy + BpXy + Gy + (Xpp —X1) = — Xy [(¥122 + X0
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+X1X13 + X0 X)) + Ea(x“ 24X 24Xy Xy g + X Kg)]

1 1 1
— Xy (X1, 2 +x222)5(1 +G)+ Exzz(xn2 +x3 )+ 3 (X321 —X3)

{ O =Xx12)% + (X1 —X22)% ) = Boxgy (X 12X 15 + X2 %))

+0(Ix 1% + 1x1%), ©

Here x,, and x,, are the nondimensional coordinates along
the X-axis, x,, and x,, are the coordinates along the Y-axis, ¢
is the nondimensional time, and x = (x;, X5, X5(, X2)7.

The system depends on five dimensionless parameters, a, «,
B, p, and G. The parameter ‘‘a’’ is the ““length ratio’’ and ‘*x”’
is the “‘stiffness ratio.”” It is the ratio of stiffness of the upper
joint to the lower joint. The ‘‘mass ratio’’ 3 is zero for the
solid tube and takes the maximum value three when the tube
thickness is zero. The ““flow velocity’’ in dimensionless form
is denoted by p, and G is the dimensionless gravitation
parameter.

We now convert equations (6)-(9) into a first-order vector
form.

Let,

2= (21,2,)7 = (X11, X12, X115 X125 X1, X22, X21, X35) 7 (10)

with z; ¢ IR*, i=1,2. The system equations then take the
form

Z=A(p)z+h(z,p),

[A o
A“[o A]

isa 8 X 8 constant matrix dependent on the parameters with

(1n

where

(12)

0 0 1 0 1
. 0 0 0 1
A=l _ A4 B 4 26p
(4a+3)  (4a+3)  (4a+3)  a(4a+3)
5 C _ D 6aBp 4afp
| @a+3) T @a+3)  (a+3)  (@a+3) |
(13)
and where
41+ 1 4
A=-(—.2—K—)+ — (6-4Bp*)+ — (a+2)G,
a a a
1 4 6G
B= — (480> -6)- - — —,
a a a
6(1+
C=6Bp2—4(a+3)——(—a—K—)——6G(a+2)
and

6
D=— + (4a+12—6Bp") +4G(a+3).

For the nonlinear function h in (11), we note that its com-
ponents A, h,, hs, and kg are zero. The remaining and
nonzero components are given in Appendix A.

Equations (6)-(9) have some symmetry properties that play
a crucial role in the analysis.

3 Symmetry Properties of the System

From the assumptions 2 and 3 it is clear that the system

is invariant to rotations about the Z-axis. This is exhibited
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mathematically by the following conditions, which are
satisfied by the matrix A and the vector h.

S(8) A(0) =A(0) 5(6),
and (14)
S(8) (z.p) =h(S(0)z.p)
where S:(O) is the one-parameter rotation matrix defined by

(15)

cosf 1,
—sinly

sinf 1,

] , 0el0,2w)
cosly

S(8) = [
and where I is the 4 X 4 identity matrix.

Equations (14) express the fact that the system equations
remain invariant if the OXY system is rotated by angle 6
about the Z-axis.

There is an additional symmetry in the equations which can
be expressed mathematically as follows.

Let

g(z,p) =A(p)z +h(z,0),
and

g(zrp) Eg(zl ,Zz,p) = (gl ,g2)T

where g, and g, are four-vector functions. Then, from
equations (6)-(9) and the definition of vector z in (10), it is
evident that

gl (21,22,0) =8,(2;, ~1,,p)

and (16)

£:(21,2,,0) =8,(—2,,2;,p)

and therefore g,(0,z,,0) = g,(z;,0,p) = 0 for all p.

The conditions (16) can be interpreted physically if we
observe that the components z, and z, of the vector z
represent motions in two orthogonal planes, the two planes
intersecting at the axis of rotational symmetry. These con-
ditions then express the fact that the motion in one plane is
coupled to the motion in the orthogonal plane only through
even terms.

We are interested in bifurcation phenomena. A bifurcation
is said to occur when a system exhibits more than one, and
usually qualitatively different states as some system
parameter goes through a critical value. For most values of
the system parameters the system eigenvalues are away from
the pure imaginary axis and the linearized equations deter-
mine the system behavior. Bifurcation phenomena therefore
usually occur when some eigenvalue(s) of the linearized
system cross the pure imaginary axis. In view of this we study
the behavior of the linearized system as a function of the
system parameters. It will be seen that because of the system
symmetry the eigenvalue behavior is more complicated than
that for a simple divergence or flutter instability.

4 Analysis of the Linear System
The linearized system is given by

Z=A(p)z. amn

Because of the structure of A it is important to observe that
each eigenvalue of A has multiplicity of at least two and, in
fact, one need only study the system

(18)

where A is the 4 x 4 matrix given in (13). This system has
been studied in great detail by Benjamin [1] and most of the
discussion in this section follows his work closely.

The stability of the zero solution § = 0 is determined by the
eigenvalues of the matrix A which are the roots of the
characteristic equation

y=Ay
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3
a? (a+ Z) M+a2(@+1)BoN +[(a+1) +k+ (@ +4a* +2a) G

- (%az +a—a26‘>ﬂp2] N+@+1)? +k+2a*+a)G
—aBp*1Bor+k+ [ (a+1)? + k+ (a® +2a) G—aPp? }G=0.(19)

In this equation it is reasonable to consider a, B, k, and G as
fixed parameters that characterize a particular physical
system. The stability problem may be regarded as a study of
the changes in character of the four roots of (19) as the flow
rate p is varied.

For small values of p, all the four roots of (19) are in the left
half of the complex plane and therefore the vertical
equilibrium position is stable. As p is increased, it reaches a
value, p = p,, where some eigenvalue(s) of (19) cross the
imaginary axis from left to right rendering the equilibrium
position unstable. Depending on the other system parameters,
a single real eigenvalue of (19) can become positive or a
complex conjugate pair can cross the imaginary axis, which in
turn means that the solution z = 0 becomes unstable when a
double ecigenvalue goes through zero or a double pair of
complex eigenvalues crosses the imaginary axis.

As already indicated in the Introduction, we are only in-
trested in those cases in which the loss of stability generates
periodic motions. This is when complex conjugate pairs of
eigenvalues cross the imaginary axis. By using Routh-Hurwitz
criterion and arguments in [1] and [12] it can be shown that
the minimum value of the flow rate required to produce this
type of instability is given by the smaller of the roots of the
following quadratic equation in (aB0?):

[6a* +6a+1—4aB(1 +a)l(aBp?)? —2{(a+1)*{5a* +5a+1
—2a(a+1)B} +«{3a®+3a+1-2a(a+1)8) +2a(a+1)?
«{3a+1-2aB)}Gl(aBo?) +[(a+1)*Qa+1)

+k+2a(a+1)°G12=0 (20

Let p, denote the least of the real positive roots of this
equation. Then z = 0 is stable for p < p,. At this critical flow
rate, if the pure-imaginary pair of eigenvalues of (19) is % iw,,
it is readily obtained by substituting A = iw in (19) to give

[(@+ 1)? + k+2(a+ 1)aG —aBp?]

a*a+1)

We are now interested in finding the nonlinear bifurcating
periodic solutions of the system (11) for flow rates near p,.
At p = p,, two coincident pairs of complex conjugate
eigenvalues of the matrix A are on the imaginary axis while
the rest of the eigenvalues are in the left half of the complex
plane. This is precisely the situation treated in [12, 13] where
bifurcations in general, discrete, dynamical systems with
symmetries of the type defined in (14) and (16) have been
discussed.

Let us next introduce Jordan
corresponding to the linearized system.

w02

@n

canonical variables

5 System in Jordan Canonical Variables

As is very well known, there exists a transformationz = Cy
such that the system (11) transforms into a form in which the
matrix A is in Jordan canonical form. The 8 x 8 real matrix
Cis given by

C=[2¢',2d",2¢2,2d2, ... ],
and it consists of column vectors that are the real and
imaginary parts of the eigenvectorsa’, i = 1,2, ..., 8 of the
eigenvalue problem
Aai=)\a 22)
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for the matrix A. We assume, for convenience, that the
eigenvalues have been ordered such that the first four
eigenvalues correspond to the critical eigenvalues. These
eigenvalues at critically (0 = p.,) are given by the coincident
pairs +iwy, xiwg.

The system adjoint to the eigenvalue problem (22) is given

b ) )

Y ATb =\ b’ 23)
for any eigenvalues \; of A. Letb/ = ¢ + if/,j =1,2,...,8
and define the matrix D as

D=le!,-fl,e?,—f2,....]
b’ have been normalized so that a‘el/ = §;; here
i,j=1,2, ..., 8 Then, using z = Cy, the system (11) is

transformed into the form
y=A(p)y +k(y,0) (24)
where
A(p)=DTA(p)C and k(y,0) =D7h(Cy,p)

Consider the system (24). At p = pe, A (p) has two pairs
of coincident pure imaginary eigenvalues =+ iwy. To study the
nonlinear behavior for small deviations from p,,, let

P=Por T 4
so that the system (24) can now be written as
¥=Agy+pA ()Y +Kk(y,p) (25)
where
jozA(pcr)’ F'Al(/"') =A(pcr +IJ«)_A0
and
k(y,p) =K(¥,p + ).
In (25) 1=&0 has the structure
f:\o =diag(D9,D2),
0 wo :
! 0
— Wy 0 :
Dy = | —---mm ooonee-- (26)
1 0w
0 )
:—‘ (O] 0

and D, is the 4 X 4 matrix with all four eigenvalues in the left
half of the com;_)lex plane.

The matrix A,(p) is also in block diagonal form with two
blocks of 4 x 4 matrices each. In the limit as p — 0 the upper
nonzero block determines the rate of change of critical
eigenvalues and is given by

£ @ |
i 0
. @ £ |
Dyp=| - e (X))
P E @
0 |
e 0
where
£=£(Re)\1) and <7)=£(Im)\l)
dp p=per dp p=per

The rates £ and @ can be easily shown to be determined by the
relations [12],

£=Re{b”d—2§)ﬂa‘}

P=Pcr
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dA
and G;=Im{b‘7—d(g)—a‘}p=p 28)

(4
which are arrived at by differentiating (22) and (23) with
respect to p and then using the biorthogonality conditions.

The nonlinear function k(y,x) in (25) can be obtained with
some lengthy calculations from the nonlinear function h
whose components are given in Appendix A. Since these
expressions are very long, they shall not be presented here
explicitly. .

Now, for a real system any kind of symmetry is a
mathematical idealization. For example, the stiffnesses k;
and k, of the joints will, in general, not be radially symmetric.
We thus wish to account for small asymmetries in the ar-
ticulated tube system and therefore we will analyze the more
general system

Y= Aoy +uA(p)y +aAyy +k(y,n). (29)
The parameter « is an additional parameter that determines
the size of the asymmetry in the system whereas the structure

of matrix A, determines the manner in which the rotational
symmetry of the system is destroyed. Since the latter can take

many forms, we shall not specify A, at present. In the second
part of this work, we shall study some particular cases for
their effect on the nature of the bifurcating periodic solutions
of the symmetric system.

The system (25) or the more general system (29) with « = 0

satisfies conditions similar to (14) with respect to a new matrix

§*(6) defined by $*(6) = DT §(8)C which can be shown to be
of the form

§*(0) =diag(S;*(8), 8,*(8)), 0¢[0,27)

where
S *(60) =cosfl, +sindd,,
and where

3, is the 4 x 4 matrix given by J; = [0 LB ]
—1

The nonlinear function k in (29) is not completely arbitrary
and its form is determined by its invariance with respect to the
matrix 8§*(8). It is clearly odd in y. As will be seen in the
bifurcation analysis, the first approximation to periodic
solutions is determined by the cubic terms in k;, i=1,2,3,4in
the critical variables y;, i=1,2,3,4. Using symmetry
arguments it can be shown {13] that there are at most 12
arbitrary constants B;, i=1,2, . . .,12 in these cubic terms.
These arguments, along with the resulting general form of the
functions k;, i=1,2,3,4, are given in Appendix B. Clearly, the
constants B; are functions of the critical eigenfunctions of the
matrix A as well as the coefficients of the cubic terms in the
nonlinear function h.

We are now ready to analyze the nonlinear system (29) for
bifurcating periodic solutions for small values of parameters
p and «. This analysis is carried out in the second part of this
work.
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APPENDIX A

The nonzero components of the nonlinear function hin (11)
up to the cubic terms are as follows:

hy =[z,(2} +23) (44 (a+3)/(4a+3) — 8(x+ 1)/3a>
+(2Bp* — 1)/a) +z,(z3 +z){6D/a(4a+3) + 4/3a*
—(2B0® +1)/a} +2,(z)22 +252s){4B(a+ 3)/(4a+3)
+6C/a(4a+3)+4/3a* +2/a} —Ma+3)z,(z% +23)
—621(25 +23)/a+2,(z)23 +2527){ 168p (a + 3)/(4a +3)
—46p}) +8Bp(a+3)z,(z124 +2523)/a(4a+3)
—368p21 (2525 + 262,)/ (da+3) + {2480/ (4a+3)
—88p/a}z,(2224 +2623) + 2222 +22){2/3a% ~9A/
da+3)-2/a)+z,(z3 +22){2/3a*> —6D/a(4a+3)
+4/a) +2,(2,22 +2526) —4/3a> ~6C/a(4a+3)
—9B/(4a+3)—2/a} +6z,(2% +z3)/a +36Bp2,(z22;
+2627)/(4a+3) +2(2224 +2525) {68p/a
—248p/ (4a+4)} +92,(z% +23) —36Bpz,(2, 25
+25%7)/(4a+3) — 186p2,(2,24 +2525)/
a(3a+3)1/(4a+3), A1
hy=lz,(2} + 2D 4(x+1)/a—3Bp? —6Aa(a+3)/(4a+3)
+2(a+3)/3) +2,(&3 +22){ - 9D/ (4a+3)—2/a+3pp?
+2(a+3)/3} +2,(2,2, +2526)  —6Ba(a+3)/(da+3)
~9C/(4a+3)—2/a—4(a+3)/3} +6a(a+3)z,(z3 +23)
9z (z% +23) + 2, (2,23 + 2527) {6aBp —24afo (a+3)/
(4a+3)} —120p(a+3)z,(z124 +2525)/(da+3)
+54aBpz (2223 +2627)/ (4@ +3) + 22224
+2625) (1280~ 36aBp/ (4a+3) ) +2,(z% +22) {6aA (a +3)/
a+3)-1/a+4a+3)/3} +2,(23 +zH) (4D (a+3)/
4a+3)—1/a~8(a+3)/3} +2,(212, +2526)(2/a
+4C(a+3)/(4a+3)+6aB(a+3)/(4a+3)+4(a+3)/3)
—4(a+ 3)z,(z3 +23) — 24Bpaa+ 3)z,(2,2; +2627)/
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(4a +3) +2,(2,24 + 2623) {16aBp (a + 3)/(4a +3)
—(4a+3)Bp} —6a(a+3)z,(z3 + 73 +24aBp(a+3)z,(z:23
+2527)/(4a+3)+120p(a+3)2,(z,24 +2525)/

(4a+3))/(4a+3). (A42)

The remaining components h,, and hg are obtained,
respectively, from h; and A, by replacing z;, i=1,2,3,4 by
Zi+4and z;, j=5,6,7,8 by z;_4. Also, the constants 4, B, C,
and D in the preceding expressions are as defined in (13).

APPENDIX B

_ The components k;, i=1,2,3,4 of the nonlinear function
k satisfy the condition

S1*(O)k(F,n) =K(S*(8)Y,n), 0¢[0,27) (B1)

where
V=urnysy)’s k(G =ki(v.p), i=1234,
y=@F07
and where S, *(#) is the symmetry matrix defined by
S, *(0) =cosbl, +sinbY,, 0e[0,27). (B2)

Given (B1), our objective is to determine the most general
form of k(¥,u). This is accomplished in the following using
ideas from Sattinger [14]. _

To find the most general form of k satisfying (B1), it is
more convenient to work with the complex forms of k and
$,*(0). Therefore, we first transform (Bl) into a complex
form.

We first note that S, *(§) can be written as §,*(f) = 4.
Also, the matrix J; can be diagonalized by the similarity
transformation P~'J,P = A where A = diag(/, —i,i, —i) and
P is composed of the eigenvectors of J,. Thus, §;*(6) = el4f
= gPAPT0 — PeAP -1 and (B1) takes the form

eMG(w,u) =G (eMw,p) (B3)

wherew = P~!§ and G(+,u) = P~'Kk(P(+),p). Here w and G
are complex four-vectors.

Since A and, therefore, eA? are diagonal, it is easy to express
the conditions (B3). Let

Gi(Wop) = Y, Ay WIWiWEW]

r+s+p+q=3

(B4)

where 4, are complex coefficients dependent on u, where p,
q, r, and s are non-negative integers, and were we have set w
= (W, wy, Wy,w,)T. With this form of G, the first of the
equations (B3) gives that 7, s, p, and ¢ must satisfy
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(B5)

Therefore, at the lowest order, the functions &, and k; are
given by

r—s+p—q+1=0, V rsp,q=0, r+s+p+q=3.

i Diyi)

i=1

4
f@n =01+ (L cw) + o+
=1

!

4
+ 03 (L E), (B6)
i=1
and
2
G@w =030 (L (Coia=Cuar)
i=1
2
+ (Y12 +)’3)’4)< E (Diyiv2a—Digay; ))
i=1
2
+ 03+ (L Bz B ®7)
i=1

where the real coefficients C;, D;, and E;, i=1,2,3,4 depend
on u.

Expressions similar to (B6) and (B7) are obtained for k>
and k4 with C;, D;, and E; replaced by F;, G;, and H;,
respectively, when the second of equations (B3) is considered.
Thus, at the lowest order there are 24 arbitrary constants in
k(y,un). We have, however, not yet accounted for the ad-
ditional conditions (16). Taking these into account and noting
that the two linearly independent eigenvectors corresponding
to any coincident eigenvalues of A can be taken of the form a'
= (a;,0)Tand a? = (0,a,)7, it can be easily shown that
coefficients C;, Dy, E;, F;, G;, and H;, i=3,4 are zero. The
nonlinear functions &;, i=1,2,3,4 are, therefore, given by

ki(F,m) = 1 +93)B1y1 + Boys) + 0102 +¥37) By
+B4y;) + (03 + ¥D)(Bsy + Bey,),

kr(3m) = (7} +30)(Bry1 +Beyz) + (132 +¥394)Boy
+Byoy2) + 03 + ¥ By + Buayy),

ks (31) = (7} +33)(B1ys +Byya) + (912 +¥374) (B3 p3
+B4y4) + (3 +¥3)(Bsys + Beya),

and

k() = O} +73)(Brys + Bsys) + 0131 +¥374)(Boys
+B1oys) + 03 +y1)(B11ys + Biaya) (B8)

where we have redefined all the coefficients. Clearly, there are
only 12 real arbitrary constants.
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6 Determination of Periodic Solutions

In Part 1 of this paper it was shown that the downward
vertical position of equilibrium of the two-segment articulated
tube system becomes unstable when the flow velocity, p,
reaches a critical value p .. This loss of stability is associated
with two coincident pairs of complex conjugate eigenvalues
crossing the imaginary axis. In this part of the paper, the
nonlinear equations of motion of the system, which in
standard form are given in (29), are analyzed for bifurcating
periodic solutions.

There are many methods available for finding small
periodic solutions of a weakly nonlinear system. For
multiparameter systems, which is the case here, and especially
when the scaling relationship between the small parameters
and the amplitude of nonlinear oscillations is, apriori,
unknown, either the method of Liapunov-Schmidt or the
method of Alternate Problems is appropriate. The scaling
that relates the amplitude of periodic solutions to the small
parameters in the problem is ultimately suggested by the
“‘bifurcation equations.’”’ Here we follow the latter method.
We will present the basic ideas of the method of Alternate
Problems. For the mathematical details the reader should
consult references [1, 2].

Consider the system (29). At p= o =0, the linearized system

y=Agy
has two pairs of pure imaginary eigenvalues =iwy, wy> 0.
Thus, the linearized system at criticality has two pairs of
periodic solutions of period 2#/w,. We are interested in
finding periodic solutions of the complete system (29} when u
and « are nonzero but small. Although we do not know the
period of the solutions of the nonlinear system, it is known
that in the limit as parameters p and « go to zero, it converges
to the period of the periodic solutions of the linearized system

I This work was supported by funds from the National Science Foundation
under Grant NSF-CME-7921351,
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ASME Applied Mechanics Division, August, 1981; final revision, March, 1982.
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Bifurcations in Three-Dimensional
Motions of Articulated Tubes,
Part 2: Nonlinear Analysis1

The equations of motion of the two-segment articulated tube system, discussed in
Part 1, are analyzed for bifurcating periodic solutions near critical flow velocities.
In addition to the flow parameter, the system depends on four other parameters.
Depending on the values of these parameters the system exhibits a wide variety of
behavior. This behavior is studied in detail in several specific cases.

at criticality., Let us assume that the unknown period is
T=2n/wand let 7= wf. We introduce a new small parameter x
so that w=wy/(1 + x). Then (29) becomes

wﬂy = AOy + F(Y,Iha,x) (30)
where

F(¥,pm 00 =xAoy + (1 + ) (pAy + aAy +ky,m)] (1)

and where ( ) now denotes differentiation with respect to 7.
We now obtain 27-periodic solutions of the system (31).

We first define some operators in the context of the
nonhomogeneous linear system

wo¥ = Agy +£(2). (32)

Let P,w be the space of continuous 2w-periodic 2n-vector
functions defined by

P21r: [g. R~ RZn,
with norm lgll =suplg)!}
0=<7<27

g continuous and 2w-periodic,

where |+| denotes the Eucledean norm in R?". The (2n X 4)-
matrix functions ®(7) and ¥(7) defined by

1 -
¢(T)=exp<w— Ao”) (e;,e5,€5,€4), (33)
0 .

1 =
‘l’(r)=exp(— — A7) (ey,e5,€5,84) 34
Wo
are, respectively, a basis for the 27-periodic solutions of the
homogeneous part of the linear system (32) and its adjoint

(33

Heree;, i=1, 2, 3, 4 denote 2n-vectors with 1 in the ith entry
and zero elsewhere.

Following Hale [2], we also define projection operators on
P27r by

Wy = — Ao Ty.

2T
Uf=%(.)P! So ®T(s)E(s) ds

and
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27
V1’=\Ir(-)Q—‘S0 ¥ (s)(s) ds (36)
for any fe P, w, where P and Q are 4 X 4 nonsingular constant
matrices given by

27 27
P=S &7 (s)P(s) ds, Q=S ¥7(s)¥(s) ds.
0 0 .

Note that U takes P,, onto the subspace of P,, spanned by
the 2m-periodic solutions of woy=Agy. Similarily, V takes
P, onto the subspace of P,, spanned by the 2#-periodic
solutions of (35). Also, let E=(I—V) where I is the identity
operator on P,,.

We define one more operator K. If f(s)€P,, in (32), then
KEf is the particular integral of (32) with Vf=0 and
UKESf =0. K is defined on the range of E and has a range that
is contained in the range of the projection (I-U); fur-
thermore, KE is a bounded linear operator on P,,.

With these definitions, the problem of finding 2r-periodic
solutions of the system (30) can be shown to be equivalent to
finding solution y,y€P,,, of the alternate problem

y=Uy + KA -V)F(y,p,0,%) (€0}

and
VY, p0u%) =0, (3%

In terms of the familar perturbation procedure, equation
(38) is equivalent to the usual solvability condition used to
remove secular terms. The second term on the right-hand side
of equation (37) then determines the unique solutions of the
sequence of linear nonhomogeneous problems that arise after
removing the secular terms while the first term Uy gives the
solutions of the homogeneous linear systems.

In the spirit of the method of Alternate Problems, if we let
y=y, +¥,, the component y, = Uy of the periodic solution y
of (30) is composed of the solutions of the homogeneous part
of equation (32) whereas the component y, = (I — U)y contains
the higher harmonics. In view of this decomposition of y we
have

V2 =KA-V)F(y, +¥2,8,0,X)
which can, using the implicit function theorem, be solved
uniquely for y, in terms of y,, ¢, ¢, and x for small enough y,,
u,o, and x. The function y, =y,(y;,u %) is smooth in its
arguments. Substituting y=y, +y, (¥,4,,%) in (38) gives the
bifurcation equations in y,, pg,a, and x and to every solution
of the bifurcation equations there corresponds a periodic
solution of (30). The operator bifurcation equations VF
1+ Y2091, ,06%), pa,x) = 0 thus obtained reduce to four
algebraic nonlinear bifurcation equations if we note that every
y14 is given by y; = ®(7)d where d is some constant vector in

To obtain the bifurcation equations explicitly, we write
A (w)=A+pAj +0(u?),
and
K(y,) = K () +0(ly1°)+0(l ul o [y1%)
where k.(y) is a homogeneous cubic in y. Then substituting
the preceding expressions in (37) and (38) and expanding the

resulting expressions in Taylor series, we get the algebraic
bifurcation equations

G(d,p,0,)=xM, d+ M, d + aMd + C,(d)
+0(1(p, 0 12.1d1)

+0(1 (g, %) = 1d13)+0(1d1%)=0 39

where

27 = 27 - .
M ESO ¥T(s)A,B(s) ds, M ESO VYT (s)A,,®(s) ds,

X ®

Journal of Applied Mechanics

27 —
M, = Xo ¥ (s)A,®(s) ds

27
and C,(d)= fo Y7 (5)k (®(s)d) ds. 40)
Nolt; that in these equations we have set y; = $()d for some
deR?,

Equations (39) are a system of four nonlinear algebraic
equations dependent on two small parameters y and « which
can be varied independently. A general analysis of these
equations, to determine all the possible small solutions (d,x)
for u and o varying over the whole neighborhood of the origin
0,0) in (p,a) plane, is quite difficult in general. Equations of
this kind have been analyzed in detail by Chow, Hale, and
Mallet-Paret [3, 4].

The proper scaling for the system (39) can now be deter-
mined. Assume that C,(d) implies d =0. Then it can be shown
{3] that every small solution of (39) satisfies the inequality

fdl<q(lpl”+1x1% + lal %) @1
for some constant ﬁ;éO. This inequality suggests the scaling

d=ed, x=€x,, p=€p, and a=ela, 42)
which reduces the system (39) to
X:M, d+ p,M,d+ ;M d + C,(d) +0(lel?)=0. 43)

The parameter e can be fixed by normalizing the vector d
using the condition

Idl=1. (44)

Then ¢ is a measure of the amplitude of the periodic solution.
The reduced bifurcation equations are obtained by taking the
limit e—~0 to give

XzoMx&o + IlzoMu&o + oM, dg + C(d,) =0,

ldl=1. (45)

The solutions to these equations determine the first ap-
proximation to the periodic solutions of (30). Note that, since
u and o are independent and small in (39), ay, in (45) is in-
dependent, finite, and real. We are looking for solutions
(dg,pa0,X2) Of (45) for given values of ay,. The case of
symmetric systems corresponds to o,y =0. These equations
have been studied in complete generality for the rotationally
invariant systems in [1]. In the remaining of this section we
quickly summarize the analysis in [1] and then present results
for ay, =0. The effects of symmetry-breaking perturbations
(atzp #0) will be discussed in a later section.

The bifurcation equations (45), taking the equations (27),
(33), (34), and (40) into account, are given by

—X20@0@; SIN ¢+ pya; (§cosd — Gsing)
+ 0_81 [a,?{H,cos¢ + H,sing)}

+a,2{H,cosp+ (2Hg + H\p)sing }] =0,
X2000@COSP + pogd (BCosP + Esing) +

381 [a,2{ H, sin — Hycose)

+a,{ — Hycosp + (2H; — Hy)sing}] =0,

a
pottr £+ -2 [0 (2H; + Hycos2¢
—Hlosin2¢l +H1a22] =0,
., QD
X20@Wo@y + @2 &+ K}

{a,2( —2Hg + H\ycos2¢ + Hysin2¢} — H,a,%] =0,
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and
(112+a22=1. (46)
Here we have replaced &0 by the polar variables
doy =a,cos¢,,
5’03 =q,C05¢,, )
and then set ¢, =¢ and ¢, =0 because the system (30) is
autonomous and, therefore, its phase is arbitrary.

The coefficients H,,H,,H,;,Hg,Hy, and H,, in (46) are
formed by combinations of the 12 coefficients B; of the cubic
nonlinear terms given in Appendix B of Part 1 and are given
by

d02 = alsin(bl s
d04 = azsin(bz,

H] = 3B1 +B4+BS +Bg+Bg+3Blz,
H2 = —BZ—B3—3B6+3B7+310+B11,
H7 = B1+B5 +Bg +B12,

Hg = —-B,—Bg+B;+By,
Hy = B, +B,~Bs—Bg+By+B,,
and
Hy = —-B,+B;+Bs—-B;,~B,+B.
Note that these coefficients are not completely independent
but satisfy the relations
H, = 2H;+H, and 2Hy=H,+H,.
If we define a, =rcosy, a, =rsiny, and eliminate yu,, and

Xy from equations (46), we get a system of two equations
which, in matrix form, can be written as?

4H,singsin2 fp:l [

4H ;singsin2y
—4H psingsin2y

coso
4H,singsin2y singcos2y
We are seeking real solutions to these equations. Note that
the two vectors forming the rows of the matrix are orthogonal
to each other and their inner product with the same vector

(cos, singcos2y) T is zero. Thus, there are only three possible
solutions which in terms of the original vector d are given by

1

(a)dy, = \/7(_ siny,cosy,cosy,sing)”, 0=<y<2m,
H, H;  &H,
=——, = — 47
Ha2p 4 X20 4oy Akw, @7a)
A 1
(b)Y dg, = 7 (siny, — cosy,cosy,sing)”, 0<y <2,
H, H; &H,
= —— = e—— 4 N 47
20 4z X20 4oy | By 47b)
and
(€) dy = (coscosy,cosbsiny, — sinfcosy, — sinfsiny)7,
0=<6,y<2m,
H, H, &H,
=——L, =t —t 4
#20 8¢ X20 8w, | 8w (48)

where ¥ accounts for the arbitrary phase.

Let us interpret these solutions in terms of the original
coordinates z = (z,,2,)T where z, and z, represent motions in
two orthogonal planes in the physical space, the two planes
intersecting in the axis of rotational symmetry. We recall that

2= [z’ } — €C®(DB, +0(e?)
Z)

2 This procedure was suggested by Dr. George Sell.

614/Vol. 49, SEPTEMBER 1982

where

&(r) = 0 §

Thus the periodic solution that corresponds to (474) is given
by
z,(7) =V2¢[e, 'cos(r— ) —d, 'sin(7— )] + 0(e?),
2, (1) =V2eld, 'cos(7~ ¥) + ¢, 'sin(r— )] + 0(e®)
Ye[0,2m).

From these two expressions we see that z, =z, (7+ 7/2) and,
therefore, the motion, when viewed along the axis of sym-
metry, will appear to be a circle with the axis of symmetry as
the center and the motion along the circle will be counter-
clockwise. A similar conclusion holds for the solution (475)
except that the motion in this case is clockwise. Because of
these features of the solutions (47), we call these solutions
“‘circular’’ solutions.

The amplitudes of the periodic solutions (47a) and (47b) are
the same, and in the first-order theory, they are determined in
terms of the external parameter p by u= py e +0(e*). Thus,
using the expression for u,, from (47) we get

o=~ 2t

H,’

If H;>0, puyy <0 and for ¢ to be positive, we have to take

u<0. Thus, for H; >0 the circular solutions are subcritical. If

H, <0, we have to take u>0 and the circular solutions are
supercritical.

We now consider the solution (48). Without much difficulty

we can see that the corresponding periodic solution is given by

z, =2¢[c; 'sin(7+ ) + d, ' cos(r+ ¥)]cosd + 0(¢?),
z, =2¢[— ¢, 'sin(r+ ) — d, ' cos(r + ¢)]sind + O(e?),
0=y, 0<27

Equations (51) represent motion in a plane that passes
through the axis of symmetry. The plane of motion is
determined by the angle 6. For example, for § =0, the motion
is in the plane z, = 0. We call this family ‘‘planar’’ motion.

The amplitude e of these planar motions is given by

B
H,

(49)

(50

&)

€=L) —

(52)

The solution is supercritical if H; <0 and subcritical if H; >0.

The frequency of the preceding motions is, of course,
amplitude dependent. The quantity x,, determines the
correction, from wg, to the frequency of the corresponding
solutions. The frequency of each of the foregoing solutions is
given by

w=wy/ {1+ x50 +0(*)}

with appropriate e and X, as given in the foregoing.
We now discuss the stability of the periodic motions.

(3

7 Stability of the Bifurcating Solutions

The stability of the periodic solutions is determined by the
Floquet exponents [2] of the variational equation
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o= Aoy + 2K (105,00
for the system (30) where
K(7,0,,0 = x2( Ao + (1 + 21, () [ 12(IA, + 0, A,
+ Ky (¥(r,), 2 pa(e)) 3,

(54

_ ak ,
ky(y’ﬂ)E a—y (ya“")

and where

(e¥(7,€),2x2(6), 2 py(€), €2 )

is a periodic solution of (30) whose stability is being studied.
Equation (54) is a linear 27-periodic differential system which
depends smoothly on e for small enough ¢ uniformly in 7. It
can be easily shown that the four noncritical Floquet ex-
ponents of (54) are given by

Bi(e)=N\"+0(e), j=5,6,7,8

where A;° are the noncritical eigenvalues of the matrix A,.

The stability of the periodic solutions is, therefore,
basically determined by the remaining four Floquet exponents
5,(6), =1, 2, 3, 4 for small e. These exponents can be
determmed using any of the standard perturbation
techniques. Using the method of Alternate Problems, ex-
plained in the preceding section, we can show that these ex-
ponents 3=¢2 Bz are the solutions of

DM, + M, + oM, +Cra(d) — BrwoI +0(eP)ld=0 (55)

which is just the eigenvalue problem for the variational
equation of the bifurcation equations (39). In the limit as
¢—0, the Floquent exponents {3,, are the roots of the
characteristic equation

detlx20M, + poM,, + oM, + Cha(dg) — By oI =0 (56)

which is a quartic in wgB;,. We consider here the cases of the
three periodic solutions discussed in Section 6 for o, =0. The
case with a, #0 will be considered in a later section.

The characteristic equations (56) for the two circular
periodic solutions corresponding to solutions (47a) and (47b)
reduce to a single equation given by

1 1
0'4 - T (Hl +H9)U3 + 1—6‘ (H92 +H102 +2H7Hg)02

—'&‘(H92+H102)0=0 (57)

32
where o=uwyBs. Thus both the solutions have the same
stability properties and the physical system in the stable case,
and will perform either of the two circular motions depending
on the initial conditions for the system (30).

Considering equation (57), it is clear that one root is zero
which is a consequence of the fact that system (30) is
autonomous and therefore for any periodic solution y, dy/dy
is a 2m-periodic solution of (54) for all e. By the theorem of
“‘orbital stability’’ of a periodic solution (Hale [2]), the
bifurcating circular periodic solution is asymptotically or-
bitally stable with asymptotic phase if the three nonzero roots
g;, i=2,3,4 of the equation (57) lie in the left half of the
complex plane. Stability of these solutions for a variety of
cases, as determined by specific values of system parameters,
is discussed in the next section.

The stability of the two-parameter family of periodic
solutions (51), called the planar solutions, cannot be deduced
directly from the discussion for the circular solutions
although the general analysis remains valid. The four critical
Floquet exponents still are the roots of the quartic (56). One
can easily verify that equation (56), for this case, when
evaluated at the solution (49) of the reduced bifurcation
equations, reduces to

Journal of Applied Mechanics

16 0% =0.
Clearly, two roots of (58) are identically zero which is because
the solution is a two-parameter family and both dy/dy and
dy/06 are linearly independent 2#-periodic solutions of the
variational equation (54). In fact, the independence of dy/dy
and dy/d0 implies that two Floquet exponents are identically
zero for all e. Equation (58) determines first approximation to
the remaining two nonzero Floquet exponents. These two
nonzero roots of (58) are

=H,/4 and o,=-Hy/4
and therefore the critical characteristic exponents for the

planar solution in terms of the external parameter p are given
by

1
ot — 7 (AL —Hy)o’ — (58

26u +0(1ut??) and

Wo
It then follows, from a theorem by Hale and Stokes [5] on the
stability of k-parameter family of periodic solutions, that if
the two nonzero critical exponents given in (59) are in the left
half of the complex plane, the two-parameter family of
periodic solutions (51) is asymptotically stable with asymp-
totic phase y and asymptotic angle #. This concept of stability
is a natural generalization of the concept of orbital stability of
a periodic solution and precise definitions can be found in
Hale and Stokes [5]. In the context of the planar solution (51)
this concept of stability can be explained as follows: consider
any periodic solution z(r,y;8,) for a fixed value of 8, say 6 =
;. This motion is in the plane defined by the angle 6. Let 10
be a small interval around 6,. Let M be the solution manifold
in R¥*! which is defined by x = z(r,y;0), 8¢ Iy, , Y€ [0, 27).
If this solution manifold is stable in this sense, given a small
disturbance to this family, the solution of (30) with o = 0
tends to the foregoing manifold. However, the parameter ¢
determining the plane of the motion goes to some value §, as 7
— oo, The asymptotic angle #, depends on the initial con-
ditions. The smaller the disturbance, the smaller is the angle
difference 1§, — 0, 1. Therefore, if we disturb a stable planar
motion, the plane of the motion drifts into another nearby
plane.

Consider now the planar solution. Since £ > 0 and u =
€ + 0(?) = — H, /8% ¢ + 0(€), it bifurcates for u > 0
(supercritically) if H; < 0 and for p < 0 (subcritically) if H,
> 0. From the Floquet exponents (59), we can distinguish
three distinct possibilities which are in contrast to the problem
of Hopf bifurcations where there are only two cases. For
subcritical solutions, H; > 0 and p < 0; therefore, one of the
Floquet exponents is always positive. Thus, the subcritical
planar solution is always unstable. For the supercritical case,
there are two possibilities depending on the sign of H,. If H,
> 0, the supercritical solution is stable while if Hy < 0, it is
unstable.

The preceding conclusions regarding stability depend on the
values of the constants H;. As shown earlier, these constants
depend in a very complicated manner on the system
parameters and the eigenvectors of the matrix A. Detailed
specific results are therefore best obtained by computing these
quantities numerically. We discuss these results for specific
ranges of parameters in the next section.

0,0’

2H, 372
H1u+0(|ul ). (59)

8 Results and Discussion for the Symmetric System

In the following we present results and numerical
calculations over a range of system parameters p, 3, «, @, and
G. As noted in Section 2, 8 lies between 0-3 while a, G, and «
are all positive. To study the whole parameter space is a very
difficult task. Therefore our calculations are restricted to
within realistic limits. We consider five values 0.25, 0.5, 1.0,
2.0, and 4.0 for each of the parameters a and «. For each fixed
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pair (x,a), the parameter 8 was varied over the whole interval
(0,3). Since the parameter p only determines the size of the
periodic motions, the significant quantity is (1/ 1, )" and it
is the one that is presented in the results.

The situation with respect to the gravitation parameter G is
much more involved. This is because the effect of G on the
problem is fundamental in that it can change the character of
the instability. We can see from (19) that for G = 0, the the
articulated pipes system gets unstable only by complex
eigenvalues crossing the imaginary axis. On the other hand, if
G is very large, it can be shown that for 8 > 0.5, the vertical
position gets unstable with real eigenvalues crossing the
imaginary axis through the origin. For small enough G, below
some critical value G = G*, we still get the oscillatory in-
stability over the whole 8 range and it is of primary interest
here. This number G* is determined by other system
parameters. We have therefore treated cases in which the
gravitational forces are much smaller compared to the elastic
restoring forces. Specifically, we present results for G = 0.0
and G = 0.25. There are, however, cases (when « is small)
when G has to be as low as 0.1 for all instabilities to be of
oscillatory nature. We should mention here that cases, when
one pair of complex eigenvalues and one real eigenvalue cross
the imaginary axis simultaneously, have been studied by
Holmes [6].

Since it is not possible to present results for all the
parameter values considered, we describe in detail a few
typical cases and then summarize the major conclusions of
numerical calculations.

The results are simplest to describe in the case when the
length ratio ¢ = 2.0. Representative behavior is shown in
Figs. 1(a) and (b) for a = 2.0, k = 1.0, and for G = 0.0 and
0.25, respectively. It may be noted that the system parameters
in this case, to some extent, approximate the case of a con-
tinuous cantilever tube. In these figures, as well as in all the
others discussed later, the solid lines denote supercritical
circular solutions while the dotted lines denote supercritical
planar solutions.

Let us first consider Fig. 1(@) corresponding to G = 0.0.
The curves here are typical for all stiffness values considered.
1t is found that both planar and circular periodic motions are
supercritical. Their amplitude increases monotonically with
the mass ratio 8, being smallest near 8 = 0.0 and largest at
= 3.0. For small values of 3, the planar solution is of larger
amplitude and is stable while for larger values of 8 the circular
solutions are of larger amplitude and are stable. The two
kinds of solutions exchange stability at the value of 3 where
they cross. It is also observed that for a given 8, the amplitude
of periodic motions, whether planar or circular, goes down as
the stiffness ratio « is increased. It is to be noted that, in
contrast to Hopf bifurcations, it is possible to have unstable
supercritical bifurcations in systems of the kind discussed
here.

We now consider Fig. 1(b) which is for G = 0.25 with other
parameters being as for Fig. 1(a). For 8 < 1.19 the nature of
solutions here is the same as in Fig. 1(a). For 8 > 1.19, there
also exist subcritical solutions that are not present in Figure
1(a). These subcritical solutions are all unstable. The planar
and circular subcritical solutions are denoted, respectively, by
single chain and double chain lines. Thus, even very small
gravity effects have profound influence on the periodic
solutions for this parameter range. Based on these and other
numerical calculations it is observed that for a fixed 3, the
amplitudes of the supercritical planar and circular solutions
increase as G is increased from zero until a value of G is
reached when the circular solution first becomes subcritical. If
G is increased further, another value of G is reached where
planar supercritical solution also becomes subcritical. For
every value of G there are values of the mass ratio 8 above
which all circular and planar solutions are subcritical. It is
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Fig. 1(b) Amplitudes of periodic solutions fora=2,0,x=1.0,G =0.25
Fig. 1

247 3

also observed from Fig. 1(b) that if for a given 3 at least one
of the solutions is subcritical, both solutions are unstable.
This is found to be the case for all parameter values con-
sidered. This does not imply that there are no stable periodic
solutions for such values of 8. The present conclusions are
valid only for the first approximation.

In the graphs discussed in the foregoing there was only one
intersection (and exchange of stability) of supercritical planar
and circular solutions. This is not the case for all parameter
values. In Fig. 2 results are given fora = 0.25, x = 4.0, and G
= 0.0. Both the solutions are supercritical for 8 > 0.72
whereas for 8 < 0.72 the planar solution is subcritical and the
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Fig.2 Amplitudes of periodic solutions fora =0.25, x=4.0, G = 0.0

circular solution is supercritical. The two supercritical
solutions intersect at 8 = 1.02, 1.67, and 2.03 and exchange
their stability. For example, as 3 is increased through 1.67, the
stable circular solution becomes unstable and the unstable
planar solution gains stability. The planar subcritical and the
supercritical circular solutions for small values of 3 are both
unstable. It is also observed from calculations that the
gravitation effects are small in this and other cases, where the
length ratio is smaller and the stiffness ratio is greater than
one. This insensitivity of the solutions to G for small a can be
explained by the fact that G appears in nonlinear terms
multipled with factors quadratic in a.

We now summarize the main conclusions from numerical
results described in the foregoing and those that were ob-
tained for other values of system parameters discussed earlier.

1. Both supercritical and subcritical planar as well as
circular solutions can exist over the interval 0 < 8 < 3.0 for
the range of parameters a, G, and « studied.

2. For a fixed value of B, if either of the solutions (planar
or circular) is subcritical,both the solutions are unstable based
on the first-order theory.

3. If planar as well as circular solutions are supercritical,
the solution with the larger amplitude is stable and whenever
the two amplitude curves intersect, there is an exchange of
stability. For a fixed value of parameters a, «, and G, there
can be many intervals in 8 of alternating stability and in-
stability.

4. For small values of B, the circular solution is always
supercritical and unstable while the planar solution can be
supercritical and stable or subcritical and unstable.

5. For large values of (3, the circular solution is in most
cases stable if supercritical and always unstable if subcritical.
On the other hand, the planar solution is in most cases un-
stable if supercritical and always unstable if subcritical.

6. For length ratio less than unity, the influence of gravity
G on the qualitative and quantitative nature of periodic
solutions is small. This influence is, however, very
pronounced for @ > 1.0 especially for larger values of £.

Journal of Applied Mechanics

7. Theintervals in 8 over which subcritical solutions exist is
very much influenced by the stiffness ratio x and the gravity
parameter G.

8. Over the whole range of parameters considered, sub-
critical circular solutions were never found to exist for small

8.

9 Periodic
Perturbations

Solutions With Symmetry-Breaking

In Section 6 it was shown that reduced bifurcation
equations for perturbed symmetric systems are given by

XaoM, o + p2oM, dg + ctpo M dy + € (dg) =0

and (60)

Ido l = 1.

The solution of these equations clearly depends on the
nature of the matrix M, which in turn is determined by the
choice of the matrix A,, that represents the asymmetry in the
linear part of the system.

Without loss in generality we can introduce asymmetry
through only one of the two linear modes in the Jordan form.
The dynamical system in Jordan coordinates will then be in
the form.

= Aoy + pA, (WY + aAsy + K. (61)

where the general form of the symmetry-breaking matrix is
assumed to be

by D E
]
= P, P 10
L e (62)
0 L0
i
and where p, and p, are real arbitrary constants. For o = 0

the behavior of eigenvalues of the system as a function of p
for both modes is the same. In case p; = 0, p, # 0, only the
periods of the two linear modes are different and the
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eigenvalues cross the pure imaginary axis at the same value of
the flow rate. This possibility can arise when the stiffness of
any of the joints does not have polar symmetry and stiffness
in one plane is slightly greater than in the other. Similarly, if
p; # 0, p, = 0, the two linear modes have the same period
but they cross the pure imaginary axis at slightly different
values of the flow rate. Such a situation may -arise if the
damping in one plane is a little more than in the other.

With this form of the matrix A,,, we intend to solve the
reduced bifurcation equations (60). The solutions of (60) for
oy = 0 have already been discussed in the preceding section.
It is clear from equation (43) in Section 6 that for a; ~ 0(¢)
(i.e., o ~ 0(w)), the circular solutions of (60) with ay, = 0
give first approximation io solutions of the perturbed system.
Here we are interested in solutions of the perturbed system
when p and « are of the same order. Because p = p,e? and o
= aye?, we would therefore like to find solutions of (60) for
given oy, such that p,;, and a,, are of the same order of
magnitude. R

For any solution (dy, gy, Xz9) of (60) with a given oy, the
stability is determined by the roots of the characteristic
equation (56):

det[xoM,, + upoM,, + oM, +Cry(dg) — oly1=0 63)

The system of equations (60) is nonlinear and very difficult
to solve in the general case. We take advantage of the known
solution for a,y, = 0 and solve them numerically. In the
numerical solution, ay, is increased in steps and the solution
of the preceding step is taken as the initial guess for the
solution corresponding to the new value of «,,. Once the
solution is known, its stability is determined by finding roots
of (63).

The main purpose of introducing asymmetry is to have the
assurance that the solutions obtained for the perfectly
symmetric system will persist in slightly modified form in the
presence of small asymmetry. Therefore, we checked the
influence of asymmetry in only a few cases.

The numerical solutions of (60) were obtained for 8 = 1.5,
a = ¢ = 1.0, and G = 0.0 starting with the circular solution
for ayy = 0 which is supercritical and stable. The cases (p; #
0, p, = 0) and (p; = 0, p, ¥ 0) were studied separately by
finding solutions with (p, p,) = (1.0, 0.0) and (0.0, 1.0). For
the range of a,y (0.0-0.1) considered, ail solutions were found
to be supercritical and stable. Some of the interesting ob-
servations that can be made from these resuits are as follows:
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1. (py, p2) = (1.0, 0.0): This is the case when, for a;, >
0, the first mode crosses the pure imaginary axis before the
second one. As one would expect, the amplitude of this mode
is the larger of the two and the resulting motion is elliptic in
nature. The average amplitude also increases with oy, oy >

0

2. (p;, p;) = (0.0, 1.0): In this case, for ay; > 0, the
frequency of the first mode is larger than that of the second.
Again, the amplitude of the first mode is greater than that of
second and the periodic motion in physical three-space is
elliptic in nature. In this case, however, the average amplitude
does not change much with increasing a,,. Also, the ec-
centricity of the ellipse in this case is much greater. The
difference in amplitudes of the two modes here can be at-
tributed to a different physical phenomenon: the linear part
of system has different frequencies in the two modes. On the
other hand, for periodic nonlinear motions the frequency in
either mode has to be the same. Since, in general, the period
of nonlinear motions depends on the amplitude, the system
adjusts the amplitudes of the two modes to different values in
such a way as to attain the same frequency in each mode.

Thus, we see that the difference in the rate of growth of the
linear modes has more pronounced influence on the amplitude
while the difference in periods of linear modes gives rise to
larger eccentricity of elliptic motions. In a given physical
situation, the actual behavior of the system will be determined
by the factor that dominates.

We would like to finally mention that no effort was made to
study the effect of asymmetry on the plane periodic motions.
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Nonparametric Identification of
Nearly Arbitrary Nonlinear
Systems

A nonparametric identification technique is presented for use with discrete
multidegree-of-freedom nonlinear dynamic systems. The method requires in-
Sformation regarding the system response and estimates of its pertinent ‘‘mode
shapes’’ to determine, by means of regression techniques involving the use of two-
dimensional orthogonal functions, an approximate expression for the system
generalized restoring forces in terms of the corresponding generalized system state
variables. The technique is applied to several example systems. The method can be
used with deterministic or random excitation to .identify dynamic systems with
arbitrary nonlinearities, incuding those with hysteretic characteristics. It is also
shown that the method is easy to implement and needs much less computer time and
storage requirements compared to the Wiener-kernel approach.

1 Introduction

The identification and modeling of nonlinear multidegree-
of-freedom dynamic systems through the use of experimental
data is a problem of considerable importance in the applied
mechanics area. A recent survey article by Ibarez [1], con-
taining over 130 references related to system and parameter
identification, is indicative of the wide range of applicability
of this subject in the structural dynamics field.

Since the model structure in many practical dynamic
problems is by no means clear, the use of parametric iden-
tification methods, which assume that the structure is known
and only parameter values need to be identified, may not be
appropriate. As a result, an increasing amount of attention
has recently been devoted to nonparametric identification
methods such as the ones that use the Volterra-series or
Wiener-kernel approach [2-5].

However, the traditional nonparametric identification
techniques have their own problems. Some include restric-
tions on the nature of dynamic systems to be identified
(nonhysteretic, stationary) and on the input signal that can be
used (white noise). Furthermore, when dealing with systems
that incorporate commonly encountered nonlinearities, such
as polynomial nonlinearities, the evaluation of higher-order
terms requires a prohibitive amount of computational effort,
coupled with very demanding (and usually unrealistic) storage
requirements.

A recent paper by the authors [6] presented a relatively
simple and straightforward approach to theidentification of a
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Foo)

Fig.1 Simplified model of nonlinear multidegree-of-freedom system

broad class of nonlinear single-degree-of-freedom (SDOF)
dynamic models. The method is based on the use of regression
techniques in conjunction with orthogonal polynomials and
alleviates most of the aforementioned problems associated
with the traditional nonparametric identification techniques.
The procedure has the following specific attributes: (a) it was
shown to be applicable to systems with practically arbitrary
nonlinearities (including hysteretic types); (b) it has virtually
no restriction on the wave form of the probing signal used for
identification purposes, so long as the signal adequately
excites the system; (¢) both computer execution time and
storage requirements are relatively minimal; and (d) the
convergence rate is rapid, even for nonpolynomial types of
nonlinearities.

The method in [6] was extended to handle the special case of
chain-like multidegree-of-freedom (MDOF) nonlinear
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Fig.2 Example nonlinear 3 DOF system
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Fig. 3 Response time history of the hysteretic system UCB-3 under
sinusoidal and random exclitation

dynamic systems whose components are interconnected by a  generalizing the approach to handle, approximately, the case
single nonlinear element [7]. These structures have the of arbitrary nonlinear MDOF dynamic systems with multiple
property that the nonlinearities in the various links of the inputs and outputs. Section 2 of this paper presents the
chain are independent of each -other. Thus, with a suitable identification procedure, including problem formulation,
transformation of variables, the method just described for generation of needed experimental data, information
SDOF systems can be applied directly to each link separately.  processing to extract the generalized system state variables,

The present paper further extends the work in [6] by and final determination, by the use of orthogonal functions,
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Fig.. 4 Variation of restoring functions G; with the corresponding
state variable z; in the hysteretic system UCB-3

of the best estimate of the system ‘‘restoring forces.”’ In
Section 3, the method is applied to a model of a three-story
building that has been extensively analyzed, both analytically
and experimentally, at the University of California at
Berkeley (UCB). It is shown via numerical ‘‘experiments’’
that the approximate method under discussion is very efficient
and can be utilized under realistic conditions to accurately
identify general MDOF dynamic systems with arbitrary types
of nonlinear components, even those possessing hysteretic
characteristics and undergoing large nonlinear defor-
mations—situations that pose serious problems to con-
ventional identification methods.

2 Identification Procedure

Consider a discrete nonlinear MDOF system that consists
of a collection of lumped masses, each of magnitude m;,
which are interconnected by means of discrete elements G
with arbitrary nonlinear characteristics. To clarify the
presentation, a simplified version of such a system with three
masses and six nonlinear elements is shown in Fig. 1.

The structure may be subjected to nonuniform base ex-
citation and/or directly applied forces. The displacement of
m; is measured by y; (¢). It is assumed that the excitation and
response of the system are available from measurements and
that the masses m; are known or easily estimated.

2.1 Formulation. Consider a nonlinear dynamic system
whose motion is governed by

my +£(y,y)=p(t), 6Y)
where m = diagonal mass matrix of order n
y =displacement vector = col. {y,, y2, . . . ,V» }
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f=function that nonconservative
nonlinear forces

p(t) = excitation vector

represents

The transformation matrix ¢ of order n X ris introduced:
y=o¢u, 2

where the r columns of ¢ represent estimates of the r
“modes’’ of interest pertaining to the nonlinear system of
equation (1).

Substituting (2) into (1) and premultiplying by ¢7,

Mi+h(u,u) =Q(¢),
M =diagonal mass matrix = ¢’m¢
h=¢7f

Q(t)=¢"p(1)
For a linear system with classical normalsnodes [8], function f
is of the form

&)

where

f(y,y)=cy +ky, 4

where ¢ and k are constant matrices.

If matrix ¢ appearing in the transformation of equation (2)

is the eigenvector matrix associated with m ~'k, then for the
linear system

h(u,u) =Cii+Ku

C = diagonal damping matrix = ¢7c¢
K = diagonal stiffness matrix = ¢Tk¢

)

where

Due to the orthogonality condition, equation (3) simplifies
in the cases of linear systems to a set of uncoupled equations
Miﬁi+hi(ui,di)=Qi(t), (6)
in which each function 4; depends only on the corresponding
generalized coordinate u; and its time derivative u;.

i=12,...,r

SEPTEMBER 1982, Vol. 49/ 621
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Fig. 5 Time history of modal state variables u; and 4; and modal
restoring forces h; in hysteretic model UCB-3 under sinusoidal and

random excitation

Returning to the more general problem represented by
equation (3), the ‘‘generalized restoring force’’ h can be
expressed as

h(u,u) =Q () — M. Q)
Consider the ith component of equation (7);
hi(ui) =Q; () —Mi;, i=12,...,r ®)

Thus, if m, ¥, and p(¢) are known, A; (u, u) can be deter-
mined from (8). N .

Let an estimate of A; (u, i) be given by A", where A{V is
expressed as a double series involving Chebyshev orthogonal
polynomials:

ﬁi (“’d)zﬁsl)(ui’ui) = E
k

Y apTw)Tiw). O
]
Note from (9) that 4" considers only the contribution of
terms of the type u¥ ! (i.e., only the ith ‘““‘mode”’ is involved).
In order to better approximate #; (u, u) let the deviation
between A; and its first estimate A({V be given by

A @u,u) = A; (u,u) ~AD (u;,4;) (10)

The contribution of ‘‘modal interaction’® to h; can be

accounted for by determining a new Chebyshev double series
fit involving mode i and j # i: -

RO = AP @)= Y, Y CH T (u)Ty(w)  (11)
k { '

622/ Vol. 49, SEPTEMBER 1982

Similarly, the contribution of terms involving products of

various powers of #; and #; can be found from
AP (u,1) = A (u, i) ~ AP (u;,4;) (12)

and

RO @) =~ AP (i) = 3, Y, O3 T () Ty (i) (13)
k {

Obviously, this procedure can be extended to account for
all ““modes’’ that have significant interaction with ‘‘mode’’ i.
When this is done, A; will be approximated by

By () = A® (u;, ;) + AP (u,u5)
+AP i) + ..
where the choice of j would usually be (( ~ 1) and (¢ + 1).

(14

2.2 Processing of Experimental Data.
particular system, perform the following steps:

To identify a

(1) Measurey,y, ¥, and p(¢) at a given sampling rate.

(2) Compute or estimate the diagonal mass matrix of
order n X nand matrix ¢ of ordern x r.

(3) Determine sampled values of u(¢), u(¢), and h(r)
from the following relationships:

(a) Iftheorder of ¢issuchthatrn = r,

u(ty=M"'¢Tmy(t), u'®=M-"'¢Tmy(s) 15)
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Fig. 6 Variation of modal restoring forces h; with the corresponding
state variables u; in hysteretic model UCB-3 under sinusoidal and

random excitation

(b) Ifr < n,thenu and u can be found from
u(s) =Ay, (¢), () =Ay,(¢) (16)
where matrix A = ¢, ! is the inverse of the submatrix
¢, consisting of the first 7 rows of ¢, and y, is a vector
of the first r components of y. Next compute the time
history of the ‘“‘modal restoring force’’ from
h(t) =¢Tt(t) =7 (p(t) —my(¢)) 17)

(4) For each mode i, determine the two-dimensional
Chebyshev series coefficients C1¢ for h; (u, W),

Aty = Y, Y CUD T (u) Ty () (18)
k 1

(5) Compute the residual error in the fit for all digitized
values of A, (¢),

RO (£) =h; () — RO (1) (19)

(6) Determine a two-dimensional Chebyshev fit for
A® (¢) in terms of u; and u;, where j is any arbitrary ‘‘mode”’
that significantly interacts with mode /,

RO (uuy= Y, Y3 C28) T (u) T, (u;) 20)
k il

(7) Compute the residual error in the fit for the digitized
values of A{V (¢),

RP () =h® (1) — AP (1) @1)
(8) Determine a two-dimensional fit for 4/ (¢) in terms of
12,- and le,

Journal of Applied Mechanics

A ()= Y, Y, O30 Ty (4) Ty (1)) @2)
k !

(9) Repeat steps 6-8 for different values of mode index j,
until the norm of the residual error after s approximations is
within an acceptable limit,

128 (£)l <6

where 6 is a small positive constant.

VX))

(10) Repeat steps 4-9 foreachmodei = 1,2, ... ,r.

This step concludes the identification task. To use the
results for predicting the response to an excitation other than
the probing signal used for identification, the governing
nonlinear equations of motions can be evaluated numerically.
At a given time ¢, with values of u and u known, the
magnitude of each 4; (#) can be estimated from
hi (£) =Ry (uui) = A (uy ;) + AP (uu;) + O @y 0;)

oo RS (U (24)

Once #;(t) is determined, the governing equations of motion
can be solved numerically to compute the response u; at (¢t +
Af):

M. (t)y+h () =Q;(t), i=12,...,r (25)

At any time ¢, y and f(y, ¥) can be found from
y(£) =ou(s) (26)
f(y.y)=p(t) —my(2) @7
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Fig. 7 Comparison between the exact and approximate modal
restoring forces in hysteretic system UCB-3 under sinusoidal and

random excitation

3 Applications

To illustrate the application of the method under
discussion, consider the UCB frame that has been the subject
of extensive analytical and experimental studies [9, 10]. A
simplified three-degree-of-freedom stick model of this frame
is shown in Fig. 2.

The chain-like structure of this model makes it ideally
suited for treatment by the procedure in [7]. However, a
major feature of the present identification method is that it is
not restricted to any particular structure or class of discrete
nonlinear systems. Consequently, the close-coupled nature of
the example system in Fig. 2 will not be invoked and it will in
no way modify the identification procedure from what it
would otherwise be for systems that are not chain-like.

3.1 Polynomial Nonlinearities. The arbitrary nonlinear
elements G; interposed between the masses are dependent on
the relative displacement z and velocity 2 across the terminals
of each element. In the case of elements with polynomial
nonlinearities, the elements assume the form

G;(z,2) =p{z+psz+p{2? (28)
where p{? is the linear stiffness component, p§? is the linear
viscous damping term, and p{” corresponds to the coefficient
of the nonlinear cubic displacement term. Thus, depending on
the sign of p{?, the form of G, given in equation (28) can be
made to represent restoring forces with hardening or. sof-
tening nonlinearities—a commonly encountered type of
nonlinearity in physical systems.

624/ Vol. 49, SEPTEMBER 1982
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3.2 Hysteretic Nonlinearities. The form of the

nonlinearity discussed so far involved polynomial-type
without cross-product terms. To illustrate the wide ap-
plicability of the present method, a hysteretic-type restoring
force will be considered. Such a nonlinearity not only involves
cross-product terms of displacement and velocity, but is of
course not even expressible in polynomial form. Hysteretic
systems, widely encountered in all areas of applied mechanics
(particularly building and equipment systems), are among the
more difficult types of nonlinear properties to investigate and
identify [11-21].

Consider the nonlinear model shown in Fig. 2 in which the
first element G; has a hardening nonlinearity of the
polynomial type, element G, is of a hysteretic type, and
element G; has a softening nonlinearity of the polynomial
type. Element G, is of the bilinear hysteretic form in which

z, =yield displacement level = 2.5

k, =stiffness in the elastic range = 14,900 (29)

o =k,/k, = stiffnessratio = 0.414

This model will henceforth be referred to as model UCB-3.

As pointed out earlier, the nonparametric identification
technique under discussion allows great freedom in the choice
of the probing signal used for identification as long as the
signal is persistently exciting and large enough to drive the
system beyond the elastic region. To illustrate this, two
simulated ‘‘experiments’’ will be considered: one case in
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Table 1 Coefficients of C1f} of two-dimensional Chebyshev
series for the identification of modal restoring functions for

model UCB-3
TYPE OF EXCITATION : Random
LEVEL OF EXCITATION: o = 30,000
LOCATION 1 At Mass 1
MODE : A3
Blupig = [T o) 1) 76
11 N AT T @) Tl LA I R AT T5(6) () T | 1.2 N Tt LAD) T,00) T5(3) G Tg(d) (i) T,00)
To(u) -123.20 1767.00 -90.45 723.50 -190.50 633.00 -126.40 83.93 To(u) -6610.00 | 8761.00 -622.10 | -1124.00 779.30 116.00 -534.80 -503.30
Tl(”) 8801.00 -54.30 -16.18 ~142.20 -130.30 84.99 -78.13 -60.90 Tl(") 248%0.00 -16.60 -733.50 ~106.60 -71.10 -223.60 19.57 49.79
TZ(") -127.50 198.80 -14.89 381.20 -4.96 310.30 126.10 -129.90 Tz(u) -756.00 -657.50 301.70 -205.30 82.25 61.68 -289.80 -263.50
TJ(“) -254.10 210.50 177.50 8.72 216.90 112.70 152.40 -73.43 T:!(“) -291.70 148.00 766.30 -80.39% 545.60 604.40 -84.13 -99.12
T‘(u) -20.31 -147.90 -60.59 100.60 ~16.24 -92.25 128.50 9.75 Y‘(u) 173.30 170.00 321.70 146.80 -136.30 -463.70 -21.20 13.84
Ts(u) -364.50 -84.94 -203.90 -0.21 -220.70 -43.66 -75.76 3.14 Yi(u) §82.60 -110.30 335.40 65.00 -640.40 -14.30 -130.00 -339.60
TG(") 54.73 -89.86 16.90 -111.80 84.68 -125.40 -171.40 -66.21 TS(I‘) 38.75 -122.60 9.62 167.50 220.80 89.88 -11.13 230.10
T,(u) 13.07 ~132.40 77.50 39.17 105.60 -56.43 79.06 6.58 T,(u) -228.80 66.81 -373.40 ~131.00 49.18 -110.10 34.55 91.50
e* = 06,2109 €* = 0.3416
LIEE T TN I MOV B U D A€ N B I (N A B AT/ T A (R A1)
YO(u) -1826.00 | 4524.00 135.00 -106.30 i76.80 -385.60 123.70 -15.28
Tl(") 9890.00 -12,38 -226.60 -1.44 135.00 11.66 -55.16 -38.65
Tz(u) -868.40 ) 30.13 310.30 -207.00 -163.10 39.56 5.29 -19.67
Tylu) § -287.30 §8.38 176.60 -32.82 | -108.30 10.83 -8.67 70.84
T‘(u) -374.50 1.33 59.97 159.20 29.92 ~70.58 110.90 59.49
T5(u) 415.40 -94.95 170.50 -9.70 -60.93 -24.29 15.96 -65.51
TS(") 472.60 1.9 -169.00 -44.59 -35.93 ~45,23 -92.88 30.12
17(u) -228.9(; 78.80 -172.50 67.63 130.10 60.35 50.78 -17.98
e* = 0.4288 .

which a swept-sine excitation is used, and another case in
which a broad-band random excitation is applied.

Following the identification procedure outlined in the
foregoing and using mode-shape estimates based on the
average stiffness of the system result in the measurements
shown in Figs. 3 and 4. From Fig. 4(b) the example structure
is clearly undergoing a large nonlinear deformation of the
bilinear hysteretic type with a ductility ratio p = (peak
displacement)/(yield displacement) of about u = 2.

The representative measurements, shown in Figs. 5(a) and
(d) for the estimated modal displacements u; and in Figs. 5(b)
and (e) for the estimated modal velocities #; (under swept-
sine and random excitation, respectively), clearly indicate the
predominant component of the response corresponds to the
first mode in both excitation cases. Howevere, the estimated
modal restoring forces shown in Figs. 5(c) and (f ) show that
contributions of higher modes are quite significant, par-
ticularly under broad-band excitation.

The plots of the estimated modal restoring forces versus
their corresponding modal displacement in Fig. 6 clearly
indicate the presence of hysteretic components in the system.

Using Chebyshev polynomials in accordance with equations
(9)-(14) to obtain two-dimensional fits for the surfaces of the
modal restoring functions will yield the typical identification
results shown in Table 1 and Fig. 7.

Although the fits for the various modal restoring forces
over the total record length are not as good as in the case of
polynomial nonlinearities [24] as evidenced by the residual
error, the representative time-history segments exhibited in
Fig. 7 clearly show that the quality of the Chebyshev fit,
under both swept-sine and random excitation, is good for the
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frequency content as well as amplitude of each of the three
modal restoring forces.

The identification process yields a nonparametric model for
an equivalent memoryless nonlinear system. The area en-
closed by the loop is the mechanical energy dissipated per
cycle of motion. Using energy approaches, the work done by
the hysteretic element per cycle can be equated to that done by
an equivalent viscous damper [22, 23] to estimate the value of
Cey» the equivalent coefficient of viscous damping for the
hysteretic element. The Cj coefficients in Table 1
corresponding to A; are close estimates of the generalized
equivalent viscous damping c,,, for each mode.

It should be emphasized that the identification does not
find the parameters of the hysteretic loop. Rather, it produces
the Chebyshev coefficients of a model whose response
matches the measured system response in a least-squares sense
for the given excitation. The fact that the hysteretic loop is not
an analytic function is immaterial, since the Chebyshev ex-
pansion treats all nonlinearities equally. When the
nonlinearity is not a function, the procedure fits an equivalent
memoryless nonlinear restoring force in a least-squares sense.

1t is clear from Table 1 that determining the optimum least-
squares fit for the data associated with the hysteretic system
does involve many cross-product terms in displacement and
velocity. It also requires a relatively larger number of terms in
the series (eight used in the present example) for a good
estimate.

The preceeding is a good illustration of the need to use two-
dimensional surface fits rather than uncoupled one-
dimensional series to estimate the system properties. Whether
cross-coupling is significant or not is a decision that need not
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Fig. 8 Comparison between the measured and predicted
displacement of hysteretic system UCB-3 under sinusoidal and random
excitation by using in both cases the approximate model identified

with random excitation

be made a priori when following the method presented
here—the system will effectively ‘‘decide’’ by its own response
(signature) the extent and relative dominance or contribution
arising from various powers of T, (u) T} ().

The adequacy of the approximate (identified) nonlinear
model to predict the response of the exact (hysteretic)
nonlinear system UCB-3 under deterministic and random
excitation is clearly illustrated by the results shown in Figs.
8-10, in which the ‘‘exact’’ displacement, velocity, and ac-
celeration of each mass location of the system UCB-3 is
compared to its corresponding value as computed on the basis
of the approximate nonlinear model. A further demonstration
of the validity of the present identification method is that the
estimated response of the system under sinusoidal excitation
shown in Figs. 8-10 was predicted by means of the ap-
proximate nonlinear model identified by means of a random
probing signal.

Additional details and examples that are useful in
evaluating the identification method under discussion are
available in [24].

4 Summary and Conclusions

A relatively simple and approximate nonparametric
identification technique has been presented that is suitable for
use with discrete multidegree-of-freedom nonlinear dynamic

626 / Vol. 49, SEPTEMBER 1982

systems. The method requires information regarding the
system response and estimates of its pertinent ‘‘mode shapes’’
to determine, by means of regression techniques involving the
use of two-dimensional orthogonal functions, an approximate
expression for the surface of each of the system generalized
restoring forces in terms of the corresponding generalized
system state variables.
The main features of this method are:

(1) Practically any type of nonlinear system charac-
teristics can be accurately identified. Hysteretic systems,
which pose problems for conventional nonparametric
identification techniques, can be easily handled and
reasonably estimated by the present method since they are not
treated any differently from other arbitrary nonlinearities.

(2) Virtually any type of probing signal can be used for
identification; i.e., random signals (stationary or non-
stationary) and swept-sine signals are equally suitable.

(3) Very modest amounts of computer time are needed to
implement the method.

(4) Computer storage requirements are extremely com-
pact for the characterization of arbitrarily nonlinear systems.

(5) Fast convergence can be achieved with very few terms
in the series expansion even in the case of hysteretic systems.

(6) Noise pollution of the data has a minimal effect on the
identification results obtained by this technique.
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The Steady-State Response of a
Class of Dynamical Systems to
Stochastic Excitation

In this paper a class of coupled nonlinear dynamical systems subjected to stochastic
excitation is considered. It is shown how the exact steady-state probability density

Sunction for this class of systems can be constructed. The result is then applied to
some classical oscillator problems.

1 Imtroduction

In the last 20 years the response of nonlinear dynamical
systems to stochastic excitation has been extensively studied.
The diffusion processes approach to this problem leads to the
Kolmogorov equations, which have, until now, been explicitly
solved only in a few simple cases. For linear systems the
transition probability density function can be obtained by a
variety of methods [1, 2], whereas in the nonlinear case only
some specific one-dimensional systems have been exactly
solved so far [3]. An honest survey of the developments in this
area can be found in [3, 4]. In recent years the use of ap-
proximate techniques in the treatment of random vibrations
has become increasingly popular [5-7]. It is expected that in
the next decade this trend will continue as computing costs
decrease.

Our present knowledge of the steady-state response of
nonlinear systems to white noise excitation is also far from a
state of maturity [3]. The exact steady-state probability
density for any one-dimensional nonlinear system, if it exists,
has been found. Some specific nonlinear dynamical systems
of higher dimensions have been considered [3], but in general
very little is known. If the steady-state probability density of a
dynamical system exists and can be found, then it may be
possible to obtain the approximate nonstationary response by
perturbation analysis [8]; the exact procedures to be used are
dependent on the system under consideration. The purpose of
this paper is to construct the exact steady-state probability
density of a class of nonlinear dynamical systems subjected to
stochastic excitation. It will also be shown that some
previously published results [3] are particular cases of our
present investigation.

2 Construction of Steady-State Solution

Consider the autonomous dynamical system in R?" whose
behavior when subjected to white noise excitation is described
by the following equation
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( hi (xy)
—SHY R (X)) — 8 (X1,%3, . . ..

0
+(Wi(f))

x;(0)=y;.

for 1=1, 2, ...., n, where w;(¢) are independent Wiener
processes with zero means and E(dw;(t)dw; (1)) =2Dé;dt.
The functions g; (x;, X3, . . . . , X,,;) assumed to arise from

Xon-1) )

a potential function V(xy, x3, . . . ., Xp_():
8iX1, X350 v oy Xny)
= B Vixy, x;, -2 X2n-1) @
i=1,2,....,n
and H is defined by
N
HO= Y| h@dee v o) @)
i=1
where
X1
X= X3
Xan

At the present stage we further assume that

() f, H, V have continuous second-order derivatives, H=0
and there exists an Hy >0 such that f(H) =0 if H>H,. In
addition,

d
f2 FI{T —~0as H—o
(fi) There exists a constant L such that

N 24 Y\ f(HY R g 12 <L+ 1x12) 0]
i=1 i=1
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where the vector x is defined by (4) and the arguments of the
functions on the left-hand side are those components of x
previously indicated. )

These restrictions will be relaxed later on. The preceding
assumptions are such that the Lipschitz conditions for system
(1) are satisfied. A little manipulation with L and the Lip-
schitz constants reveals that assumptions (/) and (i) are
sufficient to guarantee the following result of Ito [3, 9): there
exists an almost everywhere continuous solution of system (1)
which is a homogeneous Markov process, the solution being
unique up to a stochastic equivalence. Moreover, when an
invariant distribution exists, the unique steady-state
probability density p (x) may be obtained from the stationary
form of the Fokker-Planck equation where dp/df=0. The
previous statement expresses the equivalence under very mild
restrictions of the stochastic differential equations approach
and the diffusion processes approach [10], a topic that has
been rigorously examined by mathematicians. Hence we will
have constructed the only steady-state probability density
from the stationary Fokker-Planck equation subsequently,
under assumptions (7) and (7).

We have been interpreting the dynamical system (1) using
Ito calculus [10]. It is immaterial whether system (1) is
regarded in the sense of Ito or in the sense of Stratonovich
[11, 12] since in this particular case the so-called Wong and
Zakai [13] corrections terms to the drift vector are identically
zero, It is for this reason that assumption (1) need only hold
on every finite domain. (Suppose S is a system where con-
ditions (7) only hold on every finite region. Define a sequence
of systems S, in the following way: S, is the restriction of §
on the closed ball B0, n), and f, H, V are assigned suitable
constant values outside B(0, n). As n—o, S, tends to S and,
for the type of systems considered in this paper [13, 14], the
solution of S, converges to the solution of S. (We have not
discussed condition (i) because it will later be removed.) Let
p(x, tly)dx be the probability of the system (1) in the range
(x, x+dx) at time ¢ given that it is initially at y. The associated
system of Fokker-Planck equations has the form

op _ d 9
= s | Cp] + o [ U R +
(6)
a*p
gi(xl,X3, Ce . )XZH—I))p] +D5—2~
X5i
i=12,....,n

As previously explained, the steady-state density is governed
by the following system of linear partial differential equations

ap ap a
i —— —h;(Xy + —
& Bxy () Oxyy  Oxy
)
[rnn app+p 2] =0 %
X2
i=1,2,....,n

First we observe that if p (x) satisfies the following conditions
it will certainly be a solution of (7)

p ap
- (Xy) —— =0 8
8i F) ; hl(x21) ax;,_) ( )
d Bp]
— | f(H) B () p+D — | =0 9
ax2i [f( ) 1(x21)p+ ax2i ( )
i=1,2,....,n

Since (8) constitutes ‘a linear first-order system of partial
differential equations, we may solve them by the method of
characteristics [15]. The subsidiary equations are
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dxy; dx,, dp .
— xZIl: xz:—lzl:l,z,....,n

hi(xy) 8i 0
for which two independent integrals are

p=constant (10)
and
i
V(xy, X35« - ,xz,,#l)+go hi (O di=k; (11
i=1,2,....,n
where k; is a constant depending on x,;, j=1,2, ....,n,

J#i. The system of equations (11) is equivalent to

n

s Xon—1) + E 5:2i h(Ddi=constant (12)

i=1

H=V(x;,x3,....

Thus the general solution for (8) is of the form
p=¢(H) 13)

where ¢ is an arbitrary function. Since p and its first partial
derivatives vanish as |x|— o0, equations (9) imply

0,
FHYR; (e )p+D 2 =0 i=1.2, . ... n (14)
0xy
Substituting (13} into (14), we have
hf(XZi)[D%g +f(H)q5] +0i=12,....,n (15)

Assuming that none of 4, is identically zero, it follows that
1 H
s=aesp(- 5 | roa)

where A is a normalizing constant. Hence the steady state
density is given by

ool )

| (- oo

where the denominator is a 2n-fold integral. It can be easily
checked that the expression defined in (16) satisfies all the
requirements for a probability density function and therefore
it represents the unique steady-state density of the coupled
nonlinear dynamical system (1), under the assumptions (/) and
3.

The assumption (i) is a rather severe growth restriction on
the class of systems under consideration. It should be
removed if our results are to be of practical use. To this end
we recall the concept of well-behaved solutions (see Ap-
pendix). Now it can be shown that under assumption (f) the
solution (16) is a well-behaved solution of the stationary
Fokker-Planck equation (7). Since it has been shown that a
well-behaved solution of the stationary Fokker-Planck
equation is unique [8, 16], we have the following result.

p(x)= (16)

Theorem. The solution (16) is the unique steady-state
solution of the dynamical system (1) subjected only to con-
ditions (7).

It should be noted that the last theorem can also be
established by using only the diffusion processes approach
(i.e., a direct interpretation of the solution of the stochastic
differential equation (1); using Ito calculus is not required). In
this case (see the Appendix) some caution is needed to furnish
a rigorous argument because the hard machinery needed
comes from the theory of partial differential equations [8]. It
is clear that assumption (i) is sufficient but not necessary and
thus can be relaxed. In order to keep physically interpretable
conditions, this will not be done in this paper.
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3 Applications and Further Discussion

We shall apply the theorem established in the previous
section to some classical oscillator problems, mentioning
possible extensions when appropriate.

Example 1. The motion of a Brownian particle in a
constant force field with dissipation of Rayleigh type [1, 17]
may be described by

R+ Br+g=w(t) an

where E(w(S)w(?))=2Dé(t—s). The associated Fokker-
Planck equation is
LA

p _ .dp  dp
ax

—Xo gt o [ +D-

ar ox g Bxp

We assume that there is a reflectmg barrier at x=0, so that the
particle does not disappear toward x= — co. We may consider
the present system as a particular case of (1) and make the
following identifications:

n=1
Xy =X
Xy =X=Hh,
J=8
5178

Then H=1/2x%%+gx and the unique steady-state density as
given by (16) is

prcsr =L EBo( - § ()

for x=0, — o <X<oo, This is the well-known barometric
distribution [1].

19

Example 2. Consider the following self-excited oscillator
corrupted by white noise

X—e(l =% —x)x+x=w(l)
where e >0. This can be written in the equivalent form

% 0
- J b)) @
X —X; w(t)

Hence by taking h;=x,, g;=x,, we have H=1/2
X 2+1/2x,%, f=—e(1 —2H), and the steady-state density is
given by

(20)

X2
e(1 —x} - x3)x,

P =Cen( £ HO-H) @
where C={%_{*, exp(e/DH(1—H))dxdx,. 1t is easy to
check that the function (22) is a well-behaved solution of the
associated Fokker-Planck equation. It is also easy to see that
all circles on the x,x, plane with centers at the origin are loci
of constant probability for the steady-state distribution.
Moreover the steady-state density attains a maximum when
H=1/2 corresponding to x;%2+x,2=1, and decreases ex-
ponentially on either side of the unit circle. If we now examine
the deterministic oscillator obtained by omitting the last term
on the right-hand side of (21), we will find by a standard
analysis using the Poincaré-Bendixson theorem [18] that the
unit circle is the unique limit cycle for the deterministic
oscillator.

The information given in the last paragraph suggests that
the nonstationary response of the system (21) in the neigh-
borhood of the limit cycle may be obtained by perturbation
techniques. This has been done by one of us for the case of
weak damping and weak excitation [8], when ¢, D< < 1. The
approximate spectral density has also been obtained by the
same means.

Journal of Applied Mechanics

Example 3. A class of generalized Van der Pol-Rayleigh
oscillators subjected to white noise excitation is described by
the equation [3]

EF+f(H)X+g(x)=w(f) x(0)=p,x(0)=y (23)
where E((dw(t))?)=2D dt. The equivalent first-order

system is
' 0
)+ o)
g(xy) w(?)

{x‘.l} { xz

X3 —f(H)x, —

where H=1/2x,%+ [§1g(Od{ is a measure of the system
energy. In this case the associated Fokker-Planck equation is

@4

> —xz:—;: + %’”; () x, +g(x1»p+0%”2
25)
m p (xy X2, 1y,9) =8(x =) 8(x2 - ¥)
The steady-state solution as given by (16) is
p () =Cexp( = & { "ripar) 26)
where C-'=(*_{> exp (—1/Dif(Hdddx,dx,. If the

system (24) possesses limit cycles, then the steady-state density
(26) will have relative peaks on these limit cycles, with ex-
ponential decay away from the limit cycles. The nonstationary
response in the neighborhood of a limit cycle may be obtained
by perturbation techniques, the particular methods used are
dependent on the form of f(H). Moreover, asymptotic
matching on regions enclosed by two adjacent limit cycles
may be used in some cases to determine a uniform ap-
proximation. This is the subject of a subsequent paper.

4 Conclusion

In this paper the exact steady-state probability density
function of a class of stochastic dynamical systems has been
constructed. The construction has been justified by two
alternative procedures. The result has been tested in some
classical oscillator problems. When the steady-state density is
known, the possibility of using perturbation techniques to
compute the nonstationary response has been pointed out. In
fact, a multiple-scale analysis has been used by one of us in an
earlier paper [8] to derive the approximate nonstationary
response of a specific oscillator. The conditions () made in
this paper are sufficient but not necessary. Some of the
smoothness requirements may be relaxed.to handle specific
problems.
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APPENDIX

Many problems in mechanics and related fields involving
the response of dynamical systems to stochastic excitation can
be modeled by stochastic differential equations of the form

m
dx (1) =a(t,x(1))dt+ Y, o, (Lx(£) ) dw, (1)
k=1
X(fp)=Yy @7
where x, a, 0,eR™ for k=1, 2, ...., m, and the w, (¢) for
k=1, 2, ...., m are independent Wiener processes, with
E(dw;(t)dw; (1)) = 6;dt. It can be shown that the response in
this case is a Markov process. In appropriate circumstances
[3, 91, the transition probability density function satisfies the
Fokker-Planck equation in a region D
op 0 1 & 0
Pl —a; (¢, + = [
a § ax, [ (1P + 3 ; o, 0x;
(b (¢,x)p]=Lp (28)
with initial condition
lim p(x,tly,s)=58(x—y)

=5
The coefficients a;, b;; are derived in the following way: a; are
the components of a (¢, x) and
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m
by= 3, oy (6:X)a, (£,X) (29)
k=1
where o,, r=1, 2, . ..., m, are the components of o, (¢, x)
defined in (27). A well-behaved solution of the Fokker-Planck
equation (28) is defined in the following way:

(I) If p, is a solution of the stationary Fokker-Planck
equation Lp =0, then it is well-behaved if

< 1 & abijp]

P — — — Y len,=0 =0
i=El [alps 2 ‘g axj i pS
on the boundary 8D of the region D, where n; are the com-
ponents of the outward normal to 4D. If D is an infinite
domain, then (30) should be taken in a limiting sense.

(30)

(II) If p is a solution of the time-dependent Fokker-
Planck equation, it is well behaved if equations (30) are
satisfied with p, replaced by p, and for all solutions p, of the
stationary equation Lp =0,

§DPS ~lpzdx<°°
(31

F) 2
S.Dpsﬁl <'§) dx <o

for all >0, with the convergence being uniform in ¢ if D is an
infinite domain.
The following has been established [8, 16].

Theorem

Well-behaved solutions to the Fokker-Planck equation are
unique. Under some mild restrictions [8] the well-behaved
solution p of the time-dependent Fokker-Planck equation
converges in L! to a function of p, as t— oo and p, is exactly a
solution obtained by solving that stationary equation L, =0.

Because of the exponential nature of p defined in (16) and
the conditions (), it is easy to check that the solution (16)
satisfies (30) and is thus the unique well-behaved steady-state
solution. By assuming that the time-dependent solution of
(28) is well behaved [8], a self-consistent diffusion processes
approach based on the Fokker-Planck equation may be
developed to derive the same results as in Section 2. In this
case the intermediate use of assumption (/]) is not needed.
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Natural Frequencies of Thick Annular Plates

T. Irie,! G. Yamada,! and K. Takagi!

The natural frequencies of vibration based on the Mindlin
Dlate theory are tabulated for uniform annular plates under
nine combinations of boundary conditions.

The design data present the correct natural frequencies (the
dimensionless frequency parameters) of uniform thick an-
nular plates under nine combinations of boundary conditions
for the six modes. The natural frequencies of annular plates
based on the Mindlin theory have been previously obtained by
Rao and Prasad under the same boundary conditions [1].
However, their results are incorrect as indicated by the present
authors [2].

Here, a brief explanation is presented for the solution of
thick annular plates for convenience of the calculation. The
moments and shearing force of annular plates are expressed as

3,4
w=p{ G+ (v 35}
My =D (v, + %)wa‘;’;’}
TR T
and
0, KQGh<¢,+éV—V
Qo =K2Gh(vs+1 27 @

in terms of the transverse deflection W and the angular
rotations y, and iy, of the normal to the middle surface in
radial and circumferential directions, respectively. The
quantity D is the flexural rigidity expressed by
D=FEh*/12(1 — »?) using Young’s modulus E, Poisson’s ratio

lProfessor, Associate Professor, and Student, respectively, Department of
Mechanical Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku,
Sapporo, 060 Japan.

Manuscript received by ASME Applied Mechanics Dmswn January, 1981;
final revision, November, 1981.
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v, and the plate thickness 4. The quantity G is the shear
modulus and K2=x%2/12 is the shear coefficient. The
deflection and the rotations are written as

: aw, 13w,
-1 273
Ho-D=m+ 17
oW, 1 8W,

aw,
Vo= (0 — 1) '——+(02—1); 30 or

W= W] + Wz (3)

using the functions
(al 5) +CY, (al 5)} cosnf
a a

W= {ClJn
r * r

Wz = {Cz.’n <62 E) + C2 Yn (62 E)} Cosn0

W, = [CaJ,, (53 g) +ClY, (53 g)} sinnf

(n=0,1,2,...) @

‘pr: (01

where C; and C; (i=1,2,3) are arbitrary constants and J,, (x)
and Y, (x) express Bessel functions of the first and second
kinds, respectively. For simplicity of the treatment, the
following dimensionless parameters have been introduced:

1
8}, 8% = 5)\4[R+S5:V(R—S)2+4/)\4}

=2(RN*-1/8)/(1-»)
01,0, =(83,61)/(RN* — 1/8)
R=(h/a)?/12, S=D/K?*Ga*h={2/7*(1-»)} (h/a)* (5)
The circular frequency is expressed as

B D_)\2<h)2/ E (6)
TN M \a 12(1 — 2)oh?

using a dimensionless frequency parameter A2. The quantity a
is the outer radius of annular plates, and p is the mass per unit
volume.

The boundary conditions at the edges are written as

M.=M,=Q,=0 atafreeedge
SEPTEMBER 1982, Voi. 49/ 633
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DESIGN DATA AND METHODS

Table1 Frequency parameters A2, of uniform annular plates with free inner edge; »=0.3

(a) Plates with free outer edge

b/a=0.1 0.2 0.3
e — P
N\ 'd N 7 N
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 8.65 8.30 7.83 7.31 8.32 8.00 7.55 7.05 8.23 7.89 7.42
2 35.95 31.23 26.58 22.69 39.08 33.79 28.71 24,55 46.63 39.57 33.18
1 1 19.56 17.75 15.70 13.77 18.59 16.66 14.57 12.65 17.02 15.13 13.16
2 52.90 42.93 34.62 28.37 49.57 40.49 33.02 27.43 52.50 43.17 35.42
2 1 5.21 5.03 4,81 4.55 5.04 4.86 4.62 4.37 4.80 4.61 4.38
2 32.69 28.39 24.12 20.51 32.04 27.86 23.68 20.13 30.77 26.63 22.52
b/a=0.4 0.5 0.6 0.7 0.8
e i, N "
r ANN4 A\ r ‘
n s h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 8.46 8.06 7.51 9.10 8.55 7.84 10.31 9.45 12.46 10.89 16.50
2 59.60 49.09 40.33 81.03 64.01 51.25 118.14 88.23 188.95 131.06 349.39
1 1 15.92 14.08 12.17 15.76 13.77 11.72 16.71 14.19 19.12 15.27 23.85
2 63.24 51.21 41.59 83.48 65.32 51.94 119.82 89.01 190.04 131.38 349.96
2 1 4.50 4.33 4.10 4.17 4.00 3.78 3.82 3.66 3.47 3.29 3.11
2 29.03 24.87 20.80 28.05 23.64 19.42 28.75 23.46 31.83 24.19 38.32
(b) Plates with simply supported outer edge
b/a=0.1 0.2 0.3
2y -~ s ———— ohen
s N\
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4\ 0.1 0.2 0.3
0 1 4.81 4.70 4.54 4.34 4.68 4.58 4.43 4.25 4.63 4.53 4.39
2 28.04 24.94 21.67 18.82 29.86 26.48 22.96 19.93 34.92 30.49 26.08
1 1 13.50 12.61 11.50 10.39 13.07 12.10 10.95 9.83 12.19 11.19 10.09
2 43.83 36.52 30.05 25.08 40.82 33.99 28.09 23.52 41.45 34,80 28.93
2 1 24.26 21.76 19.04 16.63 23.80 21.38 18.73 16.36 23.07 20.71 18.13
2 61.94 49.77 39.93 32.80 60.03 48.15 38.57 31.63 57.18 45.73 36.61
b/a=0.4 0.5 0.6 0.7 0.8
A - s
r N 7 N\ - - -
n s h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 4,73 4.62 4.47 5.03 4.91 4.72 5.65 5.47 6.81 6.49 9.23
2 44.05 37.43 31.28 59.53 48.56 39.22 86.80 66.65 139.61 97.41 259.52
1 1 11.33 10.37 9.34 10.90 9.95 8.94 11.12 10.08 12.29 10.90 15.28
2 48.15 40.04 32.96 62.28 50.22 40.24 88.71 67.72 140.90 98.04 260.29
2 1 21.95 19.61 17.10 20.92 18.56 16.11 20.71 18.17 22.01 18.86 26.24
2 59.24 47.29 37.80 70.09 55.00 43.25 94.26 70.84 144.71 99.90 262.59
(¢) Plates with clamped outer edge
b/a=0.1 0.2 0.3
,——*; ~ e
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 " 0.1 0.2 0.3
0 1 9.90 9.22 8.37 7.50 10.15 9.48 8.62 7.75 11.12 10.35 9.39
2 36.33 30.20 24.70 20.53 39.22 32.17 26.04 21.48 46.25 36.77 29.08
1 1 20.04 17.58 15.01 12.82 19.20 16.77 14.32 12.25 18.12 15.87 13,64
2 52.53 41.05 32.23 26.06 49.21 38.52 30.26 24.40 51.74 40.18 31.32
2 1 31.86 26.72 22.02 18.37 31.21 26.24 21.65 18.08 30.08 25.33 20.96
2 71.35 53.91 41.64 33.49 68.89 52.04 40.14 32.14 66.24 49,74 38.10
b/a=0.4 0.5 0.6 0.7 0.8
" .
7 N N\ ’ » r
n s h/a=0.1 0.2 0.3 0.1 0.2 03 - 0.1 0.2 0.1 0.2 0.1
0 1 13.19 12.16 10.91 17.02 15.40 13.55 24.26 21.22 39.37 32.44 77.85
2 58.13 4417 33.88 77.24 55.27 40.90 108.92 72.13 165.42 99.31 279.83
1 1 18.19 15.99 13.81 20.48 17.94 15.42 26.58 22.81 40.85 33.35 78.68
2 61.45 46.19 35.19 79.41 - 56.57 41.71 110.39 72.98 166.42 99.85 280.47
2 1 28.80 24.24 20.13 29.02 24.33 20.21 32.95 27.28 45.19 36.08 81.18
2 70.91 52.17 39.32 85.76 60.44 44.29 114.75 75.56 169.38 101.49 282.38
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DESIGN DATA AND METHODS
Table2 Frequency parameters A2 of uniform annular plates with simply supported inner edge; »=0.3

(a) Plates with free outer edge

b/a=0.1 0.2 0.3
#
A e N\ 7 % ™\
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 3.40 3.26 -3.07 2.85 3.31 3.22 3.10 2.94 3.40 3.33 3.22
2 19.79 17.35 14.81 12.65 23.56 20.80 17.82 15.21 29.79 25.89 21.87
1 1 2.34 2.18 2.02 1.88 2.84 2.72 2.58 2.43 3.33 3.23 3.09
2 22.94 20.29 17.55 15.15 26.50 23.26 19.88 16.95 32.29 27.87 23.44
2 1 5.34 5.16 4.94 4.68 5.55 5.35 5.10 4.83 5.96 5.74 5.45
2 33.43 28.93 24.49 20.74 35.30 30.28 25.44 21.40 39.64 33.52 27.78
b/a=0.4 0.5 0.6 0.7 0.8
. e N N
r ™\ ! ~ - E
n 5 h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 3.65 3.58 3.47 4.09 4.01 3.88 4.83 4,70 6.10 5.86 8.63
2 39.48 33.36 27.49 55.12 44.64 35.44 82.21 62.51 134.41 92.39 252.71
1 1 3.95 3.84 3.69 4,79 4.65 4.46 6.05 5.82 8.09 7.63 11.96
2 41.58 34.93 28.66 56.87 45.85 36.30 83.63 63.40 135.50 92.99 253.43
2 1 6.66 6.39 6.04 7.79 7.42 6.97 9.63 9.08 12.79 11.79 18.92
2 47.73 39.42 31.99 61.99 49.35 38.79 87.81 66.01 138.71 94.78 255.56
(b) Plates with simply supported outer edge
b/a=0.1 0.2 0.3
e,
A\ 4 r N\
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 13.87 12.45 10.86 9.45 16.16 14,69 12.97 11.38 20.22 18.21 15.96
2 46.95 38.34 31.08 25.72 56.91 45.87 36.82 30.24 71.71 56.08 44.18
1 1 16.10 14.64 13.04 11.56 18.48 16.74 14.79 12.99 22.30 19.98 17.44
2 51.07 41.66 33.80 27.98 59.99 48.08 38.48 31.55 73.99 57.60 45.27
2 1 24.76 22.16 19.34 16.85 25.93 23.06 20.01 17.35 28.67 25.22 21.67
2 63.82 50.96 40.74 33.39 69.25 54.53 43,18 35.19 80.78 62.11 48.47
b/a=0.4 0.5 0.6 0.7 0.8
e e " "
r ™\ r T— 4 4
n s h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 26.70 23.56 20.26 37.33 31.87 26.67 56.08 45.52 93.26 70.06 181.93
2 93.58 70.24 54.06 127.17 90.64 67.90 182.10 121.73 280.58 162.31 486.97
1 1 28.50 25.02 21.44 38.86 33.04 27.56 57.36 46.42 94.27 70.70 182.64
2 95.29 71.32 54.80 128.46 91.39 68.40 183.04 122.25 281.24 162.70 487.37
2 1 33.93 29.32 24.80 43.45 36.49 30.17 61.17 49.08 97.30 72.60 184.78
2 100.37 74.50 57.00 132.29 93.64 69.93 185.86 123.79 283.19 163.90 488.55
(c) Plates with clamped outer edge
b/a=0.1 0.2 0.3
/——*7 P
AN ™
n s h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 21.20 18.07 15.03 12.59 24.92 21.16 17.54 14.65 31.01 25.68 20.89
2 56.91 43.43 33.51 26.84 68.64 51.25 39.10 31.09 85.50 61.56 46.16
1 1 23.55 20.11 16.81 14.15 27.13 22.88 18.88 15.74 32.84 27.04 21.90
2 61.03 46.53 36.01 28.92 71.50 53.20 40.59 32.30 87.52 62.87 47.14
2 1 32.60 27.23 22.38 18.65 34.43 28.46 23.20 19.23 38.64 31.32 25.16
2 73.60 55.17 42.43 34.01 80.17 58.98 44.87 35.73 93.61 66.81 50.04
b/a=0.4 0.5 0.6 0.7 0.8
e e -~ A
~
n s h/a=01 02 03 7 o 0.2 03" 0.1 0.2 0.1 0.2 0.1
0 1 40.36 32.16 25.46 55.09 41.62 31.91 79.75 56.14 124.94 80.34 220.96
2 109.73 75.53 55.50 145.82 95.27 68.30 202.68 124.84 300.62 171.69 498.71
1 1 41.83 33.20 26.23 56.26 42.41 32.50 80.65 56.73 125.61 80.78 221.43
2 111.20 76.46 56.18 146.89 95.93 68.80 203.45 125.31 301.17 172.06 499.07
2 1 46.41 36.45 28.67 59.84 44.85 34.33 83.40 58.54 127.64 82.13 222.84
2 115.59 79.21 58.22 150.10 97.89 70.29 205.77 126.72 302.80 173.17 500.15
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DESIGN DATA AND METHODS
Table3 Frequency parameters A2, of uniform annular plates with clamped inner edge; »=0.3

(a) Plates with free outer edge

b/a=0.1 0.2 0.3
.
N 7 ™\
n K] h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 4.15 3.92 3.60 3.27 5.08 4.81 4,44 4.05 6.52 6.14 5.64
2 23.12 19.05 15.50 12.88 29.30 23.76 19.02 15.58 37.89 29.76 23.27
1 1 3.22 2.84 2.52 - 2.28 4.61 4.19 3.76 3.38 6.31 5.79 5.21
2 25.20 21.31 17.98 15.31 31.19 25.52 20.80 17.25 39.54 31.20 24.63
2 1 5.44 5.22 4.98 4,71 6.15 5.75 5.38 5.04 7.55 6.89 6.28
2 33.95 29.13 24.58 20.79 37.76 31.32 25.85 21.55 44.83 35.68 28.55
b/a=0.4 0.5 0.6 0.7 0.8
v e N
rr N/ ™\ 4 y N
n s h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 8.78 8.18 7.41 12.57 11.46 10.16 19.47 17.15 33.87 28.05 71.02
2 50.41 37.86 28.75 69.58 49.27 36.16 100.91 66.21 156.63 93.37 269.85
1 1 8.78 8.02 7.15 12.71 11.43 10.03 19.72 17.20 34.16 28.13 71.29
2 51.83 39.05 29.82 70.80 50.25 36.99 101.93 66.99 157.45 93.96 270.46
2 1 9.89 8.86 7.90 13.79 12.14 10.56 20.81 17.80 35.23 28.63 72.17
2 56.22 42.63 32.90 74.48 53.15 39.40 104.98 69.32 159.91 95.71 272.31
(&) Plates with simply supported outer edge
b/a=0.1 0.2 0.3
N 7 r A ™\
n K h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 16.57 14.07 11.69 9.84 21.06 17.70 14.57 12.16 27.38 22.44 18.12
2 52.06 40.06 31.55 25.84 64.89 48.64 37.62 30.41 82.17 59.38 45.04
1 1 17.94 15.60 13.52 11.82 22.41 18.98 15.93 13.56 28.60 23.52 19.19
2 54.68 42.84 34.18 28.11 66.87 50.39 39.18 31.74 83.71 60.62 46.08
2 1 25.13 22.32 19.43 16.90 27.80 23.95 20.45 17.58 32.89 27.32 22.66
2 64.95 51.33 40.89 33.46 73.61 55.91 43.64 35.35 88.59 64.42 49.12
b/a=0.4 0.5 0.6 0.7 0.8
- B - " e —
~\ r
n s ha=01 02 03" 7 a1 0.2 03~ 01 0.2 0.1 0.2 0.1
0 1 36.70 28.96 22.78 51.22 38.36 29.26 75.46 52.74 119.99 76.76 215.00
2 106.57 73.70 54.75 142,71 93.78 68.08 199.61 123.86 297.80 172.17 496.99
1 1 37.77 29.87 23.65 52.14 39.12 29.97 76.23 53.36 120.61 71.26 215.48
2 107.77 74.60 55.47 143.65 94.45 68.60 200.34 124.35 298.34 172.49 497.36
2 1 41.29 32.86 26.36 55.05 41.51 32.12 78.62 55.28 122.15 78.78 216.93
2 111.48 77.34 57.62 146.51 96.46 70.15 202.53 125.81 299.95 173.45 498.45
{¢) Plates with clamped outer edge
b/a=0.]1 0.2 0.3
o
\ 7 ™\
n K h/a=0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3
0 1 24.63 19.84 15.86 12.99 30.84 24.35 19.16 15.52 39.40 30.04 23.13
2 62.14 44,91 33.85 26.89 76.56 53.57 39.64 31.15 95.59 64.23 46.66
1 1 25.90 21.18 17.32 14.43 32.00 25.31 20.08 16.39 40.37 30.77 23.78
2 64.78 47.59 36.31 29.00 78.44 55.20 41.09 32.38 96.99 65.36 47.63
2 1 33.12 27.44 22.48 18.71 36.94 29.52 23.69 19.50 43.98 33.67 26.27
2 74.87 55.53 42.56 34.07 84.77 60.25 45.24 35.82 101.43 68.81 50.50
b/a=0.4 0.5 0.6 0.7 0.8
- -
r N\ N\ ls s
n s h/a=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1
0 1 51.70 37.65 28.27 70.28 48.31 35.32 100.07 64.19 152.15 90.20 257.62
2 121.88 78.17 55.77 159.78 97.39 68.30 217.65 125.76 314.09 172.31 503.46
1 1 52.49 38.20 28.74 70.90 48.73 35.65 100.55 64.49 152.49 90.41 257.84
2 122.94 79.00 56.46 160.60 98.02 68.80 218.28 126.24 314.57 172.66 503.82
2 1 55.22 40.25 30.47 72.96 50.18 36.86 102.08 65.51 153.57 91.12 258.54
2 126.22 81.50 58.52 163.08 99.90 70.31 220.18 127.67 316.03 173.70 504.91
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M, =yy=W=0 at a simply supported edge
Y,=yp=W=0  ataclamped edge (7
The substitution of (4) into (1)~(3) yields the matrix equation
{Z(n}=UmHC) - ®
where

(Z(r) } = {Mer(iQr\[/rll/G W} T
(C)=(C,C,CCIC, )T

The elements of the matrix [U(r)] are given by

Un,Um:D(Ux—1){2:(51£>+KZ,:<51£)
a r a
vn? r
- n(oy)
” r v r
Up,Uss =D(52_1){Zn (52 E) +;Zn (52 E)
211(62 >}
D(1—v)n r 1
Un b= 2 (20 (00 7) =20 (57

D(l1—v)n -1 / 1 r
Un U= = 200D (6, 0) 2 2,006, 7)]
Dl‘— n -1 ’ 1
ot U 1) )
D(l—v " r 1 _. r
Uy, Upg = — T) {Zn (53 5) —";Zn <53 ;)

n? r
o)
r a
Un,Uss =K*Gho Z, (8, ) Usy, Uss = K2Gh6, 2, (5, - )
a
U33,U36—K26h Z, (535)
a

’ ’ r
UnsUss = (0 =2, (8, - ) Uaz,Uss = (0, -2, 25, - )

(
2)

n
Ui, Uss = ;Z (

n(o;—1) r n(oy—1) r
Us;,Usy = +Zn (51 E)’USZ’U” = “*-Zr—zn (52 E>

DESIGN DATA AND METHODS

’ r
Us;,Usg =2, (53 “)
a
r r
Ui Ugs = Z,, (51 ;) y UsyUgs =2, (52 ;)

Uss»Uge =0 )

where the function Z, (§;r/a) (j=1,2,3) represents J, (8,r/a)
and Y, (6;r/a) for the f1rst and second elements respectxvely
Upon eliminating the coefficients C; and C of (8) from the
equation that is obtained by substltutmg (8) into the boundary
conditions (7), one can obtain the frequency equation of
annular plates under any combination of boundary con-
ditions.

Although the values of 8 are always positive in sign, the
values of &} and 8 become negative and hence §, and &, have
imaginary values for A* <1/RS. Within this range of A, the
functions J, (x) and Y, (x) in the preceding equations should
be replaced with modified Bessel functions 7, (x) and K, (x)
of the first and second kinds, respectively.

Tables 1-3 present the frequency parameters A%, obtained
by the theory for uniform annular plates of Poisson’s ratio
»=0.3 under some combination of the thickness ratio 4#/a and
the radii b/a (b: the inner radius of annular plates). The
subscript # attached to N, represents the number of nodal
diameters appearing on the mode shapes of the vibration.
Although the subscript s represents, in the classical plate
theory, the number of nodal circles of the mode shapes, it
indicates the order of the frequencies for thick plates without
always representing the number of nodal circles. The
frequency parameters decrease monotonically with an in-
crease of the thickness ratio.

One can quote the natural frequencies of annular plates
with given boundary conditions and dimensions from the
tables, and can also easily obtain the values by the
aforementioned process for annular plates with dimensions
not tabulated here. The numerical computations presented
here were carried out on a HITAC M-200H computer of the
Hokkaido University Computing Center.
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APPENDIX 1

In Table A4-1, the frequency parameters N2, of circular
plates are compared with those of annular plates with free
small circular holes at the center. Although the parameters of

Journal of Applied Mechanics

the plates with free outer edge are not affected so much by
small holes, those of the plates with simply supported or
clamped outer edges slightly change the values.
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DESIGN DATA AND METHODS

Table 4-1 Frequency parameters A2, of uniform circular plates and annular plates with free
small hole; »=0.3

(a) Plates with free outer edge

b/a=0 b/a=0.01
n s h/a=0.1 0.2 " 03 0.4 h/a=0.1 0.2 0.3 - 04
0 1 8.87 8.51 8.01 7.46 8.87 8.50 8.01 7.46
2 36.04 3111 . 26.28 22.27 36.03 31.11 26.28 22.27
1 1 19.71 17.98 15.98 14.09 19.71 17.98 15.98 14.09
2 54.26 44.43 35.98 29.38 54.25 44,42 35.97 29.37
2 1 5.28 5.11 4.89 4.64 5.28 5.11 4.89 4.64
2 33.03 28.67 24.32 20.64 33.03 28.66 24.32 20.64
(&) Plates with simply supported outer edge
bla=0 b/a=0.01
r*i N\ Ve —_h\
n s h/a=0.1 0.2 0.3 0.4 h/a=0.1 0.2 0.3 0.4
0 1 4.89 4.78 4.60 4.40 4.89 4.78 4,60 4.40
2 28.24 24.99 21.59 18.66 28.23 24.99 21.59 18.66
1 1 13.52 12.67 11.60 10.51 13.56 12.71 11.63 10.53
2 44,72 37.59 31.12 26.09 44,73 37.59 31.12 26.09
2 i 24.41 21.92 19.18 16.74 24.50 21.97 19.22 16.76
2 62.68 50.30 40.32 33,10 62.68 50.30 40.32 33.10
(c) Plates with clamped outer edge
b/a=0 b/a=0.01
n s h/a=0.1 0.2 0.3 0.4 h/a=0.1 0.2 0.3 0.4
0 1 9.94 9.24 8.36 7.47 9.94 9.24 8.35 7.47
2 36.48 30.21 24.64 20.42 36.47 30.20 24.63 20.42
1 i 20.23 17.83 15.26 13.04 20.18 17.76 15.19 12.98
2 53.89 42,41 33.47 27.21 53.84 42.37 33.44 27.20
2 1 32.41 27.21 22.38 18.64 32.20 26.99 22.22 18.54
2 72.37 54.56 42.05 33.76 72.20 54,45 42.01 33.75

APPENDIX 2

Prasad are incorrect, because there are probably some

Table A-2 shows the comparison of the frequency
mistakes in analytical and computational process.

parameters obtained here with the results of Rao and Prasad

[1]. The numerical values of the present authors have been
proved to be correct in comparison with the results obtained
by other-methods — the transfer matrix method and the spline
interpolation technique [2]. However, the results of Rao and

Table 4-3 shows the frequency parameters obtained by Rao
and Prasad for clamped, simply supported plates. Although
the parameters should become small monotonically with an
increase of the thickness ratio h/a, they change in a wavelike
manner.

Table A-2 Comparison of frequency parameters A2, of uniform annular plates; »=0.3, b/a=0.3, h/a=0.2

(ns)y=01) (ns)=(02) (ns)=(11) (ns)y=(12)
i o cain .
r N/

Present Rao/ Present Rao/ Present Rao/ Present Rao/
Prasad Prasad Prasad Prasad[1}

F-F 7.89 6.822 39.57 — 15.13 17.61 43,17 -
F-SS 4,53 2.35 30.49 31.90 11.19 4.598 34.80 34.03
F-C 10.35 7.198 36.77 46.83 15.87 15.04 40.18 43.89
SS-F 3.33 3.358 25.89 24.30 3.23 2.61 27.87 28.64
SS-SS 18.21 12.74 56.08 80.59 19.98 22.56 57.60 81.71
SS-C 25.68 32.87 61.56 76.20 27.04 34.54 62.87 77.39
C-F 6.14 6.465 29.76 37.13 5.79 5.721 31.20 42.93
C-SS 22.44 23.22 59.38 75.69 23.52 24.38 60.62 77.39
Cc-C 30.04 39.77 64.23 97.16 30.77 40.61 65.36 97.78

Table 4-3 Frequency parameters A2, of uniform annular plates with clamped inner edge
and simply supported outer edge [1]; »=0.3, b/a=0.3

h/a
n s Classical 1/5 1/4 172
0 1 29.90 26.03 23.22 16.66 25.18
0 2 100.0 85.89 75.69 98.62 97.25
1 1 31.40 30.84 24.38 25.36 28.67
1 2 102.0 97.02 77.39 99.17 101.9
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Estimation of Buckling Loads and Other
Eigenvalues via a Modification of the
Rayleigh-Ritz Method

R. Schmidt!

The Ritz method commonly makes use of approximating
functions of the form [1, 2]

Y= Y3 Anfu (X1 %00+« orXN) 1)

in the case of multiterm approximation, or
y=Af(X1,X2, . . LxN) #))

in the case of the one-term approximation. In equations (1)
and (2), A’s denote undetermined constants, f’s are the
assumed, definite, shape functions, and x’s represent the N-
independent variables. In this Brief Note, by means of two
examples, we shall demonstrate the utility of approximating
functions of the general form

y= EAm.fm (xl X2y o e -1xN; nlanZ) .. -1nM)’ (3)
m

where n’s are the M adjustable parameters. The constants A4,,
can be determined as originally described by Rayleigh and
Ritz [1, 2], while the parameters n; should be adjusted, in the
case of eigenvalue problems, in such a way as to minimize (or
nearly minimize) the approximate eigenvalue.

Example 1

Let us consider the axisymmetric buckling of a clamped
circular plate of radius a and uniform thickness #, if the plate
is uniformly compressed by the distributed force N, per unit
length {1, 3]. The expression for the potential energy I in this
case is

II= WDS: (r6'2+ —ri +2vBB’——g—rBZ>dr 4
=aD{ie+ | (824 Erf - %rﬁZ)dr}, 5)

Uprofessor of Engineering Mechanics, Department of Mechanical
Engineering, University of Detroit, Detroit, Mich. 48221. Mem. ASME.
Manuscript received by ASME Applied Mechanics Division, July 1981.
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where D = Eh%/12(1 -~ »?) is the flexural stiffness, » is
Poisson’s ratio, £ is the modulus of elasticity, » denotes the
radial distance, 8 is the rotation of a radial line element dr,
and B’ = dp/dr. Except for the constant factor of 2, ex-
pression (4) coincides in form with the second variation of
potential energy given in [1]. Hence, we may use the condition
II = 0 for the determination of the critical value of N. The
exact solution [1, 4] of this problem is given by 8 =
AJ,(fN"D~"), where J, denotes Bessel function of first
order, and the exact value of the critical load is [1, 4]

D
No =14.68 —-. (6)

A fast estimate of the critical load is usually obtained by
some work [5] or energy method [1, 6, 7] (e.g., the Rayleigh-
Ritz method, which yields the upper bound) with the aid of an
assumed simple deflection function satisfying the imposed
boundary conditions (8 = 0 at r = 0 and r = @, in this
example), such as [5]

B=A(a*r—r?), @)
or still better
B=A(ar—r?). @

Substituting first (7) and then (8) into (4) or (5) and using the
condition IT = 0, we easily obtain

D D
Ncr=16.00a—2 and Ncr=15.00a—2, (9a,b)

respectively.
Herein, we propose to deviate from the common approach
and, instead of (7) or (8), assume

B=A(a""tr—rm). (10)

Substituting (10) in (4) or (5), we obtain
dn(n+ 1)(n+3)M=7r4%a* (n—1)*[2(n + 1)(n + 3)D —na*N],
an
from which, and the condition II = 0,
¢12_1V _ 2(n+1)(n+3)

D n (12)

Since n is an adjustable parameter, and the Rayleigh-Ritz
method yields upper bounds for the critical load, we minimize
expression (12) by differentiating N with respect to n and
setting this derivative equal to zero. Thus, n* — 3 = 0, from
which #n = V3 = 1.73205, and finally from (12),
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D
Ny =14.93 —-, (13)
a
which is a better value than those in (9).

We can also solve this problem in a somewhat different
way, using the first variation of the potential energy integral
II. The first variation 8II can be obtained by adding a small
virtual increment e£ (r) to B3, as explained in [1]. Thus,

5H=Ze7rDS: [rB’E’ +r(BE) '+ (i - %)BE:I dr. (14)

-
After an integration of (14) by parts [1], we obtain
olt=2enD{ 118"+ ¥8) £l

NG

+ o f)rear]
r 2 D rédry .

The condition 6II = 0 yields the previously obtained critical
values, if 8 = &, i.e., when the Galerkin method is used.
However, if we use (10) for § and (8) for £, or (8) for 8 and
(10) for £, we obtain

ci]_\l _20(n+3)n+4)

(15)

16
D (n+2)n+8) (16)
whose minimum occurs when #n = 0.77485. Hence,
2N,
& e _ 14.808, an

which is an even better value.

Example 2

As a somewhat more complicated example, let us next
consider the axisymmetric buckling of a simply supported (or
free) circular plate compressed by a uniformly distributed
radial edge load N. A simple function that satisfies the
boundary conditions is

p=a(

(18)

which, in conjunction with (4) or (5) and II = 0, yields
2n[n* +2Q+v)n? = (5= )2 -2(3+3v+v*)n

a’N 3
+6+4p+17) ) =4(1 +») (n+ 1)n+3)2n

~-B-v)n*-2m+1+y], (19)

which is too complicated for differentiation. However, since
the method under discussion is an approximate one, we need
only to determine a near minimum by assuming different
values for n and comparing results. Thus, for » = 0.3, we

calculate, using (19),
a’N
n D
2.0 4,22
2.2 4.21
2.5 4.20
3.0 4.21
etc. Obviously
2N,
4 _4.20. (20)
D

The exact value is given as 4.20 in [1, 3, 4].

The method has also been used for calculating buckling
loads and natural frequencies for various struts and beams
with similarly gratifying results.
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D
Nc,=14.93?, (13)
which is a better value than those in (9).

We can also solve this problem in a somewhat different
way, using the first variation of the potential energy integral
II. The first variation 8II can be obtained by adding a small
virtual increment e£ (r) to B3, as explained in [1]. Thus,

5H=Ze7rDS: [rB’E’ +r(BE) '+ (i - %)BE:I dr. (14)

-
After an integration of (14) by parts [1], we obtain
olt=2enD{ 118"+ ¥8) £l

NG

+ o f)rear]
r 2 D rédry .

The condition 6II = 0 yields the previously obtained critical
values, if 8 = &, i.e., when the Galerkin method is used.
However, if we use (10) for § and (8) for £, or (8) for 8 and
(10) for £, we obtain

ci]_\l _20(n+3)n+4)

(15)

16
D (n+2)n+8) (16)
whose minimum occurs when #n = 0.77485. Hence,
2N,
& e _ 14.808, an

which is an even better value.

Example 2

As a somewhat more complicated example, let us next
consider the axisymmetric buckling of a simply supported (or
free) circular plate compressed by a uniformly distributed
radial edge load N. A simple function that satisfies the
boundary conditions is

p=a(

n+v
1+v

a"“‘r—r"), (18)
which, in conjunction with (4) or (5) and II = 0, yields
2n[n* +2Q+v)n? = (5= )2 -2(3+3v+v*)n

a’N 3
+6+4p+17) ) =4(1 +») (n+ 1)n+3)2n

~-B-v)n*-2m+1+y], (19)
which is too complicated for differentiation. However, since
the method under discussion is an approximate one, we need
only to determine a near minimum by assuming different
values for n and comparing results. Thus, for » = 0.3, we
calculate, using (19),

a’N
n D
2.0 4,22
2.2 4.21
2.5 4.20
3.0 4.21
etc. Obviously
a’N,,
— =4.20. 20
) (20)

The exact value is given as 4.20 in [1, 3, 4].

The method has also been used for calculating buckling
loads and natural frequencies for various struts and beams
with similarly gratifying results.
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Fig.3 Velocity distributions at symmetry plane for « = #/4
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Table 1 3 I I T T
a n/32 /16 /8 /4 REF [l] -
Le 0.235 0,144 0.108 0.0786 B —-0O-~ PRESENT RESULTS -~
Table 2 B 0\\ 7]
e o= /32 a= /6 o= /8 P Kep 21— \~o\ -
£Re K fRe K fRe K fRe K - -~ 1
~——
0.001 109.3 0.207 147.9 0.177 | 180.4 0.171 226.0 0.154 B == i
0.003 66.09 0.335 81.62 0,281 98.27 0.266 115.7 0.241
0.006 48.27 0.456 60.18 0.377 63.69 0.352 78.29 0.314 - 1
0.010 38.52 0.568 48,30 0.469 53.91 0.432 60.26 0.380 - =1
0.020 28.93 0.758 35.64 0.628 39.59 0.567 43,93 0.492
0.030 25.09 0.887 30.20 0.739 33.47 0.662 37.37 0.571 | I | l l
0,040 22,70 0.991 27.02 0,830 29.89 0.738 33.50 0.635
0.050 21.18 1.076 24,92 0.901 27.51 0.801 30.88 0.689 o lo 20 30 40 50
0.070 19.90 1.211 22.20 1.019 24.41 0.903 27.44 0.778
0.100 17.34 1,364 19.91 1.153 21.78 1.021 24,40 0.881 a 1) DEGREES
0,150 15.82 1.540 17.81 1.313 19.40 1.165 21.58 1.007 di
0.200 14.95 1,664 16.65 1.429 18,05 1.269 19.95 1.100 i . i i n re
0.250 14,47 1.756 15.89 1.517 17.09 1.350 18.87 1,171 Flg 4 companson w“h KFD Values por‘e n [1]
0.300 14.07 1.828 15.35 1.588 16.54 1.412 18.07 1.229
0.350 13,83 1.885 14.95 1.646 16.06 1.464 17.51 1.275 . .
0.400 | 13.59 | 1.930 | 14.65 | 1.695| 15.66 | 1.510 [ 17.05| 1.315 have been developed such as the matching method, the in-
0.4 . . . . . . . M 3 3
S0 1350 ] 1970 | Lhedl ) 1735 15,34 | 1.546 [ 16.70 | 1.347 tegral method, and several linearization methods. The present
0.500 | 13.35 | 1,997 | 14.22 [ 1770 | 1s.10 | 1.577 [ 16.41| 1.375 solution [3] is based on the linearization method developed b
0.600 13.19 2.051 13.95 1.825 14.79 1.625 15.96 1,418 . . .
0.700 | 13.03 | 2.091 | 13.76 | 1.868 | 14.55 | 1.661 | 15.67 | 1.451 Sparrow et al. [4]. This technique takes into account the effect
0.800 12.95 2,118 13.63 1.902 14.39 1.689 15.46 1.475 M 101 1 H
ooo0 | 1acen | 2imse | s | lasa | taaa | oEB ] et i of transverse flow implicitly, but not rigorously. However, it
1.000 | 12.87 |'2.156 | 13.47 | 1.95t | 14.15 | 1.728 | 15.19 | 1.509 was found to predict well the axial velocity and pressure drop

exchangers, the flow over a major part of the channel is in the
developing stage. Hence, knowledge of the velocity dis-
tribution and pressure gradient during such flows is vital for
proper design. One duct geometry, which has received little
attention in this regard, is the circular sector [1]. Only one
research effort has been reported [2] so far, with numerial
results limited to a duct angle 2o = /4. In addition, it was
reported in [1] that the pressure results in {2} are incorrect due
to a computational error. The objective of. this paper is to fill
part of the gap that exits in the literature by providing results
for circular section ducts with angles 2a = w/16, «/8, n/4,
and /2. These results are also of interest since they represent
the limiting values for developing flow in internally finned
tubes as the fins extend to the centerline of the tube.

Exact mathematical models describing developing flows
can be formulated by considering the complete set of Navier-
stokes equations. However, these models are normally very
difficult to solve without the aid of unreaslistic simplifying
assumptions. Consequently, other alternative approaches

Journal of Applied Mechanics

for many simple geometries (e.g., circular tubes and parallel
plate channels [4], concentric annular ducts [5], and rec-
tangular, equilateral, and isosceles triangular ducts [6]). Since
the geometry of circular sector ducts is also simple with no
strong complications of flow asymmetry, the present
linearization technique is expected to provide reasonably
accurate results.

Analysis

The geometry of the duct and the coordinate system is
shown in Fig. 1. The flow is laminar and steady, the fluid has
constant properties, and body forces and viscous dissipation
are neglected. The main flow is in the axial x-direction with a
local velocity u and a bulk velocity u,. The pressure p is
assumed uniform at any axial cross section. Inlet conditions
commonly used in the analysis of hydrodynamically
developing flows are: uniform flow, irrotational flow,
uniform flow far upstream, and irrotational flow far up-
stream. The choice among these for any particular application
depends on the physical arrangement at entrance, irrespective
of the nature of the solution technique employed. However,
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the most frequently used assumption is that of uniform flow
at inlet, which simulates the actual condition of well-rounded
entrance. This assumption was adopted in the present analysis
and thus, at x = 0, the axial velocity and pressure are uniform
with values u#, and p,, respectively.

Following the procedure suggested in [4], the non-
dimensional momentum equation in the axial direction can be
written as:

I1+a\2 U 21! 18U o U
( 2a ) ax* +&[So R 36 ls=o dR-So R |[r=1 d()]
_ FU 1 U + 1 8*U M

T 3R* 'R R R? 86*
where R = r/ry, U = u/uy, e(X) = dX/dX*, X =

x/(D,Re), D, = 2rye/(14+ @), Re = Dyu,/v, and the
parameter, e can be formulated as:

d U2 aU
eX)=- [dX* XA (U2 ) )dA]/SA Usxsdd- @
The nondimensional pressure gradient is given by:

1+a\? dP _ 32 U 16 ¢ 10U
(=) a=a vl

o X a LJo R 36 lo=o
o U
So AR |r=1 de]’ ®

where P = (p, — p)/(¥ pu}). Appropriate boundary and
symmetry conditions are;

U=0 at R=1,0=0=<aq,
and 6=0,0<R<l1, (4a)
194
andé—é =( at f=a,0<R=l, (4b)

Due to the symmetry around the plane § = «, the solution
need be carried out only over the region 0 <6=<a. Details of
the derivation of equations (1)-(4) are given in [3].

Solutions were obtained using a finite difference aproach.
At any axial location, the solution domain was subdivided by
a 33 x 33 mesh, with the subdivisions adjacent to the straight
and curved walls further subdivided into six equal parts for
more accurate evaluation of wall gradients. The computation
was marched from the inlet section to the fully developed
region using axial steps with sizes AX* = 1 x 10~¢ near the
inlet, increasing to AX* = 5 x 10-* as fully developed
conditions were approached. Starting from the inlet section X
= X* = 0 where the value of U is given, the velocity
distribution at X* = AX* was obtained by solving (1) in-
teratively at all mesh points, subject to conditions (4). The
value of ¢ was then obtained from (2) and the relation AX = ¢
AX* was used for the evalution of AX. Finally, dP/dX was
evaluated from (3) before marching to the next cross section.
The solution was progressed until all axial velocities were
within 1 percent of the corresponding fully developed value,
and the value of X there was taken as the entrance length Le.

Numerical Results

The resulting values of Le are listed in Table 1 for the four
duct geometries considered. With simple calculations, we can
see from these results that for the same ry, u,, and », the
entrance length increases as o increases. This trend is ex-
pected, however, quantitative comparisons are not possible
due to lack of similar results. Development of the stretching
factor ¢ along the duct is shown in Fig. 2 for different values
of . As shown in [3], the ¢ values for « = 7/8 compared well
with those in [2]. The asymptotic value reached here for o =

w/8 is 1.92 as compared to 1.98 in [2]. It is also interesting to

note that the present asymptotic values for e (2.22 for o =

642/ Vol. 49, SEPTEMBER 1982

7/32,2.03 for o = 7/16, 1.92 for « = #/8, and 1.86 for o =
w/4) seem to conform with the asymptotic value of 1.82
obtained in {4] for smooth tubes. A sample of the velocity
results illustrating the velocity development at the symmetry
plane is shown in Fig. 3. The well-known characteristic of
entrance region flow, namely that the fluid is decelerated near
the walls and accelerated in the central core is clear from this
figure. Again, our velocity results for « = /8 compared
fairly well [3] with those in [2].

The most commonly used parameters for presenting the
pressure results are the product of the friction factor and
Reynolds number fRe, and the pressure defect K. In the
present analysis, the friction factor was defined as:

f=(Dy/2) (—dp/dx)/(pu3),
and hence

fRe= 7 —— ©)

The pressure defect is normally defined as:
K(X) =[po —p+ (dp/dx) rpx]/(V2pu}),
which reduces to the following nondimensional form:
K(X)=P—4(fRe)pp X. 6)

Results based on equations (5) and (6) are listed in Table 2.
The values of fRe at X = Le compare to within 3 percent of
those reported in [1]. As expected [1], the present pressure
results for o = w/8 are widely different from those in [2]. A
comparison between the K-values at X = Le and the fully
developed K-values reported in [1] is shown in Fig 4. It must
be pointed out that the K, values reported in [1] are based on
an approximate analytical method which utilizes only the fully
developed velocity profile. Figure 4 shows a fair agreement
with a maximum discrepancy of about 8 percent at o = #/32.
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BRIEF NOTES

the most frequently used assumption is that of uniform flow
at inlet, which simulates the actual condition of well-rounded
entrance. This assumption was adopted in the present analysis
and thus, at x = 0, the axial velocity and pressure are uniform
with values u#, and p,, respectively.

Following the procedure suggested in [4], the non-
dimensional momentum equation in the axial direction can be
written as:

I1+a\2 U 21! 18U o U
( 2a ) ax* +&[So R 36 ls=o dR-So R |[r=1 d()]
_ FU 1 U + 1 8*U M

T 3R* 'R R R? 86*
where R = r/ry, U = u/uy, e(X) = dX/dX*, X =

x/(D,Re), D, = 2rye/(14+ @), Re = Dyu,/v, and the
parameter, e can be formulated as:

d U2 aU
eX)=- [dX* XA (U2 ) )dA]/SA Usxsdd- @
The nondimensional pressure gradient is given by:

l+a\2 dP 32 U 161¢ 19U
( p ) dX"'oTLUaXdAJrE[SoE%

8=0

S: %1(2_]_ R=1 d0:|, @

where P = (p, — p)/(¥ pu}). Appropriate boundary and
symmetry conditions are;

U=0 at R=1,0=0=<aq,
and 6=0,0<R<l1, (4a)
194
andé—é =( at f=a,0<R=l, (4b)

Due to the symmetry around the plane § = «, the solution
need be carried out only over the region 0 <6=<a. Details of
the derivation of equations (1)-(4) are given in [3].

Solutions were obtained using a finite difference aproach.
At any axial location, the solution domain was subdivided by
a 33 x 33 mesh, with the subdivisions adjacent to the straight
and curved walls further subdivided into six equal parts for
more accurate evaluation of wall gradients. The computation
was marched from the inlet section to the fully developed
region using axial steps with sizes AX* = 1 x 10~¢ near the
inlet, increasing to AX* = 5 x 10-* as fully developed
conditions were approached. Starting from the inlet section X
= X* = 0 where the value of U is given, the velocity
distribution at X* = AX* was obtained by solving (1) in-
teratively at all mesh points, subject to conditions (4). The
value of ¢ was then obtained from (2) and the relation AX = ¢
AX* was used for the evalution of AX. Finally, dP/dX was
evaluated from (3) before marching to the next cross section.
The solution was progressed until all axial velocities were
within 1 percent of the corresponding fully developed value,
and the value of X there was taken as the entrance length Le.

Numerical Results

The resulting values of Le are listed in Table 1 for the four
duct geometries considered. With simple calculations, we can
see from these results that for the same ry, u,, and », the
entrance length increases as o increases. This trend is ex-
pected, however, quantitative comparisons are not possible
due to lack of similar results. Development of the stretching
factor ¢ along the duct is shown in Fig. 2 for different values
of . As shown in [3], the ¢ values for « = 7/8 compared well
with those in [2]. The asymptotic value reached here for o =

w/8 is 1.92 as compared to 1.98 in [2]. It is also interesting to

note that the present asymptotic values for e (2.22 for o =
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7/32,2.03 for o = 7/16, 1.92 for « = #/8, and 1.86 for o =
w/4) seem to conform with the asymptotic value of 1.82
obtained in {4] for smooth tubes. A sample of the velocity
results illustrating the velocity development at the symmetry
plane is shown in Fig. 3. The well-known characteristic of
entrance region flow, namely that the fluid is decelerated near
the walls and accelerated in the central core is clear from this
figure. Again, our velocity results for « = /8 compared
fairly well [3] with those in [2].

The most commonly used parameters for presenting the
pressure results are the product of the friction factor and
Reynolds number fRe, and the pressure defect K. In the
present analysis, the friction factor was defined as:

f=(Dy/2) (—dp/dx)/(pu3),
and hence

fRe= 7 —— ©)

The pressure defect is normally defined as:
K(X) =[po —p+ (dp/dx) rpx]/(V2pu}),
which reduces to the following nondimensional form:
K(X)=P—4(fRe)pp X. 6)

Results based on equations (5) and (6) are listed in Table 2.
The values of fRe at X = Le compare to within 3 percent of
those reported in [1]. As expected [1], the present pressure
results for o = w/8 are widely different from those in [2]. A
comparison between the K-values at X = Le and the fully
developed K-values reported in [1] is shown in Fig 4. It must
be pointed out that the K, values reported in [1] are based on
an approximate analytical method which utilizes only the fully
developed velocity profile. Figure 4 shows a fair agreement
with a maximum discrepancy of about 8 percent at o = #/32.
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Multidegree-of-freedom vibrations are considered for a rigid
cylinder embedded. in an isotropic elastic medium that is
subjected to random propagating disturbances. The
numerical results obtained enable one to select values of
parameters of the system which would provide desirable
motions of the inclusion.

1 Introduction

The classical linear theory of wave propagation provides a
thorough analysis of the phenonienon of wave diffraction.
However, this theory is concerned with traveling disturbances
that are simple deterministic processes. It is well known that
in reality these disturbances are usually random or in-
completely defined. Due to this motivation, a number of
investigations have been recently carried out on elastic and
viscoelastic random waves. A survey of these works was
presented by Beltzer [1].

This paper is concerned with random vibrations of an
embedded rigid cylinder that are induced by elastic waves. All
the stochastic processes used are taken to be stationary with
zero mean. In view of the linearity of the system the last
restriction does not lead to any loss of generality.

2 Basic Equations

We consider an infinite isotropic elastic medium (defined
by its Lamé constants A and u and by its mass density p) which
contains a rigid movable infinite cylinder with arbitrary
radius ¢ and mass density p,. The medium is subjected to
general plane waves of displacement traveling in the direction
x and which impinge on the cylinder (Fig. 1).

The random motion of the cylinder under this impact is
characterized by three degrees of freedom: displacements
u(¢) and v(¢) in the directions x and y, respectively, and by a
rotation ¢ (¢) about the direction z. The displacement u () is
due to the P-component of the incident field only, whereas the
SV-component causes both the displacements v(z) and ¢(¢).

Let us denote the P or SV-component of the incident field
of displacement as W; (j = p, s), the spectrum of an incident
wave as Q; (w), and the spectra of the inclusion motions as
Qi (w), kK = u, v, ¢. Taking into account the separability
mentioned between P and SV-waves of excitation and the
components of the inclusion motion, one can write the
following equations governing the steady-state response

Qu (w) lGﬁ (w)'2 0 0 Qp (w)
Qv(w) ¢ = 0 IG5 (w) 12 0 Qs (w)
04 (w) 0 0 (G5 (w) 12 | Qs (w)

)

where Gi(w), (j = p, s; k = u, v, ¢) is the cylinder
displacement k& due to normalized harmonic j-disturbance.

Making use of the results for the harmonic response of a
rigid cylinder [2], we have the following expressions for
Gl (w)

Gh (w) =in[8H,(Ba) -4 Ba Hy(Ba)](raalr) ! )
G} (w) is given by equation (2) where the replacements

a—fB B—«oaremade 3)
G} (w) =8n[8*a*H\(Ba) +4nBa H,(Ba) —84H,(Ba)] ' /(wa)
: C))

where
A=4y H\(ca)H (Ba) — (1+n)Ba Hy(Ba) H,(aa)
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Fig. 2 Mean-square inclusion displacement in the x-direction versus
density ratio 4

—(l+n)aa Hy(oa) H(Ba) +af a*H, (aa) Hy(Ba) (5)
and

a=w/c,; B=w/c; n=p/pg (6)
In the foregoing H,, (z) = H,,(V(z) stands for the Hankel
function of the first kind of the mth order and ¢, and ¢, are
the velocities of dilatational and shear waves in the matrix.
Now we can determine the variances of nth derivatives of
each of the stochastic processes of interest, i.e., of #(¢), v(¢),

and ¢ (¢)

Var[k{M]= B 0" Qp (w)dw, (k=u,0,d;n=0,1,2 .. )(7)

3 Response to White Noise Disturbances
The spectra of the incident field is taken to be
Qi (w)=Qy=const; lwl<ee,j=p,s 8)

Making use of asymptotic expansions for |G) (w) | it can
be shown that the improper integrals, given by equation 7,
exist only for n = 0, i.e.,, for the variance of the
displacements. The multivalued character of the Hankel
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density ratio 3
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Fig.4 Mean-square inclusion rotation versus density ratio 3

functions necessitates a numerical evaluation of these in-
tegrals.

The results computed are presented in Figs. 2-4. As ex-
pected, these figures show that the motion of a ‘‘heavy”’
inclusion (5 < 1) is always less random because of its greater
inertia. The effect of the Poisson ratio, », on the variance of
the inclusion motion is shown. For 4 = 1 the results are in-
dependent of v for all components of the response. For other
values of %, Varfu] and Var[v] are explicitly affected by this
parameter whereas the influence on Var[¢] is slight. It is of
interest to note that greater damping of the motion of a
“light”” inclusion (y > 1) in the y-direction occurs for a
rubberlike material with » — 0.5 as the matrix. On the other
hand, for damping of the vibrations in the x-direction values
as v approaches zero are essentially more suitable (Figs. 2 and
3).

4 Conclusion

The results, presented in Figs. 2-4, cover the majority of
practically interesting cases. They can be used in the analysis
of composite materials to provide minimum (or maximum)
damping or better protection of a rigid embedded cylinder. If
the inclusion serves as a sensor for monitoring the incoming
waves the results obtained can be employed to reduce the
distortion due to a random noise.
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On the Flow of a Viscoelastic Liquid Past an
Infinite Porous Plate due to Fluctuation in
the Main Flow

D. N. Mukhopadhyay® and T. K. Chaudhury!

Introduction

Stuart [1] and Messiha [2] investigated the oscillating flow
of viscous liquid over an infinite flat plate with constant
suction and variable suction, respectively, at the plate and
discussed many interesting features of the flow. Soundalgekar
and Puri [3] extended Messiha’s problem to the case of non-
Newtonian liquid with Walter’s liquid B’ [4] as the model.
However the equations of motion considered by the authors
[3] in the approximation of short relaxation time are identical
with those of second-order liquid for the same problem and
can be solved only by successive approximation. We extend
Messiha’s problem to the class of viscoelastic liquid known as
stress-relaxing liquid of Oldroyd [S] and, as observed in our
earlier work [6], we get a more general solution giving the
solution [3] as a first approximation for small elastic
parameter. Our solution shows some interesting effects of the
stress-relaxing property of the liquid on the response of the
boundary layer to the fluctuation in the main flow.

Formulation and Solution of the Problem

The constitutive equation for a viscoelastic liquid of
Oldroyd [5] has the form

aT,
Ti+N < = Tk Tyx—vigTg— UJ,KTiK) =2mney, 0))

where P; and e; are, respectively, stress tensor and rate-of-
strain tensor, v; are velocity components, A, is the relaxation
time, and 7, is the viscosity coefficient. Taking the x’-axis
along the plate in the direction of flow and the y’-axis per-
pendicular to the plate directed into the liquid, the flow field
isgivenbyu’ =u’ (3, 1), v =v§{( + ede®"), w’ =0
with the free stream velocity U’ (¢") (cf., Messiha [2]), where
vg is a nonzero constant mean suction velocity and 4 and e are
small positive constants such that e4A =< 1. The differential
equation for u’ will be obtained by elimination of stress
component 7,/ between (1) and the momentum equation.
This elimination is effected by taking the particular solution
7,7,/ = 0, which means vanishing normal stress 7,/ at the
line of entry (or exit) of the liquid through pores of the
boundary.

Assuming external forces to be absent and introducing
nondimensional quantities defined by y = y'v{/», t = v{%t/
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functions necessitates a numerical evaluation of these in-
tegrals.

The results computed are presented in Figs. 2-4. As ex-
pected, these figures show that the motion of a ‘‘heavy”’
inclusion (5 < 1) is always less random because of its greater
inertia. The effect of the Poisson ratio, », on the variance of
the inclusion motion is shown. For 4 = 1 the results are in-
dependent of v for all components of the response. For other
values of %, Varfu] and Var[v] are explicitly affected by this
parameter whereas the influence on Var[¢] is slight. It is of
interest to note that greater damping of the motion of a
“light”” inclusion (y > 1) in the y-direction occurs for a
rubberlike material with » — 0.5 as the matrix. On the other
hand, for damping of the vibrations in the x-direction values
as v approaches zero are essentially more suitable (Figs. 2 and
3).

4 Conclusion

The results, presented in Figs. 2-4, cover the majority of
practically interesting cases. They can be used in the analysis
of composite materials to provide minimum (or maximum)
damping or better protection of a rigid embedded cylinder. If
the inclusion serves as a sensor for monitoring the incoming
waves the results obtained can be employed to reduce the
distortion due to a random noise.
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of viscous liquid over an infinite flat plate with constant
suction and variable suction, respectively, at the plate and
discussed many interesting features of the flow. Soundalgekar
and Puri [3] extended Messiha’s problem to the case of non-
Newtonian liquid with Walter’s liquid B’ [4] as the model.
However the equations of motion considered by the authors
[3] in the approximation of short relaxation time are identical
with those of second-order liquid for the same problem and
can be solved only by successive approximation. We extend
Messiha’s problem to the class of viscoelastic liquid known as
stress-relaxing liquid of Oldroyd [S] and, as observed in our
earlier work [6], we get a more general solution giving the
solution [3] as a first approximation for small elastic
parameter. Our solution shows some interesting effects of the
stress-relaxing property of the liquid on the response of the
boundary layer to the fluctuation in the main flow.
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strain tensor, v; are velocity components, A, is the relaxation
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pendicular to the plate directed into the liquid, the flow field
isgivenbyu’ =u’ (3, 1), v =v§{( + ede®"), w’ =0
with the free stream velocity U’ (¢") (cf., Messiha [2]), where
vg is a nonzero constant mean suction velocity and 4 and e are
small positive constants such that e4A =< 1. The differential
equation for u’ will be obtained by elimination of stress
component 7,/ between (1) and the momentum equation.
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Fig.1 Amplitude of the skin friction

4y, 0 = dyw’ fv§%, u = u' /U5, U = U'JU§, K = Nvgt/v,
where Uj is a reference velocity, w’ is the frequency of the
fluctuation in the main stream, K is the elastic parameter and
v = 19/ p, we have for u the equation

ou K u - 3%u

— 4+ — — —2K(l+ede™)——

at 4 o ( ) dyot

{4+ (4t iwK) etein ) 2
dy

. u dUu K dqU
+4{K(1+ede“)2 -1 =
(K ( N =t @

and boundary conditionsu = Oaty = Qandu = U(¢) asy —
oo, With U(¢) = 1 + ee for the free stream, the solution for
u in the boundary layer is obtained, if K < l,asu = 1 —
e V/1-KD o celot (M, + i M,;) up to the first power in ¢, (3)
where

M,=l—e—mr}’[cos m;y— m—) Sinmiy],
M—e""ry[sinm +i—cosm ] 4 e“ﬁy
i= VT A=K T Ga=K) ’
"= 2W2+s = 4w+ V2wKs
T a20-K)" T 42s(1-K)

s=Vr+{@-Ko?), r=v(@d-Ko?)?+160?

The transient velocity for wf = II/2isu = 1 — e /140 — ¢
M;. We assume the nondimensional shear stress as
T.r,7
Ty= ): y,
Usvgp

— 7 i
=T + e TY).

Then using the expression for u given in (3) and the free
stream velocity U(¢) = 1 + ee™, and utilizing the con-
stitutive equation (1) and momentum equation, we finally
obtain

- ‘—1"“)' .
Ty=e '™ +e

w(l —K)
1

e~™ 1 dide “")] ,

[ (w—wK—4iA4) (dm(l — K) —inK}
: 4+ jwK

wherem = m, + im;

Journal of Applied Mechanics

Shear stress at the wall = T, 1,0 = 1 + elBlcos(wt + a),

4
. B;
where B=B, +i B;, tana = s
B,
and
4
= s g e (1 K—4K)
<I6A K K2) w?K? 4AK]
n; -;—+w - 4 1-K )
B=—2 [4m, (1-K-aK)
T 16+ w?K? !
164 164 2A<.oK2]
- [ - —wK + .
m,( " +wK wKz) w +w(1—K) e

The results (3) and (4) reduce to those of Messiha [2] when K
= 0 and to those of Stuart [1] when K = 0, A = 0. Expanding
for small X and retaining only up to the first power in K, (3)
and (4) give the results of Soundalgekar and Puri [3].

Discussion

It is found from computations that due to elastic property
of the liquid the back flow occurs at the plate at values of ¢
and w much smaller than those in the case of Newtonian
liquids, and this effect of elastic property is seen to be more
pronounced in Oldroyd liquid than that in the case of Walter
liquid B’ or second-order liquid, probably due to the effect of
stress-relaxation. It is also found that the velocity near the
plate decreases as the elastic parameter K or frequency
parameter w increases while, after a certain distance near the
plate an opposite effect is observed.

It is seen from the expression for transient velocity for
constant suction that for each K there is a critical e at which
the velocity profile is of ‘‘separation’’ type (i.e., with zero
skin friction). For e greater than this critical value, the
transient velocity profile is transient only on the whole but
oscillates with y having reverse flow near the plate. This
critical e decreases as k increases and for a given k it is ob-
tained from the relation ¢ = 1/(1 —k)m;. Comparing with
Stuart’s [1] result it is seen that the elastic parameter &
decreases the value of the critical e. Therefore the elastic
property of the liquid will carry a high-frequency oscillatory
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disturbance of the main stream to the vicinity of the plate
more effectively and influence the skin friction even if the
amplitude of the disturbance is very small (of the order 10~2).
Graphs of the amplitude | B| of the skin friction for different
values of A and K are shown in Fig. 1. It can be seen that | B}
increases with increasing value of A as observed by Messiha
[2]. But for a fixed value of A, |B| decreases with increasing
K, this decrease being larger for higher values of w. Thus the
stress-relaxing property of the ligiud decreases the maximum
shear stress at the wall and the effect is much more
pronounced in Oldroyd liquid considered here than in a
second-order liquid (cf., [3]).
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Radial Nonuniformity of the Fields Near a
Moving Crack Tip in a Material With Linear
Strain Hardening

V. Dunayevsky! and J. D. Achenbach!

1 Introduction

The fields near the tip of a propagating Mode-III crack in
an elastic perfectly plastic material have been discussed by
Chitaley and McClintock [1]. The results of [1] show bounded
stresses, but strains with logarithmic singularities. On the
other hand, for a material characterized by J,-flow theory
together with a bilinear effective stress-strain curve, Amazigo
and Hutchinson [2] have shown that both stresses and strains
contain singularities of the form r*, where 0<s< —1. The
strengths of the singularities, defined by s, depend
significantly on the strain hardening parameter o, which is the
ratio of the slopes of the two straight line segments of the
effective stress-strain curve. For shear deformations this
strain hardening parameter is

a=pu/pu, o<l 1

where u is the shear modulus, which defines the slope when
the effective stress is less than the yield stress in shear. It was
noted in reference [2] that numerical computations suggest
s— —a” when a~0.

It stands to reason that the results for linear strain hard-
ening, as presented in {2], should reduce to those for perfect
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plasticity, as presented in [1], in the limit a—0. Since the least
amount of strain hardening produces singularities of the type
r°, there appears to be a spatial nonuniformity in the domain
of validity of solutions for small .

In this Note we have attempted to resolve this question by
constructing near-tip fields for linear strain hardening with
small a. Such fields are of interest on their own accord, but
they can also be used to investigate the limit of vanishing c.
Our results show the presence of an edge zone (a boundary
layer) in which the fields are singular with s = — "2, The edge
zone is defined by r/r, = Olexp(—1/ a”)]. Outside of the edge
zone the solution can be represented by a regular expansion
with respect to a”, the first term being the solution for the
elastic perfectly plastic case. In the limit «—0 the edge zone
shrinks on the crack tip, thus eliminating the domain of
validity of terms of order r*. The near-tip fields then reduce to
those outside the edge zone, which are the ones for the elastic
perfectly plastic material.

2 Governing Equations

Let (x,y,2) define a coordinate system which moves with the
crack tip at a constant velocity v, such that the z-axis coincides
with the crack edge. Following the notation of reference [2],
the stresses and strains for antiplane shear are denoted by
Tg = 0,5 and v =2¢,5, where 8=x,y. In the loading region,
and relative to the moving coordinate system, the stress-strain
relations according to J,-flow theory with linear strain
hardening are [2]:

ey =aig +(1 —a)‘r*l'rﬂi' 2
where « is defined by equation (1), and
r=(2+7%)"%,and >0 (a,b)

In 2), ( ") denotes material differentiation with respect to
any monotonically increasing quantity. In the present paper
we set

. ad
()=-vo—=—vd, @

consistent with a steady-state situation relative to the moving
crack tip. Equations (2)-(4) are supplemented by equations
defining equilibrium and strain compatibility:

973 =0and d,vy, —d,7, =0 (5a,b)
Let us introduce new variables 4, and #; by
(v8,75) = (Y3, 75) expl[ — opNX, )] (6a,b)
where
R+ =k @)

Here the constant & defines the yield stress in shear. In terms
of the new variables 44,75, and A the constitutive equations
(2) become

. . |
0y %p — apyg 0 A= ;ax Fo— g0, N 8)

In the limit a—0, equation (8) turns into the constitutive
equation for an elastic perfectly plastic material.

In the loading region the term d,A should be positive.
Indeed, since >0, we obtain from (3a), (4), and (6b):
7= —vd,7= — 00, [(# + 72)” exp( — auN)]

=vkap exp(— aur)d, A>0 ©9)

which implies 3, A>0.

Equation (7) suggests the introduction of the ‘‘stress

A

function’’ & by the relations
(10a,b)
It is now convenient to introduce polar coordinates (r,6).

#y= —ksin®, %, =Kkcosd
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disturbance of the main stream to the vicinity of the plate
more effectively and influence the skin friction even if the
amplitude of the disturbance is very small (of the order 10~2).
Graphs of the amplitude | B| of the skin friction for different
values of A and K are shown in Fig. 1. It can be seen that | B}
increases with increasing value of A as observed by Messiha
[2]. But for a fixed value of A, |B| decreases with increasing
K, this decrease being larger for higher values of w. Thus the
stress-relaxing property of the ligiud decreases the maximum
shear stress at the wall and the effect is much more
pronounced in Oldroyd liquid considered here than in a
second-order liquid (cf., [3]).
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Radial Nonuniformity of the Fields Near a
Moving Crack Tip in a Material With Linear
Strain Hardening

V. Dunayevsky! and J. D. Achenbach!

1 Introduction

The fields near the tip of a propagating Mode-III crack in
an elastic perfectly plastic material have been discussed by
Chitaley and McClintock [1]. The results of [1] show bounded
stresses, but strains with logarithmic singularities. On the
other hand, for a material characterized by J,-flow theory
together with a bilinear effective stress-strain curve, Amazigo
and Hutchinson [2] have shown that both stresses and strains
contain singularities of the form r*, where 0<s< —1. The
strengths of the singularities, defined by s, depend
significantly on the strain hardening parameter o, which is the
ratio of the slopes of the two straight line segments of the
effective stress-strain curve. For shear deformations this
strain hardening parameter is

a=pu/pu, o<l 1

where u is the shear modulus, which defines the slope when
the effective stress is less than the yield stress in shear. It was
noted in reference [2] that numerical computations suggest
s— —a” when a~0.

It stands to reason that the results for linear strain hard-
ening, as presented in {2], should reduce to those for perfect
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plasticity, as presented in [1], in the limit a—0. Since the least
amount of strain hardening produces singularities of the type
r°, there appears to be a spatial nonuniformity in the domain
of validity of solutions for small .

In this Note we have attempted to resolve this question by
constructing near-tip fields for linear strain hardening with
small a. Such fields are of interest on their own accord, but
they can also be used to investigate the limit of vanishing c.
Our results show the presence of an edge zone (a boundary
layer) in which the fields are singular with s = — "2, The edge
zone is defined by r/r, = Olexp(—1/ a”)]. Outside of the edge
zone the solution can be represented by a regular expansion
with respect to a”, the first term being the solution for the
elastic perfectly plastic case. In the limit «—0 the edge zone
shrinks on the crack tip, thus eliminating the domain of
validity of terms of order r*. The near-tip fields then reduce to
those outside the edge zone, which are the ones for the elastic
perfectly plastic material.

2 Governing Equations

Let (x,y,2) define a coordinate system which moves with the
crack tip at a constant velocity v, such that the z-axis coincides
with the crack edge. Following the notation of reference [2],
the stresses and strains for antiplane shear are denoted by
Tg = 0,5 and v =2¢,5, where 8=x,y. In the loading region,
and relative to the moving coordinate system, the stress-strain
relations according to J,-flow theory with linear strain
hardening are [2]:

ey =aig +(1 —a)‘r*l'rﬂi' 2
where « is defined by equation (1), and
r=(2+7%)"%,and >0 (a,b)

In 2), ( ") denotes material differentiation with respect to
any monotonically increasing quantity. In the present paper
we set

. a
()= -ve=-va, @

consistent with a steady-state situation relative to the moving
crack tip. Equations (2)-(4) are supplemented by equations
defining equilibrium and strain compatibility:

973 =0and d,vy, —d,7, =0 (5a,b)
Let us introduce new variables 4, and #; by
(v8,75) = (Y3, 75) expl[ — opNX, )] (6a,b)
where
R+ =k @)

Here the constant & defines the yield stress in shear. In terms
of the new variables 44,75, and A the constitutive equations
(2) become

. . |
0y %p — apyg 0 A= ;ax Fo— g0, N 8)

In the limit a—0, equation (8) turns into the constitutive
equation for an elastic perfectly plastic material.

In the loading region the term d,A should be positive.
Indeed, since >0, we obtain from (3a), (4), and (6b):

7= =08, 7= —v3,[(# + 73)" exp(— auN)]
=vkap exp(— aur)d, A>0 ©9)

which implies 3, A>0.
Equation (7) suggests the introduction of the ‘‘stress
function’’ & by the relations

(10a,b)
It is now convenient to introduce polar coordinates (r,6).

#y= —ksin®, %, =Kkcosd

Transactions of the ASME

1982 b E

seor conﬁ‘g%Msee http://www.asme.org/terms/Terms_Use.cfm



After some manipulation the governing equations (5a4,b) and
(8) are obtained in the form:

1
cos(@—0)a, o+ - sin(&—0)0, &

1
= apfsin(& - 6)0, N — ;cos(d)—O)ag)\] 11)

1
cos(d—0)0,v, + ;sin(a—o)am

k 1
+ — (cos0d, & — —sinfdy @) =
© r

1
= apf,[cos(@—0)d, N+ ;sin(&;-—@)(’)g)\] (12)

1
—sin(@—0)3, 9, + ;cos(&;— 0) 054+
1,
+ k(cosfd, \— - sinfdy\) =

= — apf,[sin(d—0)3d, A— %cos(&:—@)ag)\] (13)

3 The Solution in the Loading Zone

As point of departure we assume that for small o, & does
not depend on r, and that the function A is independent of 8.
In the sequel it will be shown that the solutions obtained on
the basis of these assumptions have the proper behavior in the
limit «—0. With these assumptions (11) yields & =46, and (12)
and (13) reduce to:

k
3, %, + — sinf=oapd,d,\ (14)

@
0gx —Kk cosf a,A=0 (15)

where we have introduced
p=—=In(r/ry) (16)

Here r, is the length of the plastic zone in the plane of the
crack. Integration of (15) with respect to 6 yields

4y =k sinf 9, \, amn
where we have used that 4, =0 for §=0. Substitution of (17)
into equation (15) results in

17Z9N dyn\? 1
—_ = —_ +-=0 18
dp? ozp.( dp ) 7 (18)
The appropriate solution to this equation is
1
A= — — In{cosh(a": p+ B)] + A4, 19
op

where 4 and B are arbitrary constants. Substitution of (19) in
(17) and (6a) gives v, as

k 1, » ) -
Y= — — o~ %e~ 4 sinh(a” p + B)sind
u
Just outside the zone of plastic deformation, the elastic
strain is v, = —(k/p)sing. If it is assumed that the plastic
strain is zero at x=r,, continuity of v, at x=r, and 6 small
yields

(20)

sinh B= " e @1

Clearly sinh B=0O("*) and cosh B=0(1) as a—-O For fixed p
we then find in the limit «—0

sinh(a”p+B)~a” (p+1) 2)
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Substitution of (22) into (20) yields for small «
k
o= [_ " +1n(r/r,,)] sinf + O(a) @3)

which tends to the solution for the elastic perfectly plastic case
when o—0. Equation (22) is, however, not valid when

p=0(a”), i.e., when r/r,=0{exp(—1/a")]. Then
sinh(a” p + B) ~ sinh(a” p), and (20) yields as a—0
k . Vi,
Yo~ — —a A (r/r,)"® sind 24)
2p

Equations (23) and (24) reveal the existence of an edge zone
near the crack tip, defined by r/r, ~O[exp(—1/a")]. This
zone vanishes in the limit a—0. Inside the edge zone (24) is
valid, while outside the edge zone (23) holds It is now evident
that a regular expansmn with respect to o, as alluded to in
reference [2], cannot give a uniform transition from linear
strain hardening to perfect plasticity.

It is noted that neither (23) nor (24) contains the external
load via a stress intensity factor. The external load is,
however, implicit in these expressions through r,,.

By virtue of the compatibility condition (5b), we have for
6—0

d k _, . ,
b - 2 g% e-amsinh(a o+ B) 25)
do p
Upon integration we find
k |
vy = —ale*cosh(a” p+B)+C (26)
0
Continuity of v, at x=r, gives
k
= — (1-a e~ *4coshB) (V1))
"

Outside the edge zone, i.e., p=0(a~"), we can use the ex-
pansion
], 1, " 1
cosh(a” p+ B) =coshB+ " p sinhB + 3 ap?coshB (28)

By the use of (21) we then find from (26) and (27) in the limit
a—0
k 1 5 y
vy = —; {1 —In(r/r,)+ 3 n(r/r,)] } +0(x™) 29)

which is just the solution for the elastic perfectly plastic case.
Within the edge zone (26) and (27) yield

k
7y~7a“[ (r/ry)~« -1]+0(1)

The stresses corresponding to (30) follow from (6a) and
(10a,b) as

30

1 17 7]
Te= — Eke“’“‘"‘ [(r/r,,)"‘/ +(r/rp)‘°‘/ Isiné
= —ke A (r/r,)* 7 +(r/r,)” o * cosé
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Approximate Stability Criteria for Some
Second-Order Linear Differential Equations
With Statienary-Gaussian Random
Coefficients!

G. Ahmadi? and P. G. Glockner?

Approximate sufficiency conditions for almost sure stability
of the equilibrium state of some second-order linear systems
with stationary-Gaussian random coefficients are obtained in
analytical form.

Introduction

Stability of stochastic differential equations was in-
vestigated by Samuels and Eringen {1], Bertram and Sarachik
[2], and Kozin [3]. Caughy and Gray [4], Infante {5], Kozin
and Wu [6], and Kozin and Prodromou [7] have developed
improved regions for stability of linear differential equations
with stationary random coefficients of different kinds.
Stability of nonstationary stochastic differential equations
was studied by Ahmadi [8, 9] and Ahmadi and Mostaghad
{10, 11].

In the present work, stability of some second-order dif-
ferential equations subjected to Gaussian random coefficients
is considered. Approximate analytical expressions for the
sufficiency conditions for almost sure stability of the
equilibrium state are derived. It is shown that for a small
damping coefficient, the present approximate results become
quite accurate.

Analysis
The second-order differential equations
X+28+[c+f(H)]x=0, 63
X+2¢+f() X +cex=0, )

with ¢ and ¢ being constants and f(f) being a zero-mean
stationary ergodic process with finite second moments en-
countered in many engineering problems. The criteria for
almost sure stability of the equilibrium state of equations (1)
and (2), as obtained by Infante [5], are

ot <482, 3)
4 2
02<]:%E’ (4)

respectively, where the parameter c is taken to be equal to 1.
In equations (3) and (4), ¢ is the variance of 7(¢). Kozin and
Wu [6] obtained the following stability criterion

E{lI-f()1}<2¢U+c—9"?, ®)

for equation (1), where / is an arbitrary positive constant.
Similarly, for the stability of equation (2), they found [6],

E{H-f(t) 1} <21 —o2/0), ©)
where
a={+1/2. )

In equations (5) and (6) E { } stands for the expected value.
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Fig.1 Comparison of the stability prediction of equations (12) and (13)
with the results of references (5, 6]
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Fig.2 Comparison of the stability limit according to equation (13) with
the results of references [5, 8]

Stability criteria (5) and (6) are further developed in [6] and
when f(¢) is Gaussian, and ¢ = 1, the boundaries of the
sufficiency stability criterion are obtained by a numerical
optimization technique. These results, together with Infante’s
criteria (equations (3) and (4)) are reproduced in Figs. 1 and 2.
When f(¢) is Gaussian, it can be shown

E(l—f(t) |} =ov2/m e 12" 120 erf (I/0), @8)

where erf is the error function as defined in [12}. For small
values of //g, using a Taylor series expansion, up to the
second order in /, equation (8) becomes

Vara(o+ L
E{li-f(t)|}= 2/W<0+%>. C)]

Employing equation (9) in equation (5) and solving for ¢ one
finds

@ <27 +c—-P)- L. (10
The optimum choice for /is
=78, 11

and the approximate stability criterion for equation (1)
becomes

o < (w2 =2m) P+ 27, (12)

For small values of ¢, neglecting the fourth power of ¢, one
obtains

o2 <2mcf?. (13)

Similarly, use of the approximate equation (9) in equation (6),
after optimization, yields
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4
A2<Rr—HP+ —
T §
(3 (%)
2 c
which is the approximate expression for almost sure stability

of the equilibrium state of equation (2). The corresponding
optimum choice for /is given by :

(14)

n3/¢
I= ——{2 . (15)

kig

+(5)(%)
The predictions of equations (12), (13), and (14) for ¢ = 1 are
also shown in Figs. 1 and 2. It is observed that the ap-
proximate equations (12), (13), and (14) give remarkably
accurate results for damping coefficients below 0.6. However,
for e > 1 the error becomes rather large and equation (13)
underestimates the critical variance whereas equations (12)
and (14) overestimate the critical variances of the stability
limit. This is, of course, expected since the values of / as given
by equations (11) and (15) are no longer small for relatively
large magnitudes of the damping coefficient.

Equations (12), (13), and (14) provide approximate suf-
ficiency criteria for the almost sure stability of the equilibrium
states of equations (1) and (2) for arbitrary values of the
parameter ¢. These analytical results are quite easy to use for a
first-order estimation of the stability limit.
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Edge Effect in the Bending of Inextensible
Plates

E. N. Kuznetsov!

In the uniaxial bending of an elastic plate, a boundary layer
develops along each free edge in the form of a small ripple in
the deformed midsurface. The layer provides a smooth
transition from the zero transverse bending moment at the
edge to the required value in the plate interior. For an inex-
tensible plate, the formation of this type of a boundary layer
is impossible. An alternative mechanism for providng this
transition is identified and investigated.

Introduction

In a flexible plate with free edges that undergoes large
deformation, boundary layers develop along the edges [1-3].
If the plate is deformed sufficiently, it behaves as a nearly
inextensible one and approximates a developable surface
except for the boundary layers where some additional
localized deflections occur. This phenomenon can be easily
traced using the example of a rectangular strip under uniaxial
bending by a moment M. The strip would acquire a cylin-
drical form only if a transverse bending moment uM was to
act along the curved edges (u is Poisson ratio). However, even
in the absence of the transverse moment, the deviation from
the cylindrical shape is small and confined to a narrow
longitudinal strip adjacent to each of the free edges. This
boundary layer provides a smooth transition from the con-
stant transverse bending moment in the interior of the plate to
its zero boundary value at the free edges. The intrinsic
mechanism of the boundary layer action (revealed in the
preceding references) consists in the development of mem-
brane stresses resisting the tendency toward transverse
bending. As shown in [1-2], the maximum deviation of the
deformed midsurface from the cylinder equals a certain
fraction of the plate thickness depending only on the Poisson
ratio (for p = 0.32 it is about 10 percent of the thickness).

However small, this deviation and the formation of an edge
ripple is only possible for extensible plates. Note that
homogeneous plates, regardless of their thickness, are always
extensible so that when a thinner plate is said to more closely
approximate an inextensible plate, this only means that the
boundary layer width reduces. However, the ratio of the edge
ripple amplitude to the plate thickness preserves and, more
importantly, so does the aforementioned mechanism of the
boundary layer action (membrane stresses in the ripple fibers
outside of the developable surface).

For a truly inextensible plate, the entire deformed surface
including its edges must be developable. Consider, for
example, the uniaxial bending of a plate involving a very thin
layer of material much stiffer than the rest of the plate.
Although this layer, being made of a real material will still
develop an edge ripple, its amplitude will measure no more
than only about one-tenth of the /ayer thickness. This is in-
consequential for the deformation of the plate as a whole and,
in particular, with regard to the boundary conditions at its
free edges. Thus, for all practical purposes, such a plate is
inextensible, which precludes the formation of a boundary
layer of the foregoing type. Obviously, in this case any at-
tempt to evoke the previously described boundary layer
mechanism (e.g., by introducing different Young’s moduli of
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which is the approximate expression for almost sure stability

of the equilibrium state of equation (2). The corresponding
optimum choice for /is given by :

(14)

n3/¢
I= ——{2 . (15)

kig

+(5)(%)
The predictions of equations (12), (13), and (14) for ¢ = 1 are
also shown in Figs. 1 and 2. It is observed that the ap-
proximate equations (12), (13), and (14) give remarkably
accurate results for damping coefficients below 0.6. However,
for e > 1 the error becomes rather large and equation (13)
underestimates the critical variance whereas equations (12)
and (14) overestimate the critical variances of the stability
limit. This is, of course, expected since the values of / as given
by equations (11) and (15) are no longer small for relatively
large magnitudes of the damping coefficient.

Equations (12), (13), and (14) provide approximate suf-
ficiency criteria for the almost sure stability of the equilibrium
states of equations (1) and (2) for arbitrary values of the
parameter ¢. These analytical results are quite easy to use for a
first-order estimation of the stability limit.
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Edge Effect in the Bending of Inextensible
Plates

E. N. Kuznetsov!

In the uniaxial bending of an elastic plate, a boundary layer
develops along each free edge in the form of a small ripple in
the deformed midsurface. The layer provides a smooth
transition from the zero transverse bending moment at the
edge to the required value in the plate interior. For an inex-
tensible plate, the formation of this type of a boundary layer
is impossible. An alternative mechanism for providng this
transition is identified and investigated.

Introduction

In a flexible plate with free edges that undergoes large
deformation, boundary layers develop along the edges [1-3].
If the plate is deformed sufficiently, it behaves as a nearly
inextensible one and approximates a developable surface
except for the boundary layers where some additional
localized deflections occur. This phenomenon can be easily
traced using the example of a rectangular strip under uniaxial
bending by a moment M. The strip would acquire a cylin-
drical form only if a transverse bending moment uM was to
act along the curved edges (u is Poisson ratio). However, even
in the absence of the transverse moment, the deviation from
the cylindrical shape is small and confined to a narrow
longitudinal strip adjacent to each of the free edges. This
boundary layer provides a smooth transition from the con-
stant transverse bending moment in the interior of the plate to
its zero boundary value at the free edges. The intrinsic
mechanism of the boundary layer action (revealed in the
preceding references) consists in the development of mem-
brane stresses resisting the tendency toward transverse
bending. As shown in [1-2], the maximum deviation of the
deformed midsurface from the cylinder equals a certain
fraction of the plate thickness depending only on the Poisson
ratio (for p = 0.32 it is about 10 percent of the thickness).

However small, this deviation and the formation of an edge
ripple is only possible for extensible plates. Note that
homogeneous plates, regardless of their thickness, are always
extensible so that when a thinner plate is said to more closely
approximate an inextensible plate, this only means that the
boundary layer width reduces. However, the ratio of the edge
ripple amplitude to the plate thickness preserves and, more
importantly, so does the aforementioned mechanism of the
boundary layer action (membrane stresses in the ripple fibers
outside of the developable surface).

For a truly inextensible plate, the entire deformed surface
including its edges must be developable. Consider, for
example, the uniaxial bending of a plate involving a very thin
layer of material much stiffer than the rest of the plate.
Although this layer, being made of a real material will still
develop an edge ripple, its amplitude will measure no more
than only about one-tenth of the /ayer thickness. This is in-
consequential for the deformation of the plate as a whole and,
in particular, with regard to the boundary conditions at its
free edges. Thus, for all practical purposes, such a plate is
inextensible, which precludes the formation of a boundary
layer of the foregoing type. Obviously, in this case any at-
tempt to evoke the previously described boundary layer
mechanism (e.g., by introducing different Young’s moduli of
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bending and stretching and subsequently setting their ratio to
zero) is doomed to failure.

The objective of this study is to identify and investigate an
alternative mechanism that provides a smooth transition of
the transverse bending moment in inextensible plates.

Analysis

This goal can be achieved within the framework of a
generalized theory of plates taking into account shear
deformations. The governing system of equations of this
theory [4] as applied to the problemi in question (a rectangular
plate bent in the x-direction) reads:

IG
W=W -viW, g= )
6(1 - w)
DviW =NW,, D= b _ )
XX - 12(1 _#2)

where W is the plate deflection, W/ is the deflection com-
ponent due to flexure alone (disregarding the shear as is the
case for the conventional plate theory), ¢ is the plate thickness,
N is the membrane force in the x-direction (other membrane
forces as well as transverse loads are absent), E and p are
Young’s modulus and Poisson’s ratio, respectively, and
subscripts x and y denote the corresponding partial
derivatives,

To reveal the essence of the phenomenon in question in a
simple way, assume that the foregoing plate has a very thin
and stiff midsurface layer with a modulus of elasticity E*
> > E, but a thickness #* < < ¢ so that the overall flexural
rigidity and, hence, the preceding governing equations are not
affected. Under the action of a longitudinal bending moment
M, = M the plate bends into a cylinder of a radius R with
some small deviation, w=w(y), in the vicinity of the free
edges. It is this deviation that produces a membrane force, N,
of the magnitude

w w
N=—(E*t* +Et) — = —kEt— 3
( t) R = €))
where
E*t*
k=1+ . 4
Bt “)

Following the version of the perturbation method employed
in [2], the additional plate deflections are referred to the
cylindrical surface corresponding to the middle region be-
tween the two boundary layers:

W= W +w %)
W=W,+w. 6)
Since
1
W = R Q)]

it follows from equation (1) that

2
Wo= Wi~ = ®

Substituting expressions (5) and (6) into equations (1) and
(2) and taking into account relations (3) and (8) yields

w=wl — 2wl ©)
kEt
Dwgyyy == RT (10)

This system reduces to one equation in the unknown w/:

Wy — 4 B2, + Aot/ =0

yyyy

an
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where
12Kk(1 — p2)
4C¥4 = T (12)
The roots of the biquadratic characteristic equation are
Moo= 2202(c2B2 £V gt gt — 1) (13)

The subsequent analysis depends on the magnitude of the
dimensionless parameter

P = 20267 = k(- 2 (k4w ot

IR 2(1—w) 30— R

For a homogeneous plate (k=1) this parameter is much
smaller than unity (unless the radius of curvature becomes
comparable to the plate thickness). If, indeed, y* can be

disregarded as compared to 1, the roots of the characteristic
equation become

(14)

)\]_4= + :i:2ioz2 (15)
and the Fung and Wittrick [2] edge effect is obtained.

Being interested in the opposite extreme (approaching a
truly inextensible plate) we assume the value of k sufficiently

large to produce v* = 4a*B* > > 1,

Then
1
s 2 e (1- 5o )! (16)
2
1
)\1,2=;i:’-y§, Ng==% F amn
and the general solution acquires the form

w‘f=Ae_72y/ﬂ+Ale—y2yﬁ+Be—y/ﬁ+Bley/ﬁ (18)

To eliminate the growing exponentials (the solution must be
finite and decaying toward the plate interior), the constants
A, and B, must be set to zero, while the remaining constants
are determined so as to provide the absence of the transverse
bending moment and shear on the free edge (v =0):

Wi, + uWi, =0 (19

Wiy + 2= )Wy =0 20)

Upon the evaluation of A and B using expressions (5) and
(7) the preceding solution becomes

2,2
W= ‘827 (isevzy/a_e—y/ﬁ> K
v -1 \y R

@1

Results and Discussion

The transverse bending moment, M,, and the total ad-
ditional deflection (9) are determined as follows:

2
My =D(W), + W) = uM[ 1+ = (%e‘*z}’"’—e‘y”’)]
22)

B+ e-1VI8
R ¥

w=w —iwf, = — @3)

In the limiting case of a truly inextensible plate both the
parameters « and v approach infinity and

- R2o-vip P* .
w B2e—Y R 219
M, — yM(1 —e='8) (227)

w—0. (237)
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As can be readily seen, in this limiting case the deformed
surface remains perfectly cylindrical, while the transverse
bending moment rapidly increases from M, = 0 on the edge
to M, = pM in the plate interior. For ¢ = 0.32, moment M,
reaches 0.99 of its maximum value at the distance y = 2,28¢
from the edge. Comparing this to the known limitations of the
theory (plate with shear) shows that the accuracy of the
proposed solution should be quite reasonable.

Note that the described edge effect is linear, with all the
components of displacements and internal forces being
proportional to the external load from the very onset of
loading. In this regard it is different in principle from the
boundary layer investigated in [1-3] which is nonlinear and
does not allow a continuous transition from the conventional
linear plate theory [5].

The developed solution is rather general in that it covers the
entire range of possible values of the parameter v (14) for
which expressions (15) and (16) represents the two extreme
cases. It applies directly (or can be readily modified to apply)
to the analysis of laminated plates of various structural
composition,
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On Interactive Computation of Supersonic
Boundary Layers With Wall Mass Transfer
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Nomenclature
a = local speed of sound
M = Mach number
p = pressure
Re = Reynolds number
T = temperature
U, = free-stream velocity
u = streamwise velocity com-
ponent
v = lateral velocity component
x = distance along the plate
y = distance normal to the plate
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& = boundary-layer thickness
6* = boundary-layer displacement
thickness
p = density
Subscripts
AW = adiabatic wall
e = external
r = reference
w = wall
o = conditions far upstream
Introduction

Boundary-layer suction and injection, commonly used
methods of controlling viscous layer growth, transition, and
heat transfer are particularly applicable to control surface
regions on wings and to jet engine inlets and diffusers. The
effects of the wall mass transfer on boundary-layer
development have long been calculated [1, 2] using the
classical boundary-layer equations decoupled from the free
stream. Recently, the boundary-layer equations have been
used interactively with the potential outer flow [3-5] because
the interaction was recognized as a significant factor in the
boundary-layer development, especially in the presence of
significant rates of mass transfer at the wall. The use of the
interactive approach for solution of the flat-plate boundary
layer with wall mass transfer may give rise to the following
problem [6]. Under certain conditions the interactive solution
shows thinning of the layer in reaction to injection at the wall,
and thickening in response to suction. This behavior, devoid
of physical meaning, is the consequence of an inappropriate
initial condition for the interaction problem, which was
shown by Garvine [7] to be of boundary-value type due to the
ellipticity returned to the problem through interaction. Such
solutions have been observed [7, 8] to exhibit branching
behavior due to their sensitivity to the upstream condition.
The same basic problem with wall mass transfer was also
encountered by Smith and Stewartson, [9], and was noted by
Werle, [5] who was able to avoid it by using a nonmarching
(but iterative) interaction scheme.

The problem due to solution branching exists only when the
boundary layer exhibits subcritical behavior (i.e., following
Crocco [10] dé*/dp>0). For these cases, a noniterative
method is proposed that makes local corrections to the
matching, reflecting the changes in the wall boundary con-
ditions due to variation in suction or injection level. The
noniterative method is valid for modest rates of wall mass
transfer, for which the upstream influence effect is small. The
results computed using this method are compared with those
computed using the general interactive approach. On this
basis, the relative importance of the upstream influence is
examined.

For the supercritical boundary layer (dé*/dp<0), the
solutions are nonbranching and insensitive to the initial
condition, even in the presence of wall mass transfer. Such a
nonbranching solution was computed in reference [11], but it
was not identified as supercritical. Supercritical boundary
layers are usually associated with hypersonic or turbulent
supersonic flows.

The qualitative difference in the behavior of the interactive
solution for supercritical and subcritical boundary layers
leads to an interesting observation concerning the location of
possible separation points.

Method of Solution

All results presented here were obtained using the standard
compressible boundary-layer momentum, continuity, and
energy equations with the outer-edge compatibility relations
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As can be readily seen, in this limiting case the deformed
surface remains perfectly cylindrical, while the transverse
bending moment rapidly increases from M, = 0 on the edge
to M, = pM in the plate interior. For ¢ = 0.32, moment M,
reaches 0.99 of its maximum value at the distance y = 2,28¢
from the edge. Comparing this to the known limitations of the
theory (plate with shear) shows that the accuracy of the
proposed solution should be quite reasonable.

Note that the described edge effect is linear, with all the
components of displacements and internal forces being
proportional to the external load from the very onset of
loading. In this regard it is different in principle from the
boundary layer investigated in [1-3] which is nonlinear and
does not allow a continuous transition from the conventional
linear plate theory [5].

The developed solution is rather general in that it covers the
entire range of possible values of the parameter v (14) for
which expressions (15) and (16) represents the two extreme
cases. It applies directly (or can be readily modified to apply)
to the analysis of laminated plates of various structural
composition,
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p = pressure
Re = Reynolds number
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U, = free-stream velocity
u = streamwise velocity com-
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v = lateral velocity component
x = distance along the plate
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& = boundary-layer thickness
6* = boundary-layer displacement
thickness
p = density
Subscripts
AW = adiabatic wall
e = external
r = reference
w = wall
o = conditions far upstream
Introduction

Boundary-layer suction and injection, commonly used
methods of controlling viscous layer growth, transition, and
heat transfer are particularly applicable to control surface
regions on wings and to jet engine inlets and diffusers. The
effects of the wall mass transfer on boundary-layer
development have long been calculated [1, 2] using the
classical boundary-layer equations decoupled from the free
stream. Recently, the boundary-layer equations have been
used interactively with the potential outer flow [3-5] because
the interaction was recognized as a significant factor in the
boundary-layer development, especially in the presence of
significant rates of mass transfer at the wall. The use of the
interactive approach for solution of the flat-plate boundary
layer with wall mass transfer may give rise to the following
problem [6]. Under certain conditions the interactive solution
shows thinning of the layer in reaction to injection at the wall,
and thickening in response to suction. This behavior, devoid
of physical meaning, is the consequence of an inappropriate
initial condition for the interaction problem, which was
shown by Garvine [7] to be of boundary-value type due to the
ellipticity returned to the problem through interaction. Such
solutions have been observed [7, 8] to exhibit branching
behavior due to their sensitivity to the upstream condition.
The same basic problem with wall mass transfer was also
encountered by Smith and Stewartson, [9], and was noted by
Werle, [5] who was able to avoid it by using a nonmarching
(but iterative) interaction scheme.

The problem due to solution branching exists only when the
boundary layer exhibits subcritical behavior (i.e., following
Crocco [10] dé*/dp>0). For these cases, a noniterative
method is proposed that makes local corrections to the
matching, reflecting the changes in the wall boundary con-
ditions due to variation in suction or injection level. The
noniterative method is valid for modest rates of wall mass
transfer, for which the upstream influence effect is small. The
results computed using this method are compared with those
computed using the general interactive approach. On this
basis, the relative importance of the upstream influence is
examined.

For the supercritical boundary layer (dé*/dp<0), the
solutions are nonbranching and insensitive to the initial
condition, even in the presence of wall mass transfer. Such a
nonbranching solution was computed in reference [11], but it
was not identified as supercritical. Supercritical boundary
layers are usually associated with hypersonic or turbulent
supersonic flows.

The qualitative difference in the behavior of the interactive
solution for supercritical and subcritical boundary layers
leads to an interesting observation concerning the location of
possible separation points.

Method of Solution

All results presented here were obtained using the standard
compressible boundary-layer momentum, continuity, and
energy equations with the outer-edge compatibility relations
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" ou, dp
Pelle o =7 Tax
aT, dp
e h_ e T 1
Pelhe == =Ue —o €3]

and the appropriate conditions on u, v, and T at the surface.
To ensure the validity and consistency of results, these
equations were solved using two different finite difference
codes: the methods of Reyhner et al. {12} and of Murphy [13],
the latter using the generalized Galerkin method on the
boundary-layer equations rewritten in terms of the Levy-Lees
variable. The method of reference [13] incorporates a tur-
bulent flow option. For the outer flow solution, the exact
potential equation

ou ou v ay
2_2____+ <___+.__> 2_2——=0
(u a)ax uv 3 o + (v a)ay
du dv
— - — =0 2
ay oax @

was solved using the method of two-family characteristics.

The two flows were coupled for interactive solution by
matching pressure and slope along the matching line. Since
only unseparated flows were considered, the displacement
thickness was used as the matching line, with some results also
recalculated using an outer streamline of the boundary layer
for the matching line, initially corresponding to 0.98 U,.

Solution for the Subcritical Case

To obtain a physical solution to the subcritical interaction
problem with wall mass transfer, the initial condition for the
pressure interaction must be correctly stated to satisfy the
appropriate downstream condition in order to account for the
upstream influence. This was done in [9] by making repeated
streamwise passes of the solution, each time readjusting the
initial condition. Equivalently, Werle [S] used an iterative
approach that directly imposes the downstream condition
during all stages of calculation. Both these approaches assume
knowledge of the downstream condition.

In the present approach, the interactive solution to the
problem with any distribution of wall mass transfer is ob-
tained by making local adjustments at the matching line
corresponding to the local change in the wall boundary
condition, under the assumption that the upstream influence

[ (o) v = 100
o F
%T 105+
» Vg = —10‘4
r sz vy =18 X 1074
e
1.00}+
i U b L Lo L L Lo L e L I
105 10 115 120

Re, X 1078

i

is small (i.e., for small rates of mass transfer). This is ac-
complished by imposing a local slope correction in the
matching surface. This adjustment is proportional to the
effect of the change of the wall condition and, in effect,
constitutes an adjustment in the compatibility condition. The
scheme for making the local slope correction is as follows.
Assume that interactive solution is known up to some
station x;. The first iteration at the next station, x;,,, is
obtained by computing the boundary layer for this step with
the suction-injection velocity, v,, and external pressure
extrapolated from the preceding station, x;. The second
iteration is computed with the actual v,, for x;, ;. Now the
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Fig. 1 Interactive boundary-layer computation-comparison of

methods. Laminar flow, M, =223, Taw: (a) slot suction; and (b)
constant step suction.
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Fig. 2 Some results of interactive boundary-layer computation for
laminar, flat-plate flow, M, =2.25, T 4: (8) constant level of wall mass
transfer — pressure distribution; (b) constant leve! of wall mass trans-
fer — displacement thickness distribution; (¢) sinusoidal suction; and
(d) importance of interaction in the preceding cases.
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Fig. 3 Some results of interactive boundary-layer computation for
turbuient flat-plate flow with M, =2.23, Ty, for the two distributions
of wall injection. (The solid and dashed lines refer to the corresponding
injection levels shown in the lowermost plot.)

difference in the matching streamline displacement between
the two iterations

A" (x4 1) = 0" (X 1500, )= 8" (X1 1,0,) &)
is taken as the local streamline slope correction (at constant
pressure) due to the surface mass transfer. The interactive
computation is resumed at this station after correcting the
streamline location for ‘‘wall curvature effect’’ due to the
wall mass transfer.

The need for the correction arose since the downstream
compatibility condition was set for the case of no mass
transfer at the wall (thus neglecting the upstream influence).
The corresponding pressure could therefore be expected to be
lower than that in the case in which injection was present at
the wall. Thus, the encountered decrease in pressure due to
“turning on’’ of injection would constitute the right response
of the matching scheme to the incorrect initial condition.

The advantage of the present approach lies in its simplicity.
Once the correct interactive solution has been obtained for the
case of the flat plate with no wall mass transfer, solutions
with arbitrary distributions of v,, may be obtained from the
same initial condition, using the marching process and ap-
plying equation (3). No knowledge of the downstream
boundary condition is required for each v, distribution.
Specification of the downstream condition may not always be
possible for cases in which the downstream conditions do not
return to the original (undisturbed) state. It should further be
noted that due to this ‘‘parabolization’’ of the interaction
problem, the computation need not be continued as far
downstream as would be necessary to completely satisfy the
downstream condition.

A comparison is presented in Fig. 1 between the method of
equation (3) and that of repeated adjustment of initial con-
dition, which does fully account for the upstream influence.
The marching scheme was used for both. For the slot suction
case (Fig. 1(a)) the downstream boundary condition on
pressure may safely be inferred as the corresponding value for
the case without wall mass transfer. (A similar condition for
slot injection was imposed in reference [5].) The method of
equation (3) clearly meets the downstream pressure condition.
The two solution branches obtained by the shooting method
and corresponding to slightly different initial conditions
exhibit a downstream pressure gradient (negative) in excess of
that observed for the case with no suction. The same trend
may be observed in the results in [5], apparently caused by
insufficient accuracy in imposing the downstream boundary
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condition. The significant discrepancy between the two
solutions stems from the fact that the shooting method ac-
counts for upstream influence, and the local interaction
adjustment of equation (3) does not. This difference is
especially pronounced in the present example, for the length
of the slot is comparable with the interaction lengih. The
discrepancy rapidly decreases as the length of the region in
which wall mass transfer occurs increases. This is shown in
Fig. 1(b) for steplike continuous wall suction distribution.
Although here the downstream boundary condition was not
obvious, it was taken to match dp/dx at the downstream end
of the solution with no suction. It is seen that except in the
region close to the onset of suction, the two sets of results are
in good agreement.

Some more examples using the present approach are shown
in Fig. 2 for a steplike suction-injection distribution in which
equation (3) yields nonzero correction only at the discon-
tinuity, and for a sinusoidal suction distribution where the
wall boundary condition changes continuously, resulting in
continuous contribution of equation (3) to the solution.

The relative importance of interaction and suction is seen
from Fig. 2(d), which compares the displacement thickness
calculated with and without interaction for the aforemen-
tioned sinusoidal and v,=-1.8 x 107% suction
distributions. It is clear that interaction effects and those of
suction are of the same order of magnitude, and that they
complement each other in thinning the boundary layer, when
the correction, equation (3), is applied.

When applied to the problem of plate injection with v,, one
order of magnitude greater than those in Fig. 2, the present
approach still gave a fair approximation to the pressure rise at
the onset of injection, but overestimated the downstream
pressure distribution. The solution was improved by making
another downstream correction of the form of equation (3).
This now resembles the approach in reference [8] and though
locally involving iteration, may still be more convenient than
the fully interactive approach.

Solution for the Supercritical Case

As an example of supercritical solution, Fig. 3 shows the
pressure, displacement thickness, and skin friction
distribution for a turbulent boundary layer with M =2.23
for two different injection rates. These results were computed
by straightforward downstream marching of the interactive
solution, with transition set at the start of computation.

It is interesting to note that the solution corresponding to
the higher injection level breaks down due to approaching
separation point. This breakdown occurs well into the
blowing region. In contrast, Werle [5] in his study of in-
jection-induced separation, always observed the separation
point to occur upstream of the onset of blowing. Since his
results were obtained for a subcritical boundary layer, they
may easily be explained by the significant upstream influence
shown. The mechanism for the upstream influence does not
exist (at least in interactive computation) for supercritical
boundary layers. Thus, the present finding is not incongruent
with the results of reference [5].

Conclusions

The problem of interactive computation of boundary layers
with wall mass transfer was considered. It was shown that the
solution reacts differently to wall mass transfer for super-
critical and subcritical boundary layers.

For the solution of the subcritical interaction with wall
mass transfer, a method was proposed that is applied as local
correction to the interaction while marching the solution
downstream. This avoids the need for repeated iterations on
the whole field, but the method ignores the upstream in-
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fluence, and consequently is limited to modest rates of wall
mass transfer.

For the supercritical interactive boundary layer with in-
jection, the separation point was encountered within the
blowing region. For the subcritical case, separation was
previously shown to occur ahead of the blowing region.
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Vibration of a Rotating Orthotropic Disk

A. Rajguru’ and V. Sundararajan?

Introduction

The vibration of a rotating isotropic circular disk is studied
by Mote [1], Eversman and Dodson [2], and Barasch and
Chen [3]. Ghosh [4] has formulated the vibration of a rotating
orthotropic circular disk of uniform thickness neglecting the
effect of bending stiffness. The present Note deals with the
determination of the natural frequencies of a centrally
clamped, rotating orthotropic disk with varying thickness and
density which has applications in the design of composite fly
wheels. The effect of the rigidity parameter (the ratio of the
Young’s modulus in the © direction to that in the r direction),
the clamping radius, and thickness variation on the natural
frequencies are analyzed.

Problem Formulation
A thin orthotropic disk with outer radius b and clamped at
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radius a rotating uniformly about the normal axis passing
through and perpendicular to the center plane of symmetry is
considered. The analysis is based on the plane state of stress
assumption. The influence of shear and rotatory inertia is
neglected. The material of the disk is homogeneous and
polarly orthotropic. The thickness and density distributions
are assumed to be symmetrical with respect to both the axis
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fluence, and consequently is limited to modest rates of wall
mass transfer.

For the supercritical interactive boundary layer with in-
jection, the separation point was encountered within the
blowing region. For the subcritical case, separation was
previously shown to occur ahead of the blowing region.
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Introduction

The vibration of a rotating isotropic circular disk is studied
by Mote [1], Eversman and Dodson [2], and Barasch and
Chen [3]. Ghosh [4] has formulated the vibration of a rotating
orthotropic circular disk of uniform thickness neglecting the
effect of bending stiffness. The present Note deals with the
determination of the natural frequencies of a centrally
clamped, rotating orthotropic disk with varying thickness and
density which has applications in the design of composite fly
wheels. The effect of the rigidity parameter (the ratio of the
Young’s modulus in the © direction to that in the r direction),
the clamping radius, and thickness variation on the natural
frequencies are analyzed.
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radius a rotating uniformly about the normal axis passing
through and perpendicular to the center plane of symmetry is
considered. The analysis is based on the plane state of stress
assumption. The influence of shear and rotatory inertia is
neglected. The material of the disk is homogeneous and
polarly orthotropic. The thickness and density distributions
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and the midplane of the disk. The thickness # and the density
p are assumed to vary along the radius in the form

n(3)” we () o

Where 2 and p are the local thjckness and mass density and A,
and pg that at b. 8 and m are the thickness and density
parameters,

o
Assuming that the plate is undergoing harmonic oscillations 13
w=W{(y) cos nO cos wyt 2)

the maximum potential energy V, which is the sum of the
maximum potential energy due to bending (V' may) and due to
rotation (Vg nax) can be written as

Vimax = Vpmax + VR max

b &@W\? 2D, @W (dW n? ve =03
-2l(G) S (G5 T a/b= 0.5
a 'y y 'y 'y y m = OO
D w 2 2 N =15
__29 ( aw _n W)
y\a oy
4Dyn® ( AW W \2 54 ' L ' ' 1 :
+—= (—— - —) ]ydy ) oz ©04 06 08 10 L2 1.4
y dy y
T (° dw 2 W 2 ' .
+ 5 S "[hay ( 7—) +hogn? (—) ]ya’y ?3) Fig.5 Variation of frequency with thickness parameter
al y y
where D), and Dg are the flexural rigidities in the r and O b
directions, D, is the shear rigidity, and D, = »,Dg = voD,. T = x w%’S ohW2ydy @
The maximum kinetic energy is given by 2 a )
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The inplane stresses o, and og of the orthotropic disk
rotating with angular velocity Q, satisfying the boundary
conditions

u=0 at r=a and a,=0 at r=b

are given by [5]
ap+f3-1 ap+pB-1
wenrve [ (2)" -2 (2)

3 a 63 a

(OO

a1 (y )D‘”ﬂ*l a B ( y )“2+ﬁ_1

Og =p092b2 [Ca{

B3 a Bs a
y )2+m] (y)2+m:|
- = - 6
+G+m m( ) (2 ©)
where
0112=—§:l:4’—2+)\2+1l96
' 2 4
A = Ee 1= —(3+m+ll9)
CE, T 7 (9-N)—-BB+m+vg) +m(m+6)
2 _\2 3+mt 8
=__”9L(_‘Z_) 0 _ (i)
b= s \ B +laz=re){ 5
2 _ )2 3+m+vy 8
:Ve_)‘_(i) © - (i)
b= \ D Hle=rel\ 5
and
a 1-ap a 1-o
133=(011—V9)(?> —(Otz—Ve)<—E“)

It should be noticed that the stress expressions are not valid
for combinations of A2, »g, m, and 8 which make

O-N)-BB+m+rg) +m(m+6)=0

The mode shapes W(r) in the radial direction are assumed
as

W) =ay(y—a)? +a,(v—a)’ +a,(y—a)*+ ... .... @)
which satisfy the geometric boundary conditions.

Introducing the nondimensional quantities
a L Oy _ 0g
2’ “y—pogzbz’ 8—p292b2
Q=[92Poflob4:| & d’n=[wﬁpo_hob4] &

8D, ’ D,

and substituting equations (5), (6), and (7) into equations (3)

and (4) and applying the Rayleigh-Ritz technique we obtain
the eigenvalue equation:

Q

b)

ay

a
(Al-2{ . =0 ®)

from which the natural frequencies are obtained.

Results and Discussion

The numerical solution of equation (8) is obtained con-
sidering the first six terms in equation (7). The natural
frequencies (@,) of a stationary isotropic disk (> = 1) of

656/ Vol. 49, SEPTEMBER 1982

constant thickness and density have been compared with the
exact natural frequencies of Southwell [6] in Fig 1. For values
of a/b < 0.7, the values compare very well whereas for values
a/b > 0.7 the present estimate is higher than the exact value,
The variation of &, with a/b for orthotropic disks (\> = 0.25,
4.0) rotating at a speed } = 20 are shown in Figs. 2 and 3.
Frequencies are plotted for various nodal circles (s) and nodal
diameters (n).

The natural frequencies of an isotropic rotating disk with 8
= m = 0 computed with the present technique compares very
well with that of Barasch and Chen [3]. Figure 4 shows this
variation in the case of an orthotropic disk for 8 = 0,0.9.Ina
rotating disk @, is controlled both by the bending stiffness
and inplane stresses. Since the inplane stresses are propor-
tional to the angular velocity, the bending rigidity is the
controlling factor at low speeds and the inplane stresses at
high speeds. The inplane stress o, due to rotation decreases
with increase in A? [5] and consequently @, decreases with
increasing A? at high Q. The variation of @, with { neglecting
the bending stiffness, for N> = 1, is also plotted in Fig. 4.

The variation of the natural frequencies with the thickness
parameter 3 for various values of A? is shown in Fig. 5.
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On the Effect of Axial Force on Dynamic
Fracture of a Beam or a Plate in Pure
Bending

C. Levy! and G. Herrmann!

Introduction

The dynamic fracture response of a long beam of brittle
elastic material subjected to pure bending was recently studied
by Freund and Herrmann [1] and Adeli, Herrmann, and
Freund [2]. A one-dimensional model was generated under the
assumptions that the crack-tip velocity was low enough such
that the normal stress distribution caused by the propagating
crack could be approximated by the static distribution ap-
propriate for the instantaneous crack length and net-section
bending moment [1]. Following this, the model was modified
to include the effect of the induced axial force on the frac-
turing cross section [2].

Inclusion of the axial force was accomplished by modifying
the fracture model stress-intensity factor (equations (11-13),
[2]) and redefining the compliance coefficients (equation (23),
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The variation of &, with a/b for orthotropic disks (\> = 0.25,
4.0) rotating at a speed } = 20 are shown in Figs. 2 and 3.
Frequencies are plotted for various nodal circles (s) and nodal
diameters (n).

The natural frequencies of an isotropic rotating disk with 8
= m = 0 computed with the present technique compares very
well with that of Barasch and Chen [3]. Figure 4 shows this
variation in the case of an orthotropic disk for 8 = 0,0.9.Ina
rotating disk @, is controlled both by the bending stiffness
and inplane stresses. Since the inplane stresses are propor-
tional to the angular velocity, the bending rigidity is the
controlling factor at low speeds and the inplane stresses at
high speeds. The inplane stress o, due to rotation decreases
with increase in A? [5] and consequently @, decreases with
increasing A? at high Q. The variation of @, with { neglecting
the bending stiffness, for N> = 1, is also plotted in Fig. 4.

The variation of the natural frequencies with the thickness
parameter 3 for various values of A? is shown in Fig. 5.
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Introduction

The dynamic fracture response of a long beam of brittle
elastic material subjected to pure bending was recently studied
by Freund and Herrmann [1] and Adeli, Herrmann, and
Freund [2]. A one-dimensional model was generated under the
assumptions that the crack-tip velocity was low enough such
that the normal stress distribution caused by the propagating
crack could be approximated by the static distribution ap-
propriate for the instantaneous crack length and net-section
bending moment [1]. Following this, the model was modified
to include the effect of the induced axial force on the frac-
turing cross section [2].

Inclusion of the axial force was accomplished by modifying
the fracture model stress-intensity factor (equations (11-13),
[2]) and redefining the compliance coefficients (equation (23),
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Fig. 1 Dimensionless moment and crack length versus time for the

Euler-Bernoulli beam model

[2]). In so doing, the following shape functions were in-
troduced in equation (13), [2].

—-5.7272+15.1184¢
-9

g(&)=

for 0.7=<t=<1 (la,b)

1.0363 —0.5722
gy(§)= W

where £ = a/h, a being the crack length and % being the beam
depth. These functions led to the ‘““bump” in the velocity
versus time graph in Fig. 3 of [2]. For an infinitely long beam
this bump should not appear, but does so due to an in-
consistency in the g,(¢) formula proposed in [2]; this Note
attempts to correct this by defining a more consistent model.

Modification of the Shape Functions

An inconsistency exists if equation (le) and the one-
dimensional wave equation are used to correlate the induced
discontinuity in displacement at the centerline and the net
cross-section induced loading. This function is correct if the
load were located at the ‘‘centerline’” of the unbroken
ligament [3]. Since the longitudinal wave equation is written
with respect to the original centerline of the beam, by ap-
plying the load at the ‘‘centerline’’ of the remaining ligament
implies an additional bending moment proportional to p(¢)
times the unbroken ligament.? This can be taken care of by
using a shape function proportional to (I — &) ~¥2,similar to
g, (£) [3]. A more consistent set of formulas for g, (§) would
then be

g (H)=EY2(1.99-0.41£+18.7¢2

—38.485% +53.85¢4) 0=<¢(<.6
and (Za,b)
1 E 172
85 =(1.7756+0.05260) =) 0.65E<1

21t should be noted that the formulas in [3] are true only for a semi-infinite
crack in a half space. However, locally, deep cracks near the boundary do take
on this characteristic. See, for instance, [3] pp. 2.10-2.11 for the form of the
formulas used. .

Journal of Applied Mechanics

BRIEF NOTES

€=0003
/p”—.--—"‘*\\“ ) °
0.2 “‘I/ > ° ° —-02
/ e
1 \N o
?
. ) \ Ph
asc, |' N s
\ o 6Mf
\
\
\\
ol o * 1o
\
P {ooo koEci ETaL 2]\ °
0/ {e s B Tty © N,
o]
0 | | I I 0—o—1 o]
0 ! 2 3 4 5
cot/h

Fig. 2 Dimensionless crack speed (4/cg) and load on fracture cross
section (Ph/6My) versus time (cg t/h) for the Euler-Bernoulli beam model

Because of the change in the interval length ([0,0.6] as
opposed to [0,0.7]) a minor change in g, (£) is also required;
thus,

8p(H)=£12(1.99-2.47£+12.97¢2

—23.178% +24.80%%) 0<t<.6
(2¢,d)
0.7083 —0.0744
gy (8)= 0.7083 ~0.0744¢ 0.6<t<l1

(1 — 5)3/2
These functions would in turn modify (equation (20), [2]) to
=0y, =£2(1.98— 1.91£ + 16.009£2
—34.838%3 +83.933%4
—153.649%° +256.722£¢
—~244.66857 + 133.548£8)
o, = £2(1.98 —0.544 + 18.649£% — 33,7043
+99,261¢4 —211.901%°
+436.838£6 —460.47757 +289.982£%)

0=£=0.6 (3a,b)
and equation (23), [2]) to
0.1873  0.5796
Oy = ot =\/§<o.oo78 ~a-p (TTE)_Z)
1+VE
—-0.1021 —0.21)1( 1-VE
g = ~0.197In(l — £)— 0.003% — &nlt%ﬂ%ﬁl
1.672¢
+ Ht—if)—z +1.5633
0.6<f(<1 (4a,b)

Using these shape functions leads to a more consistent
model and provides results, shown in Figs. 1 and 2, that are
more consistent qualitatively with those of [4] and [6].
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Discussion of Results

Unlike the results in [2], the moment (Fig. 1) and the load
(Fig. 2) tend to nonzero asymptotic values, a consequence of
the fact that the beam is infinitely long. The results more
readily confirm qualitatively the experimental observation of
[4] and [6] for the moment and load, even though in both
papers the measurements were not made at the- fracturing
cross section. It is noted that the crack length and crack
velocity are also effectively arrested, confirming Kinra and
Kolsky’s observations for extremely long beams [6]; i.e., in
the absence of end reflections the forward motion of the crack
is arrested at 90-95 percent of beam depth. It should also be
noted that the model confirms Kolsky’s narrative in the
discussion of his results in [S].
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¢ = normal stress
7 = shear stress
& = angular acceleration
( ),y = derivative with respect to variable x.
Indexes:
* ¢ = circumferential direction
e = external, outer
i = inner
r = radial direction
L = principal longitudinal direction of the material (8
= 0 deg)
T = principal transversal direction of the material (6 =
90 deg)

1 Introduction

The stress field produced by an angular acceleration in an
isotropic disk of any shape has been known for a long time
[1], in the hypotheses of plane stress and material’s linearity.

The stress field in an orthotropic accelerating disk has been
solved in [2], but doubts are to be cast on the correctness of
this solution.

The aim of the present work is to discuss the controversial
aspects of the problem, to provide a new closed-form solution
when it is possible, and to show more general results obtained
via a numerical approach.

2 Analytical Approach

2.1 Fundamental Equations. A geometrically axisym-
metrical disk is given, defined by polar coordinates (r, 6).
The thickness varies along the radius, and is indicated A (r).

6 | ajeard

4 T

2
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Fig. 1 Stress distribution in an accelerating disk of constant
thickness made of orthotropic material. (a) Material satisfying equation
(5); and (b) material not satisfying equation (5).
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1 Introduction

The stress field produced by an angular acceleration in an
isotropic disk of any shape has been known for a long time
[1], in the hypotheses of plane stress and material’s linearity.

The stress field in an orthotropic accelerating disk has been
solved in [2], but doubts are to be cast on the correctness of
this solution.

The aim of the present work is to discuss the controversial
aspects of the problem, to provide a new closed-form solution
when it is possible, and to show more general results obtained
via a numerical approach.

2 Analytical Approach

2.1 Fundamental Equations. A geometrically axisym-
metrical disk is given, defined by polar coordinates (r, 6).
The thickness varies along the radius, and is indicated A (r).
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Fig. 1 Stress distribution in an accelerating disk of constant
thickness made of orthotropic material. (a) Material satisfying equation
(5); and (b) material not satisfying equation (5).
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Fig.2 Stress distribution in conical disks, ratio of inner rim thickness
to outer rim thickness equal to 3.1. Respectively, same materials as in
Figs. 1(a) & (b).

The equilibrium equations in the radial and in the cir-
cumferential directions are:

1 1 1
}_1 (G,h),, + ; (0,-—00) + ; (Trc)lﬁ =0
1)

1 2 1

Z (Trch)’r + T Tret+ ; (Uc),o —pér=0

Equations (1) have been obtained in the hypotheses that the
stress state is plane and that only body forces due to the
angular acceleration are present.

If the thickness 4 is constant with the radius, equation (1)

reduces to equation (1) in [2].
The strain compatibility equation is:

1 2 1
(ec)’rr + ) (er)yﬁﬁ + — (ec)’r - (6,) yr+
r r r

1 1
*;(’Yrc)’rﬁ_r_z(yrc)at?:() 2)
The stress-strain relationship has, in the linear field, the
general form:
{e,,gc,'y,c]T=[S][a,,ac,-r,,}T 3

where the compliance matrix [S] is valid for the plane stress
case, and its elements S; are in general point functions; thus r
and @ play different roles according to the material type.
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2.2 Axisymmetrical Material. If the material is isotropic
and homogeneous, the solution of equation (1) is [1]:

Te = (—paf:e u® hdu)/(r* h)
@

g =0=0

It is easy to verify that equation (1) holds also in the case of
axially orthotropic material, provided that the radial and
circumferential directions are the material’s principal
directions (Sj3 = Sy = 0).

If the material is isotropic but nonhomogeneous, the
solution is expressed again by equation (4) where the density p
is moved inside the integral symbol.

This conclusion is immediately arrived at, by observing the
structure of the differential equation (1) in [1].

The same solution holds also in the case of orthotropic
axisymmetrical materials.

2.3 Orthotropic, Nonaxisymmetric, and Homogeneous
Material. This is the case solved in [2], but limited to the
constant thickness. The present authors did not succeed in
finding a closed-form solution valid for whatever material. It
is, though, possible to find such closed-form solution in the
special case where:

LI 7% S
E, Er E, Gy
and where the disk’s thickness does not vary with the radius.

A material satisfying condition (5) has particular
properties, already studied by De St. Venant [4] and Wolf [5];
specifically its characteristic is to produce an axisymmetrical
stress field under the centrifugal accelerations in disks of any
thickness shape [6-8]. If (5) is satisfied, and the disk has
constant thickness, it is easy to verify that the stress field
coincides with the one expressed by equations (4) for isotropic
materials. Since equations (4) satisfy the equilibrium
equations (1), it is sufficient to verify that they also satisfy the
compatibility equations. Since the stresses are functions only
of the radius, while the S;’s depend only on 8, and moreover
since 0, = g, = 0, the compatibility equation becomes:

=0 (5)

1
S23 (Tcr)’rr + ;2— (S13)v6676r

2S5 —S13)
+ _._.23—,'.& (7c)sr +

1 1
_;(S33):0(Tcr)sr—r_2(833)367¢'r=0 (2b)

Introducing equation (5) into the expressions of the elastic
compliances S; with angle 6 for orthotropic materials, it
follows:

1 1
S13= S23=Si110'0050'<"—" - —>
1 E, E; ®
S33= G
LT

With equations (6) and their derivatives, equation (2b)
becomes:

1 4
(Tcr)arr+ ; (Tcr)’r_;z_Tcr=o (7)

Now, differentiating the first of equation (4) and sub-
stituting into equation (7), it becomes apparent that the
compatibility equation is satisfied. The displacements are
obtained by integrating the known relationships:

SEPTEMBER 1982, Vol. 49/ 659

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


http://fer.ec.7rc)7

e = (u),,

=211, ®)
-~ r v +1( )

”Yrc"‘(v)ar_T ‘; u.’o

and therefore giving the following circumferential (v) and
radial (#) displacements: :

pé . 1 1 e P
(- £)(545)
u gsm@EL E r+3

o 1 1 rdop 1 ré
e (D))
VE RS N\E TE/\F T3/ TG,V T

While the stresses are functions only of the radius 7,
displacements depend also on 6. If the material does not
satisfy condition (5), or if the thickness is not constant, the
present authors could not find a closed form solution.

A numerical approach, illustrated in the following section,
shows that in that case the stress field is no longer axisym-
metrical, and that the normal stresses (radial and cir-
cumferential) are no longer zero.

®

3 Numerical Approach

The present authors described in [9] and [10] a finite
element procedure particularly suitable for studying rotating
disks. Use was made of semi-analytical annular elements, in
which the radial and circumferential displacements were
expressed by third-degree polynomials along the radius and by
truncated Fourier series along the angle. The advantage was
that at the interfaces the continuity was attained both for
displacements and for stresses/strains.

For evident reasons of symmetry, the study of orthotropic
rotating disks requires the trigonometrical terms of even
order, sin (2K6) and cos (2K6), and moreover only sines for
the circumferential displacements and only cosines for the
radial displacements.

This basic program was adapted to the present case, by
introducing circumferential body forces and by expressing
radial and circumferential displacements both with sinusoidal
and with cosinusoidal terms.

The displacement field, made more general in this way, can
nevertheless be considered as the superposition of’:

(a) a symmetrical part, i.e., the part necessary if cen-
trifugal forces only are present (symmetry is relative to the
material’s principal axes);

(b) an antisymmetrical part, i.e., the part that contains
sinusoidal terms for the radial displacements and cosinusoidal
terms for the circumferential displacements.

In the resulting stiffness matrix, however, the symmetrical
and the anti-symmetrical parts result to be uncoupled,
therefore the stress field in an orthotropic disk can be
separately studied in these two parts. The meaning of this
uncoupling is also that circumferential forces will produce a
purely antisymmetric displacement field.

A more general examination of the structure of the stiffness
matrix shows that all the harmonics of even order are un-
coupled from the odd-order harmonics; since the virtual work
of the circumferential acceleration forces is due to the cosines
of order zero, i.e., of even order, the most general
displacement field that is needed to study the stress field due
to angular and to centrifugal accelerations is:

u f cos 2nd 0 u3,
v 0 sin 2n6 | { v3,
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)

n=0

(10

sin 2né 0 us,
0 cos 2n8| | v3,

where apex S indicates the symmetric part, and apex A4 in-
dicates the antisymmetric part. .

Figures 1 and 2 show results obtained with the computer
program elaborated on these grounds.

Fig. 1(a) refers to an accelerating plane disk in an or-
thotropic material which satisfies equation (5):

E,
GLT

40,000 MN/m? Ey 5000 MN/m?
4210.53 MN/m?  »;; = 0.25

and having central hole with diameter equal to one-fifth of the
outer diameter. As analytically shown before, the tangential
stresses do not vary with angle 6, and the normal stresses are
Zero.

Fig. 1(b) refers to a disk geometrically equal, but made of a
material having a different value for G;r, and specifically
G.r = 2000 MN/m?2, thus no longer satisfying equation (5).
It appears that stresses now vary circumferentially.

Figures 2(a) and (b) refer to conical disks, with outer and
inner thickness ratio equal to about one-third, and made of
the same materials, respectively, of Figures 1(a) and (b).
Since the disk has not constant thickness, the stresses are in all
cases functions of the angle 6.

These solutions are completely different from the solutions
proposed in [2]. The present authors have reason, thanks to
analytical and numerical crossconfirmation, to trust their own
solution, and moreover have noticed that the solution [2] is
characterized by these facts:

1. Radial stresses do not go to zero on the free edges.

2. Normal stresses do not go to zero when the material
satisfies equation (5).

3. Shear stresses are independent of angle 6, and equal to
the ones in isotropic disks (Fig. 2 in [2]), even if normal
stresses are nonzero and functions of 6; this evidently conflicts
with the second of equations (1), since the presence of the
derivative (o.),y implies that 7,, must be different from the
value it takes in the isotropic case, in which (¢.),y = 0.

4 Conclusion

The stress field due to angular acceleration of a disk made
of an orthotropic material is independent of the cir-
cumferential angle 6 if:

1. the material is axisymmetrical orthotropic,

2. the material satisfies condition (5) and the thickness is
constant.

In these cases, the tangential stresses take the same values
characterizing a disk of equal geometry and density, but made
of an isotropic material.

If the disk has variable thickness with the radius, or if the
material’s parameters do not satisfy equation (5), the stress
field is not axisymmetrical and normal stresses are nonzero.
The present authors were not able to find a closed-form
solution for this case, and the solution proposed in [2] does
not seem to be correct. Therefore a numerical method was
evolved for this purpose.

In the case of flywheels for energy storage, the stresses
induced by the angular acceleration are in general much lower
than the stresses due to the centrifugal field. However there
are cases, such as thin disks carring a rim of relevant mass or

‘flywheels designed to deliver high powers for short times [12],

in which tangential stresses may reach higher values.
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The situation can be made dangerous by the fact that the
shear strength of some materials, such as filament wound
composites, is very low. In the design of such rotors, the
stresses due to angular acceleration must be considered.
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Boundary Layer Over a Rotating Disk Sector

M. Ungarish!, A. Solan?, M. Toren?

Introduction

Flow over rotating surfaces is usually modeled in two
distinct geometries: full-circle axisymmetric disks or relatively
narrow blades (e.g., [1]). In this paper we consider the
laminar incompressible boundary layer flow over a rotating
plane sector of wide angle (but significantly less than a full
circle) and we show that the flow changes from the leading to
the trailing edge from that characteristic of thin narrow blades
to that characteristic of axisymmetric disks. The present paper
is closely related to our previous paper which considered a
similar problem for a stationary sector in a rotating fluid [2].

Consider a solid surface in the form of a disk sector of
angle 6; < 2x and infinite radius rotating about an axis
perpendicular to the disk plane with angular velocity € in a
fluid at rest. Near the leading edge, the dominant velocity is in
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the circumferential direction, forming a Blasius-type
boundary layer which generates a secondary, radial flow.
With increasing angular distance the radial component
becomes comparable to the circumferential component and
one may expect the flow pattern to approach that of a Von
Karman type boundary layer, such as for an axisymmetric
disk. As the solid surface moves, its trailing edge leaves a
wake which is seen by the leading edge at its next revolution,
such that at the leading edge the flow is slightly disturbed and
is not purely circumferential. In a coordinate system rotating
with the sector the problem is stationary, with an outer
angular velocity Q. Following the same steps as in [2], we
obtain for the r-scaled velocity components a system of
equations that are similar, but not identical, to those of [2]
(for details see [3]). As in [2], we first assume an undisturbed
flow approaching the leading edge at § = 0~ and solve for the
boundary layer over the solid surface 0 < § < 6, and then we
solve the wake in the region 6, < 6 < 27 and estimate the
perturbation it causes in the oncoming flow.

Flow Over the Solid Sector

Near the leading edge, § << 1, the equations admit a
solution in a series of functions of a similarity variable z8~!/2
multiplied by ascending the powers of # [1, 2], where the
leading term for v is Blasius. Such series can be used for small
0 but strongly diverge from about # = 0.6. In the other limit,
as @ >> 1, one may expect the dependence on § to decay,
leading to a classical Von Karman flow. To study the flow
over the full range of 8 we transform the governing equation
into momentum-integral form:

ir d+Sm{3 -1y o= — 2% )
46 )0 uvaz 0 U = az 0
di= Sw o

d_ego (v —v) dz+4 . u{v—1)dz= 3% o 2)

and assume u = f(0)®(n), v = ¥(4), n = 2/8(8), where u
and v are the r-called radial and circumferential velocity
components and § is the boundary layer thickness. Once ® and
Y are assumed, the problem is reduced to a system of two
coupled ordinary differential equations for 6(8), f(68). Note
that for 6 — 0 the equations admit an initial solution of the
form & = a6'/?, f = b where a, b are constants that depend on
the choice of &, . This is the momentum-integral
representation of the initial similarity solution of Blasius type
[1,2].

Four pairs of functions representing # and v were tried: (4)
®=sinmy,y=sinm/2; B)e=91-9%¢=1-(1 -
7)?; (C) @ and ¢ from Von Karman’s rotating disk solution;
and (D) u = f(0) n(1 — m) + (1/6) [6(8) — 4f(0)] n(1 —
D,v=1-03/2)1A - 9% + (1/2) @ — 5)3. (Here the u
profile changes with 6.)

Some results of the numerical solution with the four
assumed profiles (A-D) are shown in Fig. 1. Also shown are
the asymptotic values for small @ (Blasius profile for v and the
corresponding similarity solution for ), and for large 6 (¢-
independent Karman solution). The limit values of (dv/3z),
and (du/0z), are also given in Table 1.

Table1 Aymptotic values of velocity gradients at wall

6—0 6 — o
Profile 0~ 24, (0) 629,(0) 1z(0) v,(00)
A 0.297 0.328 0.317 0.596
B 0.337 0.365 0.450 0.622
C (Karman) 0.343 0.430 0.510 0.616
D 0.707 0.323 0.543 0.537
Blasius 0.665 0.332 - -
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The situation can be made dangerous by the fact that the
shear strength of some materials, such as filament wound
composites, is very low. In the design of such rotors, the
stresses due to angular acceleration must be considered.
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Boundary Layer Over a Rotating Disk Sector

M. Ungarish!, A. Solan?, M. Toren?

Introduction

Flow over rotating surfaces is usually modeled in two
distinct geometries: full-circle axisymmetric disks or relatively
narrow blades (e.g., [1]). In this paper we consider the
laminar incompressible boundary layer flow over a rotating
plane sector of wide angle (but significantly less than a full
circle) and we show that the flow changes from the leading to
the trailing edge from that characteristic of thin narrow blades
to that characteristic of axisymmetric disks. The present paper
is closely related to our previous paper which considered a
similar problem for a stationary sector in a rotating fluid [2].

Consider a solid surface in the form of a disk sector of
angle 6; < 2x and infinite radius rotating about an axis
perpendicular to the disk plane with angular velocity € in a
fluid at rest. Near the leading edge, the dominant velocity is in
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the circumferential direction, forming a Blasius-type
boundary layer which generates a secondary, radial flow.
With increasing angular distance the radial component
becomes comparable to the circumferential component and
one may expect the flow pattern to approach that of a Von
Karman type boundary layer, such as for an axisymmetric
disk. As the solid surface moves, its trailing edge leaves a
wake which is seen by the leading edge at its next revolution,
such that at the leading edge the flow is slightly disturbed and
is not purely circumferential. In a coordinate system rotating
with the sector the problem is stationary, with an outer
angular velocity Q. Following the same steps as in [2], we
obtain for the r-scaled velocity components a system of
equations that are similar, but not identical, to those of [2]
(for details see [3]). As in [2], we first assume an undisturbed
flow approaching the leading edge at § = 0~ and solve for the
boundary layer over the solid surface 0 < § < 6, and then we
solve the wake in the region 6, < 6 < 27 and estimate the
perturbation it causes in the oncoming flow.

Flow Over the Solid Sector

Near the leading edge, § << 1, the equations admit a
solution in a series of functions of a similarity variable z8~!/2
multiplied by ascending the powers of # [1, 2], where the
leading term for v is Blasius. Such series can be used for small
0 but strongly diverge from about # = 0.6. In the other limit,
as @ >> 1, one may expect the dependence on § to decay,
leading to a classical Von Karman flow. To study the flow
over the full range of 8 we transform the governing equation
into momentum-integral form:

ir d+Sm{3 -1y o= — 2% )
46 )0 uvaz 0 U = az 0
di= Sw o

d_ego (v —v) dz+4 . u{v—1)dz= 3% o 2)

and assume u = f(0)®(n), v = ¥(4), n = 2/8(8), where u
and v are the r-called radial and circumferential velocity
components and § is the boundary layer thickness. Once ® and
Y are assumed, the problem is reduced to a system of two
coupled ordinary differential equations for 6(8), f(68). Note
that for 6 — 0 the equations admit an initial solution of the
form & = a6'/?, f = b where a, b are constants that depend on
the choice of &, . This is the momentum-integral
representation of the initial similarity solution of Blasius type
[1,2].

Four pairs of functions representing # and v were tried: (4)
®=sinmy,y=sinm/2; B)e=91-9%¢=1-(1 -
7)?; (C) @ and ¢ from Von Karman’s rotating disk solution;
and (D) u = f(0) n(1 — m) + (1/6) [6(8) — 4f(0)] n(1 —
D,v=1-03/2)1A - 9% + (1/2) @ — 5)3. (Here the u
profile changes with 6.)

Some results of the numerical solution with the four
assumed profiles (A-D) are shown in Fig. 1. Also shown are
the asymptotic values for small @ (Blasius profile for v and the
corresponding similarity solution for ), and for large 6 (¢-
independent Karman solution). The limit values of (dv/3z),
and (du/0z), are also given in Table 1.

Table1 Aymptotic values of velocity gradients at wall

6—0 6 — o
Profile 0~ 24, (0) 629,(0) 1z(0) v,(00)
A 0.297 0.328 0.317 0.596
B 0.337 0.365 0.450 0.622
C (Karman) 0.343 0.430 0.510 0.616
D 0.707 0.323 0.543 0.537
Blasius 0.665 0.332 - -
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Fig.2 Wake flow

All numerical results exhibit a Blasius-like behavior for
small # and tend to a constant value, like the Karman
solution, for large 6. Although the values of the constants
depend on the particular profile, the transition from.the
initial f-dependent region to the final #-independent region
occurs for all profiles in the range.§ = 0.5-1.2, i.e., within the
first quadrant. Thus, it is interesting to note that although the
problem is definitely nonaxisymmetric, the results tend after a
relatively narrow angle to values that correspond to the

662/ Vol. 49, SEPTEMBER 1982

axisymmetric solution. (A similar behavior was obtained in
21)

In Fig. 1 all curves of {(1 —v)dz show a slight overshoot.
Obviously, the integral soluzion based on the Karman profile
(C) approaches the ‘‘correct’” asymptotic value for § — oo,
but it is interesting to note that this solution also fits quite well
the initial Blasius curve (S). Further, it appears that the

" continuous momentum-integral solution with profile C can be

approximated fairly well by a simple intersection of the two

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



asymptotic curves (S and K). For the other profiles (4, B, D)
the general behavior is quite similar to that of C, with the
final values differing by not more than 30 percent. For § udz
the general trend of the four computed curves again ap-
proaches the asymptotic values, with slightly larger spread.
(Recall that u is not imposed by the outer flow, but is induced
by the rotational forces, thus its solution is more sensitive to
the simplifying assumptions made in the integral solution.)
Similar trends are observed in curves of u,,, (3v/03z),, and
(0u/9z), (not shown here, see reference [3]). In summary, all
assumed profiles produce a solution that is Blasius-like for
— 0 and Karman-like for § — oo, the transition occurring at
about § = 0.5-1.2, Quantitatively, profiles C and D are
somewhat better than A4 or B. As an approximation, a simple
intersection of the initial and final similarity solutions is quite
adequate.

Referring back to the series solution for small 6 [1], our
attempt to compute it for finite # showed that the series
diverges from about § =~ 0.6. From the momentum-integral
solution we now see that this is approximately where the flow
rather abruptly changes its behavior from the initial to the
final form, which is accompanied by a change in the direction
of the axial flow.

Flow in the Wake

In the preceding section it was assumed that the flow ap-
proaching the leading edge is undisturbed. To assess this
assumption, we now attempt a momentum-integral solution
of the wake flow, which will allow us to estimate the
disturbance that the wake causes at the leading edge. The
momentum-integral equations are again (1) and (2) with the
right-hand terms equal to zero. The profiles assumed were u
= f(0)®(n), v =1 + g(8)®(n). Here we have now three
unknowns; §, f and g, since unlike the preceding problem, the
scale of v is not imposed from the outside. This requires a
third equation to close the system. It is convenient to use the
azimuthal momentum equations evaluated at z = 0, with the
assumed profiles. The initial conditions for the wake at § =
0; are determined from the flow profiles of the boundary
layer over the trailing edge of the solid sector at § = 6,7, by
requiring the integrals of (v?>—v), uw, and (1—v) to be
continuous. These depend on the angle of the solid sector 6.
Numerical solutions were obtained for small §,, for which the
values of these integrals were approximated by the leading
term (Blasius-like) of the boundary layer flow. The wake
profile assumed was ®(y) = e, (A different profile, ®(7)
= Y% + Vacosmy, (0 < n < 1) was also tried, with essentially
similar results.)

The results for f and g versus 6 — @, (the angle from the
trailing edge) are shown in Fig. 2. In particular, we can now
estimate f and g, i.e., the scales of the two components of the
velocity perturbation, induced by the wake at the leading
edge, 6 = 2. For example, for §; = 0.4, the results are
Unax(05) = 0.112, f(8}) = 0.136, g(8;) = —~0.868, f(2%)
= 0.038, and g(27) = —0.025.* It can be seen that g(),
which represents the v-component, decays rapidly and its
value as it reaches the leading edge (at # = 2x) is small
compared to the outer flow which is of order 0(1). The u-
component, represented by f(4), decays somewhat slower,
and its value at the leading edge f(27), though small com-
pared to unity, is not negligible compared to u,,.(6; ), i.e., it
can be expected that the returning flow may have an effect on
the boundary layer over the blade. Hence a detailed analysis
of the interaction of the flow over the full circle appears to be
a worthwhile topic for further study.

4For 6 = 0.1 the corresponding values are 0.028, 0.034, —0.868, 0.021, and
—0.029.
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Plastic Torsional Buckling of Thin-Walled
Cylinders

D. W. A. Rees!

Introduction

In Donnell’s original solution to the critical shear stress for
which elastic torsional buckling occurs in short to moderately
long thin-walled cylinders [1], it was found that no constraints
were required to prevent longitudinal motion of the ends. The
solution was shown to be in good agreement with the results
of buckling experiments in which the ends of cylinders were
either held perpendicular to the axis of twist (clamped) or
were free to change their angle with the twisting action
(hinged). The attempt that has been made to extend the elastic
prediction to the torsional buckling stress for cylinders
operating in the plastic range employs a plasticity reduction
factor [2]. The extension implies that axial restraint is again
unimportant when it is known that appreciable inelastic
tensile strain will accumulate during plastic torsion when one
end of the cylinder is completely unrestricted [3]. The second-
order axial strain together with an associated diametral
contraction prevent a state of pure shear from being achieved
by the application of a shear stress alone. In combination with
axial compression and internal pressure, which prevent
second-order effects in a thin cylinder, a shear stress can
sustain a state of pure shear which would be the proper
starting point for an investigation into inelastic torsional
buckling. However, the influence of diametral contraction on
buckling is important only for the unrestrained condition
when it is then equivalent to buckling by external overpressure
[4]. An approximate state of pure shear can be achieved for a
thin cylinder in which the accumulation of axial strain is
prevented since diametral contraction is small and defor-
mation before buckling occurs primarily by first-order shear.
This approximation has been exploited for the present ex-
perimental investigation in which buckling is shown to depend
on the degree to which axial extension is prevented.

Analysis

Second-order effects are due to the influence of the third
deviatoric stress invariant J5 in the yield criterion f(J5, J3).
The following form is assumed

b
=J; + 2 Jq 1
F=Ti+ 3 M
where Y is the tensile yield stress and p is a constant which
must lie in the range —3 < p < 3/2 to ensure convexity of the
yield surface [5]. When the stress subspace is torsion 7,
combined with tension ¢, equation (1) becomes
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asymptotic curves (S and K). For the other profiles (4, B, D)
the general behavior is quite similar to that of C, with the
final values differing by not more than 30 percent. For § udz
the general trend of the four computed curves again ap-
proaches the asymptotic values, with slightly larger spread.
(Recall that u is not imposed by the outer flow, but is induced
by the rotational forces, thus its solution is more sensitive to
the simplifying assumptions made in the integral solution.)
Similar trends are observed in curves of u,,, (3v/03z),, and
(0u/9z), (not shown here, see reference [3]). In summary, all
assumed profiles produce a solution that is Blasius-like for
— 0 and Karman-like for § — oo, the transition occurring at
about § = 0.5-1.2, Quantitatively, profiles C and D are
somewhat better than A4 or B. As an approximation, a simple
intersection of the initial and final similarity solutions is quite
adequate.

Referring back to the series solution for small 6 [1], our
attempt to compute it for finite # showed that the series
diverges from about § =~ 0.6. From the momentum-integral
solution we now see that this is approximately where the flow
rather abruptly changes its behavior from the initial to the
final form, which is accompanied by a change in the direction
of the axial flow.

Flow in the Wake

In the preceding section it was assumed that the flow ap-
proaching the leading edge is undisturbed. To assess this
assumption, we now attempt a momentum-integral solution
of the wake flow, which will allow us to estimate the
disturbance that the wake causes at the leading edge. The
momentum-integral equations are again (1) and (2) with the
right-hand terms equal to zero. The profiles assumed were u
= f(0)®(n), v =1 + g(8)®(n). Here we have now three
unknowns; §, f and g, since unlike the preceding problem, the
scale of v is not imposed from the outside. This requires a
third equation to close the system. It is convenient to use the
azimuthal momentum equations evaluated at z = 0, with the
assumed profiles. The initial conditions for the wake at § =
0; are determined from the flow profiles of the boundary
layer over the trailing edge of the solid sector at § = 6,7, by
requiring the integrals of (v?>—v), uw, and (1—v) to be
continuous. These depend on the angle of the solid sector 6.
Numerical solutions were obtained for small §,, for which the
values of these integrals were approximated by the leading
term (Blasius-like) of the boundary layer flow. The wake
profile assumed was ®(y) = e, (A different profile, ®(7)
= Y% + Vacosmy, (0 < n < 1) was also tried, with essentially
similar results.)

The results for f and g versus 6 — @, (the angle from the
trailing edge) are shown in Fig. 2. In particular, we can now
estimate f and g, i.e., the scales of the two components of the
velocity perturbation, induced by the wake at the leading
edge, 6 = 2. For example, for §; = 0.4, the results are
Unax(05) = 0.112, f(8}) = 0.136, g(8;) = —~0.868, f(2%)
= 0.038, and g(27) = —0.025.* It can be seen that g(),
which represents the v-component, decays rapidly and its
value as it reaches the leading edge (at # = 2x) is small
compared to the outer flow which is of order 0(1). The u-
component, represented by f(4), decays somewhat slower,
and its value at the leading edge f(27), though small com-
pared to unity, is not negligible compared to u,,.(6; ), i.e., it
can be expected that the returning flow may have an effect on
the boundary layer over the blade. Hence a detailed analysis
of the interaction of the flow over the full circle appears to be
a worthwhile topic for further study.

4For 6 = 0.1 the corresponding values are 0.028, 0.034, —0.868, 0.021, and
—0.029.
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Cylinders
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Introduction

In Donnell’s original solution to the critical shear stress for
which elastic torsional buckling occurs in short to moderately
long thin-walled cylinders [1], it was found that no constraints
were required to prevent longitudinal motion of the ends. The
solution was shown to be in good agreement with the results
of buckling experiments in which the ends of cylinders were
either held perpendicular to the axis of twist (clamped) or
were free to change their angle with the twisting action
(hinged). The attempt that has been made to extend the elastic
prediction to the torsional buckling stress for cylinders
operating in the plastic range employs a plasticity reduction
factor [2]. The extension implies that axial restraint is again
unimportant when it is known that appreciable inelastic
tensile strain will accumulate during plastic torsion when one
end of the cylinder is completely unrestricted [3]. The second-
order axial strain together with an associated diametral
contraction prevent a state of pure shear from being achieved
by the application of a shear stress alone. In combination with
axial compression and internal pressure, which prevent
second-order effects in a thin cylinder, a shear stress can
sustain a state of pure shear which would be the proper
starting point for an investigation into inelastic torsional
buckling. However, the influence of diametral contraction on
buckling is important only for the unrestrained condition
when it is then equivalent to buckling by external overpressure
[4]. An approximate state of pure shear can be achieved for a
thin cylinder in which the accumulation of axial strain is
prevented since diametral contraction is small and defor-
mation before buckling occurs primarily by first-order shear.
This approximation has been exploited for the present ex-
perimental investigation in which buckling is shown to depend
on the degree to which axial extension is prevented.

Analysis

Second-order effects are due to the influence of the third
deviatoric stress invariant J5 in the yield criterion f(J5, J3).
The following form is assumed

b
=J; + 2 Jq 1
F=Ti+ 3 M
where Y is the tensile yield stress and p is a constant which
must lie in the range —3 < p < 3/2 to ensure convexity of the
yield surface [5]. When the stress subspace is torsion 7,
combined with tension ¢, equation (1) becomes
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Fig. 1 Yield locus defined by equation (2) for p = 1 showing the

direction of the plastic-strain increment vector dvP1deP corresponding
to unrestricted torsion at A and restricted torsion (pure shear) at B
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Fig.2 Results from four torsion tests each approximating to a state of
pure shear showing shear stress r versus shear strain y and axial strain
¢, versus shear strain. Typical buckling mode and critical shear strain
prediction from equation (8) are also indicated. The plots inciude
elastic strain components.
o )+ 29 a\ 7
2 2 2y = k2 )2
2+ 2+ 22 2e2/34 )=k @) =—_{ _( —>}
( )+ 2 ) dez=- {0+ (2742 &)
where k is the shear yield stress in the absence of ¢. Identifying 2d\ J/
equation (1) with the plastic potential fin the flow rule def; = dyP = — (3T+ = ar)
. . . . 3 Y
d\ 3f/d0y; the corresponding stress-incremental plastic strain ) T )
relations are found where A is a scalar multiplier and polar subscripts z, 6, and r
refer to the axial, circumferential, and radial directions,
dh 4 202 : .
ded = — {2 o+ (2 + ___)} respectively. The normal strain components preclude volume
Y 3 change since their sum def = 0 and, in an unrestricted
™~ 2 » cylinder where ¢ = 0, are proportional to (dv”)* which is the
ded = = {__ a+ p (2 - __)} quadratic relationship that characterizes second-order strain
3 Y: 3 [4]. The compressive stress o, necessary to suppress axial
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Fig. 3 Component strain paths for loading and unloading in torsion.
Loading path shows increasing axial strain ¢, and small-order cir-
cumferential strain ¢, with increasing shear strain y. Unloading path
shows small order of recovered axial and shear strains. The plots in-

clude elastic strain components.

strain is found by equating the first of equations (3) to zero.

Then,

3(Y Y2 272\ %

=C-G-D) e
2Up D 3

Now from equation (2) Y? = 3k2/(1+2p/9) which can be

combined with equation (4) provided 7 = k (i.e., 0. = 0). The

compressive stress is then found in dimensioniess form

Y 22 43 %3
&=1(_§_) (-[1-2_21"
k 2p\g+2p 9 81

In the rule of isotropic hardening equation (5) implies that
for deformation before buckling the axial strain is eliminated
by a constant compressive stress. The solution, which is made
possible by the unsymmetrical nature of the yield locus
represented by equation (2), is shown graphically in Fig. 1 for
the case p = 1. Due to the difference observed between tensile
and compressive yield stresses the locus allows the normal
direction of a plastic strain increment vector dv” /de” to have
an axial component at A (shown exaggerated) in the
unrestricted case but not at B in the restricted case where
dyP/de? = oo,

Results and discussion

To ensure inelastic buckling, torsion tests were performed
on cylinders manufactured from a commercial grade of pure
aluminum to dimensions: 28.4 mm outside diameter, 25.4 mm
inside diameter, and 75 mm parallel length. The compressive
force necessary to restrict the second-order axial strain in
annealed cylinders was found experimentally to be 500 g
which was equivalent to the horizontal frictional force exerted
on the end of the specimen by the bearing in the 100 kg sliding
end of the torsion machine. Thus in this instance the free
expansion of the cylinder during torsion is prevented by a
frictional force that is the product of the coefficient of
friction and the normal reaction at the sliding end of the test
machine. This force produced a compressive stress of o, =
3.8 x 1072 N/mm? and hence o./k = 0.0042 for k = 9.2
N/mm? at the limit of elastic proportionality. Four tests were
performed in which torques were applied incrementally
through square-end registers and alignment plugs that
maintained the condition of clamped ends during defor-
mation. Axial and shear displacements on a 50-mm gauge
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length were continuously monitored from displacement
transducers. Full details of the extensometer and preparation
of the test specimen are given elsewhere [6].

Test results, presented in Fig. 2, shows good agreement
between the shear stress-strain curves for each specimen. The
magnitude of the axial strain when plotted against shear
strain, shows that initially the compressive force was of the
order necessary to suppress axial strain since in each curve
dvy/de = oo. The degree of scatter indicates the sensitivity to
slight differences in work-hardening characteristics where
either tensile or compressive axial strain can result. Never-
theless a region of approximate isotropic hardening can be
identified for plastic shear strains in the range 0 < v < 0.12.
Thereafter an increasing compressive force would be
necessary to maintain dy/de = oo, If the ends were completely
restrained the associated build up of compressive end force
that would begin around vy = 0.12 would be expected to lead
to buckling. It was at this point that buckling was judged to
begin and this was confirmed from gauge diameter
measurements that indicated ellipticity.of the cross section
(inset Fig. 2). In one test (Fig. 3) a post-yield strain gauge,
bonded to the outer diameter in a circumferential direction,
confirmed that a second-order diametral contraction was
present which is consistent with the prediction of def from
equation (3). The small magnitude of this strain (= 0.1
percent) corresponding to v = 6 percent confirms that an
approximate state of pure shear existed prior to buckling in
each test.

To examine the recoverable strain in this specimen it was
unloaded at a forward shear strain of 16 percent when the
cross section was only slightly elliptical. The corresponding
recovered axial and shear microstrains are plotted inset to
enlarged scales in Fig. 3. Nonlinearity in this plot implies that
the small order of recovered strain was composed of elastic
and anelastic components. The former are found from the
elastic constants for the material. However, in comparison
with the forward strain, it is seen from Fig. 3 that recovered
strain is negligibly small which confirms the irrecoverable
second-order nature of axial strain resulting from a torsion
test.

A prediction of the critical shear stress 7., at which elastic
torsional buckling occurs is provided by Donnell’s solution [1]
to the associated equilibrium and compatibility equations.
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BRIEF NOTES

For a hollow cylinder with clamped ends of length /, mean
radius r, and wall thickness ¢ that satisfies the inequality 50¢/r
< ({/r)* < 10r/t then

0.82E ( t)5/4(r)‘/2 ©

T,.=—| — —

A=)t \r /
where E and » are the usual elastic constants. Following
Gerard [2], who extended the elastic solution to inelastic
buckling through a plasticity reduction factor, E/ (1~ »?)* is

replaced by E,/ (1 -r3)* where v, =Y and E, is the secant
modulus at the point of buckling defined as

E,=6./¢&; Q)

where & and é are the equivalent stress and equivalent plastic
strain, respectively. Neglecting o for simplicity, since 0 < < 7,
the isotropic hardening rule and equation (2) give
=Y={372/(1+2p/9)}". The work hypothesis for torsion,
WP =ge? =7y” yields & ={y*/3(1+2p/9)}". Equation (7)

becomes E;, = 3 7.,/(1+2p/9)v% and substitution into
equation (6) gives the critical plastic shear strain expression
26.5 AN < r > %
A S — 8
Yo =95 2p) ( r ) ! ®)

where constant p =~ 0.015 is estimated from o./k = 0.0042
and the solution to equation (5), which is shown graphically in
Fig. 1. Then from equation (8) v#% = 0.098 which is in
reasonable agreement with the shear strain in Fig. 2 for which
buckling was judged to begin. It is concluded that inelastic
buckling under a condition of pure shear deformation is
expressed quite well by equation (8). A solution for the
unrestricted tube must account for the axial strain that ac-
cumulates from the start (3). The onset of buckling can then
be detected either by direct diameter measurements or,
possibly, from a change in the characteristic second-order
dependence relation e’ (y?)?%. It is doubtful if the solution
will depend wholly on specimen geometry in this case.

References

1 Donnell, L. H., “*Stability of Thin Walled Tubes Under Torsion,”” NACA
Rept. 479, 1933, pp. 1,24.

2 Gerard, G., “Compressive and Torsional Buckling of Thin Walled Tubes
in the Yield Region,” NACA Tech. Note 3726, Aug. 1956, pp. 1,35.

3 Billington, E. W., “Non-linear Mechanical Response of Various Metals I1.
Permanent Length Changes in Twisted Tubes,”” J. Phys. D: Appl. Phys., Vol.
9, 1976, pp. 533,552.

4 Freudenthal. A. M., and Ronay, M., “‘Second-Order Effects in Dissipative
Media,”’ Proc. Roy. Soc., Vol. 292A, 1966, pp. 14,50.

5 Betten, J., “‘Plastische Anisotropie und Bauschinger - Effekt; Aligemeine
Formulierung und Vergleich mit Experimentell Ermittelten FliefOrthkurven,,
Acta Mechanica, Vol. 25, 1976, pp. 79:94.

6 Rees, D. W. A., “Biaxial Creep and Plastic Flow of Anistropic
Aluminum,”” Ph.D. Thesis, CNAA (UK), 1976.

Axially Loaded Stiffened and Unstiffened
Cylindrical Shells

I. Sheinman'! and G. J. Simitses?

TSenior Lecturer, Department of Civil Engineering, Technion-Israel Institute
of Technology, Haifa, Israel. 7
Professor, School of Engineering Science and Mechanics, Georgia Institute
of Technology, Atlanta, Ga. Mem. ASME, .
Manuscript received by ASME Applied Mechanics Division, March, 1981;
final revision, December, 1981. .

666/ Vol. 49, SEPTEMBER 1982

Introduction

In a previous publication [1], the present authors dealt with
the same problem, but their objective was limited to finding
critical conditions (limit point loads) only for imperfect
stiffened cylinders under axial compression. The present
paper extends the previous work and presents a solution
methodology for finding not only the prelimit point behavior
of the imperfect shell, but also its postlimit point behavior.
This improvement leads to results, which explain very clearly
the observed snapping phenomenon, including post-buckling
strength and change of the mode during snapping.

The mathematical symbols and formulation are the same as
those of [1]. Therefore, they will not be repeated, herein.
There is one minor change in connection with boundary
conditions, equation (15) of [1]. It is stated in [1] that the
general computer program was written for the end conditions
listed as equation (15). The program has been modified to
allow M., #0 at a boundary. This is done to accommodate the
possibility of applying the constant axial stress resultant, N,,,
not only through the reference surface (in which case M,, =0
for simply supported and free boundary conditions), but also
as a uniform stress (in which case M, =a;N,,, for simply
supported and free boundary conditions).

Solution Methodology

The solution methodology, employed herein, is an ex-
tension and modification of the one described in [1]. The
changes allow one to obtain postlimit point equilibrium paths
for every desired wave number, n (number of full waves
around the circumference). The governing equations are
expressed in terms of w (normal displacement component)
and F (Airy stress function) (see [1]).

For finding prelimit point equilibrium positions, the ap-

plied load level, N,,, is taken as known, the linear (n=0)
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Fig.1 Response characteristics of the unstiffened geometry (¢ = 0.5)
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where constant p =~ 0.015 is estimated from o./k = 0.0042
and the solution to equation (5), which is shown graphically in
Fig. 1. Then from equation (8) v#% = 0.098 which is in
reasonable agreement with the shear strain in Fig. 2 for which
buckling was judged to begin. It is concluded that inelastic
buckling under a condition of pure shear deformation is
expressed quite well by equation (8). A solution for the
unrestricted tube must account for the axial strain that ac-
cumulates from the start (3). The onset of buckling can then
be detected either by direct diameter measurements or,
possibly, from a change in the characteristic second-order
dependence relation e’ (y?)?%. It is doubtful if the solution
will depend wholly on specimen geometry in this case.
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Introduction

In a previous publication [1], the present authors dealt with
the same problem, but their objective was limited to finding
critical conditions (limit point loads) only for imperfect
stiffened cylinders under axial compression. The present
paper extends the previous work and presents a solution
methodology for finding not only the prelimit point behavior
of the imperfect shell, but also its postlimit point behavior.
This improvement leads to results, which explain very clearly
the observed snapping phenomenon, including post-buckling
strength and change of the mode during snapping.

The mathematical symbols and formulation are the same as
those of [1]. Therefore, they will not be repeated, herein.
There is one minor change in connection with boundary
conditions, equation (15) of [1]. It is stated in [1] that the
general computer program was written for the end conditions
listed as equation (15). The program has been modified to
allow M., #0 at a boundary. This is done to accommodate the
possibility of applying the constant axial stress resultant, N,,,
not only through the reference surface (in which case M,, =0
for simply supported and free boundary conditions), but also
as a uniform stress (in which case M, =a;N,,, for simply
supported and free boundary conditions).

Solution Methodology

The solution methodology, employed herein, is an ex-
tension and modification of the one described in [1]. The
changes allow one to obtain postlimit point equilibrium paths
for every desired wave number, n (number of full waves
around the circumference). The governing equations are
expressed in terms of w (normal displacement component)
and F (Airy stress function) (see [1]).

For finding prelimit point equilibrium positions, the ap-

plied load level, N,,, is taken as known, the linear (n=0)

= T T T T T 1 T T
0 n=§
10 0
40— 7 —
(i
/1
mn ///I
/! —
35[_ i1
il
12 (/7
30— 13 i —
,_,E\ //// |
S ////[/ |
Z225— a5 ‘ /n=14 —
% / / L7 3
Z U / / /4 / d
‘ 20 // / ,/ A //12 —
B /4 / / // \/ n
i 1A
111 A7 N o _
15— i, A
1/ //,// s \}
// /I / /L // / \
10 AV AR 7 —
, /
I /— D/ / //
1/’7 Sy
51— l// Y/ ]
8
o | | | ] [ ! | l
0 02 04 06 (o3}
—_eAvlds_._
Fig.1 Response characteristics of the unstiffened geometry (¢ = 0.5)

Transactions of the ASME

1982 b E

seor conﬁ‘g%Msee http://www.asme.org/terms/Terms_Use.cfm



T I I 1T 1 1 T
35— —
/
/
/
30 / —
/
| =14
l25r‘ | s /M —
= )// N2
)
5{820— A, B
% ‘v o, A0
rd /
y Yo % /
[ /// / /\ / /9
15 e // / —
N s s \ /s
P SR A A
///\/ v Ve X 8
10— ;// )/ Ve // \ // -
[y \// s \ /
/0 s ¢
% 7 \\ -7 Y
5 /’\// - —
o | ] | ] ] ] | | |
O 02 o4 Qb 08 1.0
- 3
AV 10—

Fig.2 Response characteristics of the unstiffened geometry (¢ = 4.0)

solution is taken to be the approximate solution, and the
small corrections (in W;’s, and f;’s) are obtained through the
solution of the linearized (with respect to the corrections)
differential equations. Note that, in this range, the stiffness
matrix is positive definite,

For finding postlimit point equilibrium positions (in a range
of negative stiffness matrix), the numerical scheme is
modified. The load parameter, N,,, is taken to be unknown,
and one of the displacement parameters W,; replaces it as a
known parameter. Great care must be exercised in choosing
this W,. This is done by observing how the various W;’s
change with N,, changes in the prelimit point range, and
choosing a W, that tends to increase in a smooth and con-
tinuous manner, but most importantly is one of the most
dominant displacements terms. In this postlimit point range,
the last converged, prelimit point solution is used as an initial
estimate for finding the first postlimit point solution. From
there on, in this same range, the previous solution is utilized
as an initial estimate.

Numerical Results and Discussion

Numerical results are obtained for two geometries, one
unstiffened and one stiffened. The geometry for both is
described in the following:

(@) Unstiffened Cylindrical Shell.

R = 10.16 cm (4 in.); #=0.01016 cm (0.004 in.);
L = 10.16cm (4in.);
E = 7.24 x 10°N/cm?(10.5 x 10° psi); »=0.3;

27x X ny
w(x,))=h [— — +0.1sin — ——];
(x,y)=h§&| —cos T +0.1sin T cosR

and SS-3 boundary conditions

(b) Ring and Stringer-Stiffened Cylindrical Shell
R=10.16 cm (4 in.); #=0.1016 cm (0.04 in.);

Journal of Applied Mechanics

1.0 T T T I
0.8}~ ]
‘ 0.6 ]
< |- |
| oa |
02 ﬂ
| o |

1 r 1 | !

¢ 1 2 3 y

BRIEF NOTES

Fig. 3 Effect of imperfection parameter £,= on critical loads (un-
stiffened)

L=10.16 cm (4in.);E="7.24 x 10% N/cm?(10.5 x 108 psi);
r=0.3; e, = +0.6096 cm (0.24 in.);

e, = +0.3048 cm (0.12 in.); (+ for internal stiffeners)

N =0.910; A, =0.455; p,, = 100, p,, = 20; with

we(x,y) =hE sin fo cos %;SS—B boundary conditions

Before discussing the results, a few more clarifying remarks
about the geometry are needed. The unstiffened geometry is
taken from [1] and [2]. Note that in these references only the
critical load is given and not the complete behavior. The
classical load for this case is 44.52 N/cm. Moreover, in this
geometry, £ is varied from zero to four, in order to study the
effect of imperfection amplitude, & (W° . /h=1.1%). Finally,
results are generated for several values of n (number of cir-
cumferential full waves). This is needed to obtain a clear
picture of the complete response, since the shell is very thin
(R/h=1000) and from experimental evidence the response is
expected to be nonaxisymmetric.

The stiffened geometry corresponds to examples 14, 16, 18,
19, and 21 of [1]. Again, note that in [1], only limit-point
loads were obtained. Moreover, in [1] SS-3 boundary con-
ditions are used, but SS-3 with M,, =0. In the present work,
$S-3 with M, =a;N,, boundary conditions are employed.
The most important results are presented in graphical form.
In the ensuing discussion, including conclusions, the
statements are based on all generated data.

Figure 1 is a plot of N,, versus average end shortening for
£=0.5 (unstiffened geometry). These data are generated for
several values of full waves, n, around the circumference.
From this figure, it is clear that, as the system is loaded quasi-
statically from zero, the load-deflection curve is the same and
independent of ». The limit-point load, N, is definitely
n-dependent. It is observed that the value of the total
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(E=1)

potential corresponding to the lowest limit load (and
associated n) is the smallest of all values corresponding to the
same load and different »’s (at an equilibrium position). For
this value of £ (which corresponds to w° ., =0.55 A), the limit
point occurs at Ny, =29.07 N/cm [N = (N, /Ny ) =0.653].
In the postlimit point region, the unstable branch shows
several changes from n = 13 ton =12 ton = 11. These
changes occur at the unstable portion of the curve. The
change from n = 11 to n = 10, etc., to n = 8, occur at the
stable portion of the curves. This implies that if one can
transverse the postlimit point branches), he would move
along the n = 13 (with decreasing load) curve, then along the
n = 12 and n = 11 curves (with decreasing load). Then along
the n = 11 curve, the system moves with increasing load until
it reaches the n = 10 curve. Then it moves along the n = 10
curve until it intersects the n = 9 curve, etc. In reality,
though, under dead weight loading, the system reaches the
limit point, and then it snaps through (violent buckling)
towards far stable equilibrium positions. During the snapping
process, it is clear from this figure that the shell experiences
changes in the circumferential mode, corresponding to
various n-values.

For £ = 1 and 2 the behavior is similar to that of Fig. 1. As
¢ increases, changes in behavior take place, which behavior
becomes similar to the one corresponding to £ = 4, and
plotted on Fig. 2. Note that for n=10, there is no limit point
instability, but for n = 9, 8, 7 there exist limit points. The
response, though, as the system is loaded quasi-statically from
zero, is along the n=10 path and snapping takes place at the
load level corresponding to unstable bifurcation (the n = 10
and n = 9 paths cross). Even for this imperfection amplitude
(£=4), violent buckling is predicted with change in cir-
cumferential mode. Finally, for the unstiffened geometry,
Fig. 3 presents the effect of the imperfection amplitude, £ on
the limit point load, N =Nxxcr /Ny, and on the minimum
load, N" =Ny, . /Ny, . Note that Ny, . corresponds to the

minimum equilibrium load in the postlimit point region.
According to this figure, for £=4, there is no possibility of
snap-through buckling. The cylindrical shell simply deforms,
with bending, from the initial application of the load.

For the stiffened geometries, the results are presented in
Figs. 4 and 5. The classical values for N,, are 61,680 N/cm

668/ Vol. 49, SEPTEMBER 1982
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for external positioning of the stiffeners and 34,660 N/cm for
internal.

The results, for the external positioning of the stiffeners,
are presented in Fig. 4. It is seen from this figure that the
response is similar to the unstiffened geometry (Figs. 1 and 2),
but the number of full waves is smaller (this is an effectively
much thicker thin shell). Note that the lowest limit point
corresponds to n = 4 for £=1. Similar changes in behavior
(to the unstiffened) are observed as £ increases. Another
important similarity to the unstiffened shell behavior, is that
this configuration is also sensitive to initial geometric im-
perfections. When £=1 (which means that w° . =h),
N =0.77 and when £ =4, N =0.46.

The results, for the internally stiffened configuration, are
shown in Fig. S. The dashed lines correspond to n=4 and the
solid lines to n=3. Data for other n-values need not be shown
on this figure. The three sets of curves correspond to £=0.5,
1, and 4. Note that, for £=0.5, limit-point instability occurs
at N,, =31,170 N/cm with n=4. Also nete that, during snap-
through buckling, a change of circumferential mode occurs
(to n=3). The minimum equilibrium load in the postlimit
point region corresponds to n=3. On the other hand, for
£=1, snap-through buckling occurs at N, =28,720 N/cm
because of the existence of an unstable bifurcated branch
(corresponding to n=3). The minimum equilibrium load, for
£=1 also, corresponding to »n=3. Finally, there is no
possibility of a snapping phenomenon, for £=4, neither
through the existence of a limit point nor through the
existence of an unstable bifurcated branch. It is observed that
this configuration is not very sensitive to initial geometric
imperfections. For £=0.5, A’ =0.9 and for £=1.0. ' =0.84.
This is attributed to two reasons: (@) internally stiffened
configurations are less sensitive than externally stiffened ones
and stiffened configurations are less sensitive than unstiffened
ones, and (b) for this reported case, SS-3 with M,, =a; N,y
boundary conditions are used, which has a stabilizing effect.
The primary reason, though, is the former.
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Coupled Flexural Torsional Vibration of an
Eccentrically Stretched Strip

S. Suryanarayan' and A. Joshi!

Introduction

Flat rectangular strips subjected to an eccentric axial load
exhibit coupled flexural torsional modes of vibrations. The
coupling between the flexural and torsional modes depends on
the axial load and the amount of eccentricity. Their effect is to
increase the torsional frequency and decrease the flexural
frequency.

Figure 1 shows a flat rectangular strip of uniform thickness
on simple supports and stretched by an eccentric axial load
which results in a linearly varying axial stress distribution.
When (L/b) is sufficiently large, fibers normal to the z-axis
can be assumed to remain straight and the transverse
displacement “‘v’’ in the y-direction of any point on the strip
can be given in terms of vy, the lateral displacement of the
cross section as a whole, and 6, its rotation, as vy +x6. The
lateral force in the y-direction on an elemental fiber of length
“dz”’ and area tdx, produced by the axial stress oy, is oy
(8?v/8z%) tdxdz. Integrating this term over the cross section,
the net transverse force and torque which couple the trans-
verse y-flexural and torsional motion, can be obtained.
Taking these into account besides inertia, Euler bending, and
St. Venant torsion of the strip, the governing equations can be
written as,

6400 6200 820 BZUO
=) AL VAL VLA S
w gt TN tNe g —pAGs =0 (D)
3%6 v, NI, 3% 3%6
GJ N, z - =7 -
a2 +Nge o A a7 el 372 0

Where E is the Young’s modulus, G the shear modulus, 4 the
area of cross section of the strip, I,, and I,, the second
moments of the area about the x and y axes, respectively, J the
Saint Venant torsional stiffness, V, the net axial load, e its
eccentricity, p the density, and 7 the time variable.

Solution and Discussion

For simply supported edges, v, and 6 can be assumed to
vary sinusoidally along the span and the governing equation
(1) simplified to

(A=)g)

—é 0o/b

=0 @)

—12¢6 (A=) b
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Fig.1 Aneccentrically loaded thin strip on simple supports
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where M(=pk?L2/Em*x?¢,) is the dimensionless frequency
parameter, ¢, the average axial strain, € (=e/b) the ec-
centricity ratio, k the circular frequency, m the wave number
and U, and 8 are the maximum amplitudes of v, and 9,
respectively. Ar, and A, are the values of X for uncoupled
flexural and torsional vibration, respectively, when the ec-
centricity is zero and can be expressed as

m* 7Bl &b
M=t R S N
' GJA 26
Y A ®)

where g is the Poisson’s ratio of the material, (= (mb/L)?) is
a slenderness parameter and & (=(¢/b)%/¢) is a dimen-
sionless parameter representing the relative significance of
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Coupled Flexural Torsional Vibration of an
Eccentrically Stretched Strip

S. Suryanarayan' and A. Joshi!

Introduction

Flat rectangular strips subjected to an eccentric axial load
exhibit coupled flexural torsional modes of vibrations. The
coupling between the flexural and torsional modes depends on
the axial load and the amount of eccentricity. Their effect is to
increase the torsional frequency and decrease the flexural
frequency.

Figure 1 shows a flat rectangular strip of uniform thickness
on simple supports and stretched by an eccentric axial load
which results in a linearly varying axial stress distribution.
When (L/b) is sufficiently large, fibers normal to the z-axis
can be assumed to remain straight and the transverse
displacement “‘v’’ in the y-direction of any point on the strip
can be given in terms of vy, the lateral displacement of the
cross section as a whole, and 6, its rotation, as vy +x6. The
lateral force in the y-direction on an elemental fiber of length
“dz”’ and area tdx, produced by the axial stress oy, is oy
(8?v/8z%) tdxdz. Integrating this term over the cross section,
the net transverse force and torque which couple the trans-
verse y-flexural and torsional motion, can be obtained.
Taking these into account besides inertia, Euler bending, and
St. Venant torsion of the strip, the governing equations can be
written as,

6400 6200 820 BZUO
=) AL VAL VLA S
w gt TN tNe g —pAGs =0 (D)
3%6 v, NI, 3% 3%6
GJ N, z - =7 -
a2 +Nge o A a7 el 372 0

Where E is the Young’s modulus, G the shear modulus, 4 the
area of cross section of the strip, I,, and I,, the second
moments of the area about the x and y axes, respectively, J the
Saint Venant torsional stiffness, V, the net axial load, e its
eccentricity, p the density, and 7 the time variable.

Solution and Discussion

For simply supported edges, v, and 6 can be assumed to
vary sinusoidally along the span and the governing equation
(1) simplified to

(A=)g)
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where M(=pk?L2/Em*x?¢,) is the dimensionless frequency
parameter, ¢, the average axial strain, € (=e/b) the ec-
centricity ratio, k the circular frequency, m the wave number
and U, and 8 are the maximum amplitudes of v, and 9,
respectively. Ar, and A, are the values of X for uncoupled
flexural and torsional vibration, respectively, when the ec-
centricity is zero and can be expressed as

m* 7Bl &b
M=t R S N
N GJA 26
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where g is the Poisson’s ratio of the material, (= (mb/L)?) is
a slenderness parameter and & (=(¢/b)%/¢) is a dimen-
sionless parameter representing the relative significance of
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Fig. 3 Positions of the axes of rotation for the coupled transverse
lateral and torsional modes, ; versus eccentricity parameter é for =0,

0.01, 0.4, and 2.5.

thickness effects (Euler bending and St. Venant torsion) with
respect to the membrane effects produced by axial tension.
The characteristic equation for N can be obtained by setting
the determinant of the square matrix in equation (2) to zero.
This is quadratic in A and can be solved for various values of
&, 6, and €. The two roots of N\ in general represent a
predominantly torsional (\,) and a predominantly flexural
(A\s) mode.

For the case of zero eccentricity, the vibration modes are
uncoupled and the two roots are A, and A\, respectively.
Their variation with & is given by the curves in Fig. 2 for
which € is zero. When & is zero we have, )"o = NAp, = 1, which
corresponds to the strip vibrating like a membrane. When the
average axial strain ¢, (or the tension in the strip) tends to
zero, i.e., @— oo, we get N, = 2a&/(1+p)and A, = n*@d/12,
which are the St. Venant torsion and Euler bending frequency
values of \.

The effect of a typical eccentricity ratio € of 0.25 is also
shown in Fig. 2. The effect of eccentricity is to raise the
torsional frequency and to lower the flexural frequency. This
effect is a maximum when the strip is a membrane (&= 0) and
reduces as thickness effects represented by nonzero values of
& become significant. It can also be seen that the slenderness
parameter § has got a significant effect on the flexural
frequency but its effect on the torsional frequencies is felt

670/ Vol. 49, SEPTEMBER 1982

only when €0 and is marginal. For the case of a=0, the
solution for the coupled frequenceis can be obtained as

A =142V38 A =1-2V3é. @)

For nonzero values of & the solution of A, and A, can be
written as

- 25_
M=l+ -2 4 xf_1+fl—2—“—c )
where Cis a correction factor given by,
¥ 48(e)2\ 2 w28
=3 [(+57) ) -
2 2 =\ 12/ ©

It may be noted that for @=0, C=2V3¢é as in equation (4).
This explains the linear variation of A with € in Fig. 2. The
reduction in A, is same as the increase in A,. For large values
of & the effect of the axial strain and consequently the effect
of eccentricity diminishes and A, and N, remain almost
constant with €. This is shown for @=10 in Fig. 2. The
variation of A with & for @=0.4 is also shown in Fig. 2.

When the vibration modes are uncoupled, the cross section
of the strip rotates about the z-axis for the torsional mode and
about an axis parallel to the z-axis at x= oo for the flexural
model. When the modes get coupled because of the eccentric
axial load these axes shift. The distance n of the axis of
rotation from the center of the cross section can be obtained
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from any one of the equations (2) as equal to —#,/8. Figure 3
shows the variation of % (=%/b) for various values of &.
When & =0 we have

fly=o0 and #, =0 for €=0
and

fiy= — 1, =1/2V3) for é=0

Thus there is a step discontinuity at é=0. This fact manifests
itself in a very interesting manner in practice. When long and

BRIEF NOTES

very thin strips loaded by uniform axial tension are tested for
vibration, though one can get the pure flexural and torsional
frequencies, pure torsional and flexural mode shapes as
signified by 7, =0 and 7, = o are difficult to achieve: Even a
small error in the symmetry of loading causes a large shift in
the axes of rotation as by the large slope of the § curve near
€=01in Fig. 3. For large values of &, the variation of 7, with ¢
becomes a rectangular hyperbola and that of 7, becomes a
straight line.

Higher Modes for the Compressible Elastica
on an Elastic Foundation

J. V. Huddleston!

Introduction

The paper by Nicolau and Huddleston [1] used a set of
nonlinear differential equations and a numerical method to

solve the problem of buckling of a compressible elastica on an
elastic foundation. It assumed foundation moduli in the
relatively compliant range where the first or critical mode of
buckling is a single-half-wave configuration. As the foun-
dation enters a stiffer range, however, multiple-half-wave
buckling becomes critical. This Brief Note uses the theory of
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[1] to correctly find the higher buckling loads and critical
mode shapes and compares them with the classical predic-
tions. It also uses the method of [1] to analyze the post-
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nonlinear differential equations and a numerical method to

solve the problem of buckling of a compressible elastica on an
elastic foundation. It assumed foundation moduli in the
relatively compliant range where the first or critical mode of
buckling is a single-half-wave configuration. As the foun-
dation enters a stiffer range, however, multiple-half-wave
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buckling behavior for different numbers of half waves and,
for one combination of system parameters, traces the post-
buckling process through its entire range.

The Linearized Problem

The boundary-value problem represented by equations (4),
(B), and (C) of [1] can be linearized for the purpose of finding
the buckling loads, as was done previously for the com-

L lanZo s pressible elastica without reactive foundation by Huddleston
%’D S o Za [2]. This is achieved by replacing sinf by 6 and cos by unity in
i gﬁggg the differential equations:
o [\S LloTihox -
g 2ARg8E m 2 _M
% 3|5EHZE dx EI'’
)
du N
. ~o ¥ 2 —y—-<l ——)0 s
s |~ RSB @2 EA
3 (TS| dddos
E gemvg
i (3)£=1 N
d dx EA "’
=] ot i
g ':éb igio—q‘é ds N
e = OO""OS 4———=1+— ,
£ |gs[FFre=s @ EA ( )
wn < i ::\:00'-'*
2 8 LITERRE J J
€ g EEERE ) P . A
1] N =N G d d »
- Q X X
&
5 22%3x dN dy
~ ~5| mRA8K 6)—— =—-Q——— +k,u,b,
o |8 FE=2g O =2 Th
Gy v:ﬂﬁg
)
w
] (7)_d.Q_=Nﬂ —kou
=] o~ Y%y
g 588288z dx dx
@ SIQLRLNAQ
: | [Frsse ar N
§ _|<S| . 8)— = (1+—) ,
S ol Slglhapes A7
T S RSN <
S 1 |R[¥nEEy
w~,
8_ < Next assume that N = constant = —P (this additional
7 0% Ot e assumption was not necessary in [2}), so that, from (7),
o\:mgxo
O ) oMY aQ do
ko ReEEY a " P T @
g and, from (8),
E 5lmSage am P
= 218893% = (1~—). ©)
) PRE=a8 dx EA
=) LSRR E A ; i
&S|, Now assume that EA is a constant, say EA,, and combine
- g ~ g §§§§§ equations (B) and (C):
= 3 Sldaiwgm &
= - Evmmg M ( P ) db ( P >
« ~ —=-P{l-—r ) — =k, (1~ —)u,. (D
IV dx? g4, ) ax o\t gg ) @
Nas s From (2),
cq| S3R%R @
~a a9 d*u, ®
dx p adax*’
=~ O en <t n l__
EA,
and hence, from (1),
EI Lu
_ Y =M.
P ae Q)
1-
EA,
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Now assume that EJ is a constant, say EI,, differentiate
equation (F) twice, and substitute equations (D) and (E) to
obtain:

EL, g4y d*u P
P2 4k (1————) =0. (G
p ax at Y EA, “ ©
1— ——
EA,
Introducing the compressibility measure C defined by
Iy
C=——,
AL (H)
one can rewrite equation (G) as follows:
4 P 2
duy+__<1_c PL )dzuy
dx*  El, El, / dx?
k PL? \2
+ X (l - C——) =0.
El, £, /" @

Equation () is the linearized fourth-order differential
equation that reduces to the classical form for C = 0.

Next assume that k, = constant = k, to facilitate the
solution of equation (f), and introduce the following
dimensionless variables:

Journal of Applied Mechanics

u T
U = et s
’ L
x = X
L
, - )
T o= PL ,
El,
4
K f = ka .
EI, J
The dimensionless fourth-order differential equation is then
d*u, d*U,
T(1-C 4 - 2y, =0.
X + T¢( T’dXZ +K(1-CD*U, 0 0:¢]

Solution of equation (K) and use of boundary conditions on
U,and U,” at X = 0 and X = 1 gives the following eigen-
values:

For zero C:

K
T=w(P+5h), i=12,.. ., @)

SEPTEMBER 1982, Vol. 491673
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and, for nonzero C:

_ (P +2CK) £V a7 +2CK)7 —4CFE 7 + CKH@ 1 +K))
207 + CK))

i

, i=012,.... M)

Equation (L) agress with the eigenvalues found by by equations (L) and (M) for C = 0.001 (a moderately
Timoshenko and Gere [3], and equation (M) reduces to that compressible elastica) and various values of K  (ranging from
found in [2] for the case K, = 0. ' compliant to very stiff). The value of i, of course, is the

Table 1 gives a comparison of the eigenvalues as determined  number of half waves into which the member buckles, and the
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critical value is the lowest one given by each equation symmetric half waves. Assuming that the buckling begins with
(denoted by an asterisk in Table 1). Already for K, = 400.0,a  a positive 0,4, as shown in the figures, P decreases while 6,
case considered in [1], the classical theory predicts that the and R, increase. At point B,, the system will bifurcate again
switch in the critical mode from one half wave to two half into either of two antisymmetric shapes each having two
waves has occurred, but the corrected theory shows that the unsymmetric half waves, but which of the two directions on
single half wave is still critical. Similarly, for K, = 4000.0, the new paths it will take depends, as at B;, on the im-
the classical theory predicts three half waves but the corrected  perfections of the particular system. If it branches with
theory predicts two. Finally, for K, = 40000.0, the classical ~ decreasing 6, and R,, another bifurcation point B; will be

predicts five and the corrected three. encountered shortly where totally unsymmetric shapes will
become possible equilibrium configurations. It is apparent
Solutions of the Nonlinear Problem from Fig. 5, however, that unless compelled otherwise by

external influences the system will continue on the an-

Two cases have been selected from Table 1 for further tisymmetric path. If, at B,, the system branches with in-
s'tudy. Qne is the case of C = 0.001‘and Ky = 400.0 con- creasing 6,4 and R,, the solution does not show another
sidered in [1]. By means of the nume rical algorithms used in bifurcation point until B,, which is in the negative-P regime,
that reference, the initial postbuckling curves'for one, two, 4t appears from Fig. 3 that the system would tend again to
three, and four half waves have been determined from the remain on the antisymmetric path. After returning to zero

n'onlmear boundary-value pr‘oblem. The curves of dimen force, where the shape is symmetric with respect to the x-axis
sionless force versus end rotation are plotted in Fig. 1, and the . . .
. . . - on either of the antisymmetric paths, the rest of the post-
curves of dimensionless force versus dimensionless end . . .
: I buckling process will follow along paths that can be inferred
reaction are plotted in Fig. 2. The one-half-wave curves, of e ; N
. s . from the existing results by the kind of global analysis in-
course, reproduce results already reported in [1]. The reaction volving reflections and inversions that was carried out in [1]
R 4 in this Brief Note is the same as that symbolized by Ry, in & ’

[1]. Referenc
. €S
A second case selected for further study is that of C =
0.001 and Kf = 4000.0, for which the exact theory predicts 1 Nicolau, A. M., and Huddleston, J. V., “The Compressible Elastica on
two half waves as the critical mode. The complete buckling an Elastic Foundation,”” ASME JOURNAL OF APPLIED MECHANICS, Vol. 49,
. : . . . 1982, pp. 577-583.
and postbuckling process has been examined in this case, and 2 Huddleston, J. V., “Effect of Axial Strain on Buckling and Post-

the results are shown in Figs. 3,4, and 5. As the displacement 8  Buckling Behavior of Elastic Columns,” Developments in Theoretical and

of the movable end of the strut is increased, the force P in-  Applied Mechanics, Vol. 4, Proceedings of the Fourth Southeastern Conference

creases, with 0A and RA remaining zero, until bifurcation B1 on Theoretical and Applied Mechanics, New Orleans, La., Feb. 1968, pp.
. R b . 263-273.

(P=133.362) is reached. At that point the member will buckle 3 Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability, second

into either of two antisymmetric shapes each having two  ed., Engineering Societies Monographs, 1961.
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Energy-Release Rate in Elastic-Plastic

Fracture Problems!

A. G. Herrmann? and G. Herrmann.? It is believed that
the analysis and results presented in this paper cannot be
correct for several different and independent reasons.

1 So-called path-independent integrals can be meaningfully
discussed only for closed paths enclosing a defect. They are
derived via Gauss theorem which requires closed surfaces or
contours. The authors, however, consider an open path. The
same inadmissible consideration is also applied, incidentally,
in references [5] and [6] of the paper by the same authors.
This renders their proof of path-independence invalid.

2 Path-independence of an integral means that the path can
be absolutely arbitrary as long as it is closed. But the authors
are not able to let their path enter or cross the process zone
and thus the very foundation on which the J, L, and M in-
tegrals are based, as discussed in references [2] and [3] of the
paper, are violated. The decomposition (equation (20) of the
paper) implies that all integrals involving J,, L4, M, and I are
taken around a crack tip. Even for a straight crack in static
elasticity the contours for L and M are taken around the
whole crack. (See e.g. reference [3] of the paper.)

3 Rice’s J integral is based on the translational invariance
requirement. In the purely elastic body, as a plane crack
grows, the stress field around the crack moves with the crack
tip. In the case of elastic-plastic fracture, however the plastic
deformation (or process region) is left behind (as a wake) and
thus translational invariance is violated.

4 For a curved crack considered by the authors, trans-
lational invariance is again obviously violated as the crack
grows, which renders their results invalid.

5 It has been shown [1] that even for a plane crack only one
component of the so-called J-vector (namely Rice’s integral) is
path-independent, while the other is indeed path-dependent.
Thus authors’ proof concerning path-independence is again
invalid.

1By S. Aoki, K. Kishimoto, and M. Sakata, and published in the December,

1981, issue of the ASME JOURNAL OF APFLIED MECHANICS, Vol. 48, pp.
825-829.

2Djvision of Applied Mechanics, Stanford University, Stanford, Calif.
94305.
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Authors’ Closure

We appreciate the discussers’ interest and comments. Their
remarks are thought to come from the difference in the in-
terpretation of the crack model adopted in the paper. The
authors have considered that the fracture process region is of
a finite size. Since the usual continuum mechanics cannot be
applied to this region where microstructural processes take
place, an attempt has been made to relate ® (i.e., the time rate
of the energy change referred to the fracture process region
A.qq near a crack tip) to the physical quantities in the regular
region A, where the continuum mechanics work.

1. The fact that the values of .7&, i; , and M do not
depend on the choice of T+ I'y for a prescribed 'y 4 is proved
by using a closed contour (I' +I'y). and Gauss theorem in the
Appendlx of the paper.

2. TItis noted that the J, L, and M mtegrals are thought to
be defined using a model with an infinitesimal fracture
process region. In the fracture process region with a finite size
as considered in this paper, the usual continuum mechanics do
not work; therefore one cannot consider a path entering or
crossing the process region.

We have focused our attention on one crack tip. If we
consider both crack tips simultaneously, it would be possible
to take T'pq as the sum of T q of each crack tip plus the path
along the crack surfaces, and I' as a contour surrounding the
whole defects, i.e., a crack and both process regions (T, is not
necessary here because the crack surfaces are included in the
I..a). In the case, the path I is the same as the path for L and
Min [3].

3. It is obvious that the assumption of translational in-
variance does not hold in the case of elastic-plastic fracture.
Therefore, the authors have considered deformation of the
process region during crack extension. This fact reflects that ¢
cannot be presented only by the translation component J (see
equation (20)). The T includes the energy change assoc1ated
with the nonsteady deformation and contributes considerably
to ®.

4, The authors have also thought that translational in-
variance is violated for a curved crack. This is why ® includes
not only J,, but also L., M, and 1 as shown in equation (20).
It is thought that L3 is important in this case.

5. By introducing T, i.e., the path along the crack sur-
faces, we have obtained the path-independent (in the sense of
the first comment of this Closure) J, integral.
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On the Formulation of Strain-Space
Plasticity with Multiple Loading Surfaces!

J. L. Kauschinger.? The authors are to be congratulated
for their valuable contribution to the knowledge of con-
stitutive modeling of nonlinear materials. It is clear that a
formulation in strain space has important numerical ad-
vantages over a classical stress space model. It would appear
that the authors next line of attack should be to present an
approach for obtaining the appropriate material parameters
from laboratory tests, and to propose functional relationships
for modeling various materials.

While in general, a stress space formulation will require an
inversion of the compliance matrix to obtain the stiffness,
many times this inversion can be performed algebraically, as
in the case of Prevost [4]°, and thereby the computational
expense needed to obtain the stiffness is alleviated when
performing finite element calculations.

When selecting the nesting rule used to harden the active
yield surface, the only strict requirement is that the con-
sistency condition be upheld. Although Prevost has arbitrarily
selected a Mroz-type rule for use in his stress space for-
mulation, the possibility of using Prager’s Kinematic Rule is
not excluded from his model [13]. It is true on the other hand,
that when implementing Prager’s Rule in a nested surface
theory in conjunction with a Von Mises-type failure criterion,
there must be a coupling between the translation of the
present active surface and the next outer one, thereby in-
creasing the computational effort. It should be emphasized
that even in a strain space formulation the user must select
some nesting rule. It is hoped that the hardening rule selected
will portray the actual behavior of the material as measured in
the laboratory. Undoubtedly, this comparison will represent
the ultimate test of any functionals selected for use in a
model.

Thus, while the advantages of a strain space formulation
are many, particularly for monotonic loading, backtracking
errors that develop during reversals when modeling an
elastoplastic material cannot be eliminated when using either
formulation. Therefore, it appears to this writer that the
problems associated with implementing a classical stress space
model are not as serious as the paper under discussion would
seem to indicate. This conclusion was reached by this writer
after implementing the Prevost Model [4] in a computer code
for the purposes of simulating soil behavior.

Authors’ Closure

The authors appreciate Kauschinger’s interest in the subject
paper and find themselves in general agreement with many of
his observations. However, his comments about nesting rules
deserve some further discussion, as does the question of
backtracking error.

lBy P.J. Yoder and W, D. Iwan, and published in the December, 1981, issue
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 773-778.
Graduate Student, Department of Civil Engineering, The University of
Texas at Austin, Austin, Texas 78712.
Numbers in brackets refer to references in Yoder and Iwan’s paper.
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DISCUSSION

Although it has become customary in stress-space plasticity
to require the various surfaces to nest as loading proceeds,
this practice does not appear to stem from phenomenological
considerations. Given the current stress and stress increment,
after all, there is never any difficulty in determining the
corresponding strain increment. Even if the stress happens to
lie at a point where several yield surfaces cross, one simply
finds the plastic contributions from each and sums them.
However, when one is given the strain increment and needs to
compute the corresponding stress increment, as typically
happens in finite element programs, there arises a problem in
determining which of the potentially active surfaces are in fact
producing plastic strain. This difficulty comes about because
the traditional loading criteria are based on the unknown
stress increment, It was primarily to sidestep this issue that
nesting rules were introduced in the first place. If one
somehow contrives to force the yield surfaces to touch
tangentially whenever they intersect, then at any given instant
either all of the surfaces passing through the stress point will
be active or else none of them will.

These considerations led Prévost [4, 13]! to incorporate a
nesting rule into his models for soil mechanics. Based on
stress-space yield surfaces, these models lead directly to ex-
pressions for the elastoplastic compliance, which in turn are
inverted through recourse to the nesting rule. This nesting rule
has other ramifications, though, some of which are hard to
conceptualize physically. For instance, if one tries to preserve
Prager’s kinematic hardening law by requiring each surface
being loaded to move parallel to its own local normal, the
surfaces outside of it must all somehow be made to move out
of its way.

An alternative approach, as outlined in the subject paper, is
to abandon nesting rules altogether. It should be emphasized
that neither the stress nor strain-space models discussed
therein make use of any such rule. Even so, it remains possible
under fairly general conditions to obtain the elastoplastic
stiffness. One particular class of models stands out among alil
those considered, namely, the ones based on uncoupled, non-
nesting, strain-space loading surfaces. For models of this
type, the loading surfaces act independently of one another
and the stiffness is found quite simply by adding the con-
tributions from each.

An additional advantage of these strain-space models is
that the loading criteria are based on strain rather than stress.
Thus one can determine whether there has been a loading
reversal directly from the strain and strain increment, which
can readily be calculated at the close of each time step. Stress-
space models, on the other hand, require one to guess whether
there has been a loading reversal before updating the stress.
For this reason, the strain-space models should be somewhat
less prone to backtracking error.

This promise of improved performance under loading
reversals, while not compelling in and of itself, does lend
support to the arguments in favor of the strain-space for-
mulation. So, too, does the added flexibility that results from
being able to use non-nesting loading surfaces. Of course, as
Kauschinger intimates, a plasticity model is useful in any
particular application only to the extent that its predictions
agree with experimental results. The authors anticipate that
the strain-space models will indeed prove useful in describing
the constitutive behavior of real materials.

I'Numbers in brackets refer to references in the subject paper.
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DISCUSSION

A Modified Strain-Energy Density Criterion
Applied to Crack Propagation’

G. C. Sih? and E. E. Gdoutos®. First of all, the discussers
wish to thank the authors for their candid view on applying
the strain-energy density criterion to the angle crack problem.
The selection of a suitable failure criterion to examine
material damage caused by fracture and/or yielding is
problematic, because the process can often be prejudiced by
the investigator(s) on the basis of how well his or their ex-
perimental data agree with the theory. Generally speaking, it
is not difficult to show that several competing failure criteria
can be made to agree equally well with the data of a single
physical problem but it becomes much more demanding to
have a single criterion that can consistently explain a
multitude of physical phenomena. Of equal importance is that
approximations introduced through stress analysis should not
be attributed to limitations of the failure criterion, This point
was discussed in detail in 1974 [1] with reference to fracture
experiments on beryllium. Needless to say, better accuracies
are obtained when the complete strain-energy density ex-
pression is used rather than just the singular terms. Although
the choice of number of terms affects the end results, it has no
bearing on the original failure criterion. The so referred to
“‘thinking ability’> must indeed be left to the investigator.*
The versatility of any criterion can only be judged by its
consistency and generality in application.

More specifically, this discussion is intended to clarify the
basic ideas behind the strain-energy density theory which
apparently have escaped the attention of the authors. The
concocted modifications outlined in the paper are found to be
groundless and serve no useful purpose. Ironically, the
authors’ criticisms apply quite appropriately to their own
work. For instance, the mean strain-energy density factor S as
defined by equation (8) in the paper can hardly have more
physical meaning than the strain-energy density factor S itself.
For a linear elastic material, S can be written as [2]

§=S,+84 %))

in which S, corresponds to the dilatational component and S,
to the distortional component. The former is assumed to
govern fracture while the latter to yielding. More details on
this will be given subsequently. In general, S is associated with
the strain-energy density function dW/dV by the relation
aw S @
av " r
with r being the linear distance locating a possible failure
site.> Only in the case of a linear elastic material can S be
computed from the stress-intensity factors. The expression in
equation (2) applies to a typical material element at a

1Thcocaris, P. S., and Andrianopoulos, N. P., and published in the March
1982 issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 49, pp. 81-86.

Zprofessor of Mechanics and Director of Institute of Fracture and Solid
Mechanics, Lehigh University, Bethlehem, Pa., Fellow ASME.

3 professor of Applied Mechanics, Democritus University of Thrace, Xanthi,
Greece. Presently: Visiting Scientist at the Institute of Fracture and Solid
Mechanics, Lehigh University, Bethlehem, Pa.

4Even in solving a quadratic equation involving two roots, the analyst must
have the capability of recognizing that only one of them may be physically
admissible. '

3Failure does not necessarily initiate from an existing macrocrack. It can
occur anywhere in the solid depending on the conditions assumed by the
criterion,
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distance ¢ r, from the site of failure initiation, say a crack tip.
The angular position of the element, denoted by 8, determines
the direction of fracture or yielding. It suffices to use the
singular term in the expansion of dW/dV if information is
required only on failure inititation [3]. Of course the entire
dw/dV field must be considered for determining the crack
trajectory [4]. There is no sense to investigate one additional
term at a time unless the truncation error is evaluated. The
direction of the element that initiates fracture is assumed to
correspond with S,;, or (dW/dV)u, for a fixed r and the
direction of the element that initiates yielding with S, or
(dW/dV) nax- In this connection, the hypotheses A and B
posed by the authors are inconsistent. One refers to the
position of a specific element for which S possesses a relative
minimum and the other considers the values of S for all the
elements averaged from 0= 0-360 deg. It is inconceivable how
S could be claimed to have more physical meaning than S.
What the authors have failed to recognize is that both S,
and S,,,, attain different critical values: one for the initation
of fracture and the other for yielding. In a given problem,
there may exist a number of S.;,. It is the maximum of S_;; or

max where fracture will first initiate. Furthermore, the
critical value of S or S, can berelated to X,  as

1+ v)(1 —-2v) X2
< 27E e

where E is Young’s modulus and can be determined by the K.
tests recommended by ASTM. While S. can be interpreted as
the fracture toughness of the material, § has no such
meaning.

To be emphasized is that the strain-energy criterion as used
by the authors in a concocted fashion represents only a special

case of the more general theory [5] based on
aw S €ij
dav "~ Jo
In equation (1), dW/dV applies to all materials, either linear
{3, 6]) (nondissipative) or nonlinear {7, 8] (dissipative). o;; and
€; are the stress and strain components referred to the rec-

tangular Cartesian coordinates. It is worthwhile to review the
following basic assumptions [5]:

©)

o;de; @

(1) Yielding and fracture are assumed to coincide with
locations of maximum of the local maximum and minimum
of the strain-energy density function (dW/dV) ., and
dW/dV) min, respectively.

(2) Yielding and fracture are assumed to occur when the
maximum of (@W/dV)pm and (dW/dV)y, reach their
respective critical values.

(3) The amount of incremental growth ry, 7,
Iy« . . e is governed by
aw S S S. S.
<—) =2 -2 =Z= . =Z%=const. (5)
dv /e I s r; re

if the process of yielding and fracture leads to global in-
stability, 7 i.e.,

r1<r2<...<rj<...<rc (6)
and r, corresponds to the critical ligament size of the material.

SThis is a limiting distance within which the influence of material
microstructure must be accounted for.

TFora process that leads to arrest in yielding and/or fracture, the ratio S, /r
in equation (3) is replaced by Sy /rg such thatry >ry >. .. >r;> .. >,
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In contrast to the introductory remarks in the paper, the
strain-energy density criterion is fundamentally different
from the von Mises yield condition as it attempts to address
material damage due to the simultaneous influence of yielding
and fracture. The proportion of the distortional and
dilatational energy component is weighed automatically by
the stationary values of dW/dV regardless of whether the
crack is in the elastic portion of the elastic-plastic material [8]
or in the fully plastic material® [9]. The critical values of
dw/dV for yielding and fracture are obviously different and
they occur at different locations. This interpretation is per-
fectly clear and requires no modification. In fact, in the
neighborhood of any point in a stressed solid, there exists a
local (dW/d V) and (dW/dV) . Their maximum values
(dW/dV)maX and (dW/dV)52 corresponds to locations of
yielding and fracture initiation. For the case of a crack in
uniform tension, the former occurs at 8, =cos~!(1—2»)
where » is the Poisson’s ratio and the latter at §=0 deg. The
important point is that for ductile materials, yielding and
fracture have to be addressed simultaneously.” The critical
values of (dW/dV) 0% and (dW/dV) & denote the initiation
of local yielding and fracture. There exists another pair of
global stationary values of (dW/dV) .. and (dW/dV) .
whose critical values govern the global instability of the solid
or specimen due to yielding and/or fracture. This condition

corresponds to
( aw ) S,
dv /¢ r. W)

where (dW/dV),. can be measured experimentally from the
area under the true stress-strain curve [10]. Note that from
equations (3) and (7), r. can be determined. Hence, for any
fracture process that involves crack initiation, slow growth,
and termination at least two of the parameters in equation (7)
will have to be specified for a given material. This procedure
has been applied to a number of problems involving ductile
fracture [11, 12].

Contrary to one’s physical intuition, the authors’ claim that
the lowest applied stress for initiating fracture corresponds to
B=72 deg rather than =90 deg when the load and crack
plane is normal to one another. This was based on §
possessing a weak maximum at =72 deg. They attempted to
explain this effect by the influence of Mode I and II in-
teraction for which the discussers cannot comprehend. Mode
I1 prevails only because 85290 deg. With reference to the work
of Sih and Kipp (reference [13] in the paper), the 3=70 deg
phenomenon was clearly explained and attributed to the two-
term approximation in the stress expression. The S-criterion
cannot correct numerical inaccuracies. Sih and Kipp showed
that the lowest failure stress indeed occurred at =90 deg
when the exact stress expansions were used while no change
was made on the S-criterion. This serves as an excellent
example of the danger of concocting analysis and forcing the
results to agree with unexplained experimental data. Indeed,
the experimental data of Williams and Ewing (reference [5] in
the paper) exhibited the 3=70 deg phenomenon. This effect
was due to the Mode I and III interaction and not that of
Mode I and II as claimed by the authors, In tensile specimens,
there is the tendency for the crack to deviate from the plane
normal to the specimen surfaces resulting in the additional
influence of Mode III. In such a case, indeed, an exact three-

81t has been shown that the condition (dW/dV)min still governs the direction
of crack growth when yielding at large takes place [9]. This result is shown
numerically from the finite element solution of a crack in a fully plastic
material.

9The modifications in the paper failed to recognize the simultaneous
treatment of yielding and fracture and provided no improvements of any kind.
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dimensional analysis of the embedded flat elliptical crack
solution confirmed [2] that the lowest failure stress
corresponded to a Mode I and III loading situation rather
then Mode 1. This has been known in the open literature for
some time,

Somewhat disconnected from the main body of the paper,
the authors further concluded a paradox in the S-criterion
that was concerned with predicting crack bifurcation [13] due
to the dynamic effect of running cracks. Reference was also
made to the 8=72 deg phenomenon which, as explained
earlier, refers to crack initiating under static loading. These
two situations are clearly not the same and should not be
confused with one another. In fact, it was shown in 1976 [14]
that for »=0.21-0.24, the S, condition did predict the range
of half bifurcation angle of +18.84-+15.52 deg. The results
for ¥v=0.25 was given in [13] and agree well with the S-
criterion prediction. Again, it serves only a necessary con-
dition but not sufficient to justify the verification of the
criterion.

In conclusion, the discussers failed to see the advantage of
the S approach which, in fact, tends to confuse the issue and
leads to false conclusions. The semilobes represent no more
than the graphical display of results and yield no additional
information other than the location of S.;,. The three
assumptions stated earlier for dW/dV are sufficiently general
to describe the complex behavior of the damage process by
fracture and/or yielding provided that the appropriate stress
and/or strain analysis is performed.
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DISCUSSION

Authors’ Closure

The authors wish to thank the discussers for the chance
offered to clarify some basic ideas which drove to one
essential modification of the S-criterion, introduced by Sih.

Before that, we have to clarify a few topics of secondary
importance raised in the discussion.

1. We never attributed any limitations of the S-criterion
to numerical inaccuracies introduced by the singular stress
expressions, We just used the exact expressions, instead of the
one, two-term, etc. approximations, usually used, which
sometimes drive to a “‘personalization’’ of each term and to
conclusions of the kind: ‘“The first term affects the crack
initiation, the second controls the crack direction . . .” [1].
There are no individual terms in nature. There are only in-
dividual stress fields represented algebraically by expressions
more or less accurate. Thus, the senior of the discussers
should not feel disappointed, if the singular predictions differ
from the exact ones.

2. The versatility of a criterion is judged primarily by its
rationality and then by its consistency and generality, as
" stated by the discussers. From a number of existing failure
criteria, having the property of rationality, the best will be the
criterion that also possesses consistency and generality. In our
opinion, the original S-criterion seems to lack the property of
rationality.

3. Thinking ability is asked from the crack, according to
the original S-criterion. It does not answer the question
“‘which minimum?”’ as misleadingly claim the discussers, but
answers the question ‘“‘why and how a minimum?’”’ To the
former question a good answer was given by Swedlow [2], the
answer being independent of the thinking ability of the crack.
The second discusser used this answer in at least one of his
papers [3].

4. Kj-mode does not prevail for 870 deg. It just exists
for 80 deg, 90 deg. It prevails for <45 deg, where all the
criteria are (incidentally?) more or less problematic.

5. The discussers propose an experimental method for the
determination of r,. We have been waiting for it since 1974
[4]. Experimental results for the value of r, will be helpful, if
available, to compare them with the radius of the initial curve
of the caustics, which was rationally proposed by us as the
boundary of the core region {5, 6].

6. One’s physical intuition is useful and productive but
also dangerous. Intuitively, we agree with the discussers that it
seems unphysical for a crack to propagate easier when =72
deg than when =90 deg; we were compelled by the results of
extensive experiments performed in PMMA, PCBA, and 57-S
Aluminum alloy. In all cases, this extremum was always
present, stronger in the brittle PMMA and weaker in the other
two ductile materials. We do not accept the discussers’ ex-
planation that this extremum is due exclusively to the presence
of Kj;. The contribution of Kj; to the total strain-energy
density is independent of angle 8 and, either S does not play a
role in the fracture process (a fact that we do not believe), or
the new explanation of the discussers is groundless.

7. Concerning the explanation given by Sih and Kipp
(reference [13] in our paper), they explained the theoretical
extremum of fracture load and not the experimental as the
discusser’s claim. Their statement that the extremum is due to
the influence of the second term of the stress expressions is
answered in our first remark. They surely know that this
extremum in fracture-stress was also predicted [7] some years
before. the introduction of oy-criterion [8], although a
completely different algebraic description (by means of an
asymptotic expansion) of the stress-field was used. However,
the situation is somewhat confusing. Predictions of o, and §-
criteria show an extremum somewhere around 70 deg, con-
trary to the S-criterion predictions. Experimental evidence is
in favor of this extremum and the discussers felt obliged to
fight this remarkable coincidence.

680/ Vol. 49, SEPTEMBER 1982

8. S. is equally well connected with the toughness K, of
the material, as is S,. Integration of equation (8) of the paper
for 8=90 deg, immediately gives:

(493 —4p)
=7 g
Se 4rnE e

Having finished with the stuffing material, we will try to
explain again our basic ideas that resulted in the introduction
of the modified or S-criterion. Let us consider a simple
example. A specimen with a crack at =90 deg is loaded
uniaxially in tension (Fig. 1). It is assumed that the critical
value S, of the strain-energy density is known. It is also
known that ¢, =0 deg. In the plane of energy-density, S, is
represented by a circle of constant radius S.. As the external
load increases, we consider an instant when the level of S-
distribution around the crack tip is as shown in the figure. It is
a possible situation since S, <S.. The elementary volume A
ahead of the crack tip, where the crack is expected to
propagate, can bear higher strain densities, according to S-
criterion. But, what happens with the elementary volume at
B? It, exactly, bears the critical density, but, still, denies to
fail. Why? Other elementary volumes, corresponding to arcs
DE and FG, are more stubborn. How can one accept such a
behavior? There are two answers, Either the elementary
volumes are entities that possess a thinking ability and they
know that they have to fail only when they are in the “‘right”’
direction, or S, having an angular character, cannot serve as
the critical quantity. At present, we cannot accept the first
alternative. On the other hand, the second alternative (that S
is irrelevant) can hardly be believed. Thus, we have modified
the S-criterion, replacing S, by the mean value S in the role
of the decisive quantity for crack initiation and keeping S,
as the decisive quantity for crack direction. This modification
removes the fundamental irrationalities of the original S-
criterion, leaving its predictions unaffected.

Fig. 1

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



How does the modified or S-criterion work? At each load
step the mean value of the strain-energy density stored around
the crack-tip is geometrically represented by a circle. The
crack initiates when the radius of this circle is greater or equal
to the radius of the critical S, i.e., S= S.. When this relation
is fulfilled, the crack propagates to the direction of the
minimum energy-density (S.;,) according to the fundamental
laws of mechanics [9].

From a physical point of view, the introduction of S implies
the necessity of the existence of a low-elastic, strain-energy
density level in the neighborhood of the crack tip, which when
achieved, permits the initiation of the various fracture and
yielding mechanisms.

From the algebraic point of view, S is a positive quantity,
increasing with the external load. Thus, S can reach a positive
critical value (say S.) only from below, and this obviously is
first reached by the maximum value of S. Therefore, symbols
like ST have only a formal value, not interpretable
physically.

Let us return, again, to Fig. 1. Concerning the behavior of
the elementary volumes corresponding to S-values between
DE and FG, the discussers may say that these volumes are at
the direction of yielding and thus they do not fracture, being
already yielded. But, according to their words ‘. . . yielding
and fracture have to be addressed simultaneously’’ not only
for ductile materials, as they say, but for all materials.
Perfectly brittle materials do not exist. Simple, the brittle or
ductile part of the whole failure character of an individual
material predominates more or less in each case. This
situation is clearly exemplified in Fig. 1 where, at the given
load-level, elementary volume A is still unaffected, B is a little
yielded and a little fractured, and C is yielded, according to
original S-criterion.

We feel that, exactly, such conclusions are ‘‘concocted.”
The problem asks for a more brave confrontation, where the
fundamentally different influence of the two density com-
ponents S, and S, on the failure process must be in-
corporated. In our opinion, this has already been done by the
introduction of a new criterion, the T7-criterion [10-12].
According to this criterion the distortional part S, of the total
strain-energy density is responsible for the creation of a
yielded zone around the crack tip, as is described by the Mises
yield condition, Sp,=const. Outside the yielded area,
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dilational component S, being a module of normal stresses,
initiates fracture processes like cleavage or hole growth and
coalescence, according to modern concepts of fracture
mechanics [13-15]. This approximation accurately describes
the simultaneous but qualitatively different influence of S,
and S, to the failure processes, and includes S or S-criteria as
limiting cases for purely brittle materials.
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Finite Elements, An Introduction. By E. B. Becker, G. F.
Carey, and J. T. Oden. Prentice-Hall, Englewood Cliffs,
N.J., 1981. 258 Pages. Price /24.95.

REVIEWED BY T. BELYTSCHKO!

The finite element method has been the topic of ap-
proximately 30 books and monographs that have been
published over the last 15 years. Nevertheless, many in-
structors still have difficulties in finding a text for advanced
undergraduate or beginning graduate courses which will
develop a sound, fundamental understanding of the method.
This book presents a significant advance in that direction for
those who wish a more rigorous, mathematical development.

The book consists of six chapters. The first two are devoted
to one-dimensional problems, emphasizing the development
of a symmetric variational formulation for second-order,
two-point boundary value problems and the smoothness
required in the space of approximating functions. In the third
chapter, a finite element program for one-dimensional
problems is described, including the FORTRAN statements.
Chapters 4 and 5 repeat the same material for two-
dimensional problems, including shape functions for triangles
and quadrilaterals and numerical quadrature. Chapter 6
presents an introduction to three-dimensional problems,
fourth-order problems, and time-dependent problems.

A notable feature of this book is that it develops the weak,
or variational form, from the partial differential equations,
rather than simply presenting the variational form as given;
the latter approach bothers many of the better students who
usually wonder where the variational form comes from. The
concepts in this book are all developed with rigor, clarity, and
conciseness. Once a student has mastered this book, he will
certainly have a broader understanding of the mathematics of
the finite element method than would be obtained from more
conventional treatments.

In using this book in my class, I found two types of
response. Engineering students with a modest mathematical
background found the book a little difficult as an in-
troduction; it requires simultaneously tackling the concepts of
the weak form, finite element approximations, and notation
and concepts to which they are unaccustomed. On the other
hand, mathematically inclined students tend to find this book
delightful. In addition to its value as a text, it is also
recommended to finite element specialists who wish to
familiarize themselves with the more recent developments in
the mathematical aspects of the method. Even recently I have
received papers submitted to the ASME JOURNAL OF APPLIED
MEecHANICS that deal with the continuity requirements and
natural boundary conditions in the Galerkin method; this
book presents an unambiguous, consistent development at an
introductery level. ’

lProfessor, Department of Civil Engineering, The Technological Institute,

Northwestern University, Evanston, I1l. 60201.
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This book is the first volume of a series of six on finite
elements. If the quality of this volume is maintained in the
forthcoming volumes, it should prove a valuable contribution
to the finite element literature.

Seismic Migration—Imaging of Acoustic Energy by Wave
Field Extrapolation. By A. J. Berkhout. Elsevier, Am-
sterdam, 1980. pp. xii-339. Price $51.00.

REVIEWED BY Y.-H. PAO?

The purpose of this review is not to criticize Berkhout’s
book. Instead, it is intended to acquaint readers of the
JOURNAL OF APPLIED MECHANICS with this seemingly
mysterious topic.

Seismic migration is the construction of a vertical cross
section of the ground from the time traces of signals recorded
along a line of receivers. The signals are generated by either a
single source, or a distribution of sources along the line of the
receivers. Mathematically, the problem is formulated as the
determination of the wave speed c(x, v, z) and mass density
po(x, ¥, 2) of an inhomogeneous half.spacez = 0, —o < x, y
< oo, from the known input at the surface, Py(xq, ¥, 0, 1),
and the output P(x, y, 0, #). The P(x, y, z, t) satisfies a linear
wave equation with a variable coefficient c2 V2P = §2P/3¢%.

The complexity of the problem apparently is far beyond the
mathematical and computational tools currently available. In
fact, this mathematical inverse problem may be ill-posed, for
which the solutions are not stable, nonunique, or even
nonexisting. Nevertheless, oil companies have to find oil, and
do find them underground by seismic prospecting.
Geophysicists specialized in this area have developed various
approximate methods to map geological cross sections from
records of map-generated seismic waves. The Migration is one
of these methods.

A crude model for the cross section is a half space com-
posed of many parallel layers, each having a constant wave
speed c(z;), and density p(z;). A more refined model is to have
nonparallel layers, and to allow ¢ and p to vary laterally in x, y
directions. Methods of seismic migration are developed to
improve the lateral resolution of the data gathering and
processing.

In this book, which is the first one devoted to the topic of
seismic migration, the theory of migration is derived from
first principles. Therefore, it contains some basic mathematics
(Chapters 2-4) which are familiar to readers of the JOURNAL

2Professor, Department of Theoretical and Applied Mechancis, Cornell
University, Ithaca, N.Y. 14853,
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oF APPLIED MECHANICS. The ensuing chapters discuss three
methods to extrapolate downward wave fields, and the
imaging of the cross sections (the inverse techniques). Chapter
11 compared different approaches to migration. To readers of
the JOURNAL OF APPLIED MECHANICS, it would be benefical
reading Chapter 11 first before reading Chapter 1, as the
latter is incomprehensible to anyone outside the field of
seismic prospecting. The last chapter (Chapter 12) discusses
the limits of lateral resolution.

Most of the book is confined to two-dimensional scalar
wave field P(x, z, t). The three-dimensional case of scalar
waves, P(x, y, z, t) apparently is still not within the reach of
prospecting seismologists, let alone the case of vector elastic
waves, including P and S-wave conversions, in
inhomogeneous media. This points a direction of research of
a literally very rich area for readers of JOURNAL OF APPLIED
MEecHANICS who are well versed in the subject of wave
propagations in solids.

Free Vibration Analysis of Rectangular Plates. By D.J.
Gorman. Elsevier, North Holland, 1982. 324 Pages. Price
$60.00.

REVIEWED BY A, LEISSA®

This work is a summarization and generalization of a
number of previously published papers by Professor Gorman
dealing with the free vibrations of rectangular plates. It
presents the most comprehensive set of published analytical
results to date for rectangular plates governed by classical
plate theory; that is, the plates are limited to be homogeneous,
isotropic, and thin, undergoing vibrations of amplitude less
than the thickness, and free of inplane initial stresses. The
book makes no comparisons with the voluminous numerical
results found elsewhere in the literature, but stands upon the
author’s own accurate calculations.

Chapter 2 presents comprehensive eigenfrequencies for the
six cases of rectangular plates having two opposite sides
simply supported and the others simply supported, clamped,
or free. These problems have ‘‘exact’’ solutions in the sense
that the eigenfrequencies are obtained from frequency
determinants of finite size, in this case having orders no larger
than four, arising from the well-known Voigt-Levy solution
of the equation of motion. For each of the six cases, 64
frequencies are presented for a/b and b/a = 1, 1.25, 1.5, ,2,
2.5, and 3 where @ and b are the plate dimensions. For plates
having free edges (3 cases), results are given for two values of
Poisson’s ratio (0.333 and 0.5).

Chapters 3-7 deal with the remaining 15 cases of plates
having combinations of clamped, simply supported, and free
edges. The method of superimposing infinite series of Voigt-
Levy solutions previously developed by the author and others
is utilized to solve these problems. Convergence studies were
made to establish the accuracy of the frequencies to four
significant figures. Numerical results for frequencies are given
typically for the first 10 modes in each case, for values of a/b
and b/a as listed in the foregoing. Where free edges are in-
volved, Poisson’s ratio is set at 0.333.

The last chapter is devoted to a series of problems involving
rectangular plates having added point masses or supports, or
line supports. Again the superposition procedure is used to
solve the problems and results for frequencies are given.

Although the results for frequencies given throughout the
book are typically quite comprehensive, considerably less

3Department of Engineering Mechanics, Ohio State University, Columbus,
Ohio 43210-1181.
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information is supplied about the corresponding mode
shapes.

The reviewer recommends the book highly to individuals
who are interested in applying the superposition method to the
analysis of eigenvalue problems for rectangular regions
and/or who desire extensive, accurate numerical results for
the free vibration of rectangular plates governed by classical
theory.

Shock Waves and High-Strain-Rate Phenomena in Metals.
Edited by M. A. Meyers and L. E. Marr. Plenum, New York,
1981. pp. xiii-1101. Price $95.00.

REVIEWED BY U. S. LINDHOLM*

This large volume (1100 pages) constitutes the proceedings
of an international symposium held in Albuquerque, N. Mex.
in June, 1980. There are a total of 58 papers divided into
topical areas titled: High Strain Rate Deformation; Dynamic
Fracture; Adiabatic Shearing; three sections on Shock-Waves
Experimental Techniques, Fundamentals, and Microstruc-
tural and Mechanical Effects; Dynamic Compaction of
Powders; and Explosive Metal Working and Welding. The
editors have done an exceptionally fine job of editing and
organizing the diverse papers in such a format that the volume
presents a comprehensive state-of-the-art review of the
subject while fulfilling the editors objective of making it a
lasting reference and potential text for graduate education.
The latter objective is achieved by a number of chapters
contributed by the editors themselves as well as seven ap-
pendices providing supplemental basic information required
for the design of shock-loading systems. The volume also
achieves a balanced perspective for each topic from the points
of view of physics, metallurgy, and mechanics.

In summary, this reviewer feels that this is perhaps the best
collection of papers on the subject matter seen in recent years
and reflects considerable extra effort by the editors to make it
a self-contained treatise. It is well worth examination by all
those active or interested in dynamic deformation or fracture.

Modern Fluid Mechanics. By Shih-I. Pai. Science Press,
Beijing; distributed by Van Nostrand Reinhold Company,
New York, 1981, pp. xx~570. Price $37.50.

REVIEWED BY J. S. WALKER®

This book on theoretical fluid mechanics falls into the large
gap between the teaching textbooks on classical fluid
mechanics and the research-oriented monographs that
summarize recent developments in specific fields. The four
chapters on basic concepts assume a knowledge of the
traditional treatment and provide a novel and unifying ap-
proach to fluid properties, statics, dynamics, and dimensional
analysis. The kinetic theory of gases is used to link continuum
and molecular models. Throughout these chapters the author
prepares the reader for the specific topics that follow.

The four chapters on specific areas of research treat gas

4Department of Materials Science, Southwest Research Institute, P. O.
Drawer 28510, San Antonio, Texas 78284.

5Professor, Department of Theoretical and Applied Mechanics, University
of Illinois, Urbana, Ill. 61801, Mem. ASME.
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dynamics with chemical reactions, electromagnetic effects
(plasma dynamics), radiation effects, and low densities
(rarefied gas dynamics). A final chapter focuses primarily on
continuum models for mixtures (two-phase flows and
multiple-species models for plasmas). It includes brief
mentions of non-Newtonian fluids, superfluids, biofluid
mechanics, and relativistic fluid mechanics.

This book presents the basic concepts and equations of
certain topics in modern theoretical fluid mechanics and
provides insights and understanding so that the reader knows
when and how to use these tools. The book should prove
extremely valuable for both technology transfer and research
preparation. From this book someone who wants to apply
recent advances in fluid dynamics and who has a good
background in classical fluid dynamics can obtain the
knowledge and understanding of concepts and equations
needed to apply results in the research literature. The
researcher can also turn to this book as the first step toward
original research in a new area. This book could be used as a
text for an advanced course for graduate students who are at
the transition point between course work and thesis research.

Compressible Flow. By S. Schreier. Wiley, New York, 1982.
577 Pages. Price $60.00.

REVIEWED BY M. MORDUCHOW*

A number of well-known and notable texts dealing
specifically with compressible flows have appeared in the
past. Mention may be made, for example, of the general
compressible-flow texts of Shapiro, and of Liepmann and
Roshko among others, of Ferri’s book on supersonic-flow
aerodynamics, of Stewartson’s text on compressible laminar
boundary layers, of the text of Hayes and Probstein, and of
that of Dorrance, on hypersonic flow, and of the book of
Vincenti and Kruger on physical gas dynamics. Due to the

6Professor, Department of Mechanical and Aerospace Engineering,
Polytechnic Institute of New York, 333 Jay Street, Brooklyn, N.Y. 11201.
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broad scope of compressible fluid dynamics, however, there
remains of course room for further good texts on the subject.
The book under review may be considered as in this category,
its subject being primarily classical compressible flow. It is
claimed on the book cover that this is the “‘first major new
work’ on compressible flow since 1972. Assuming that
‘‘work’’ here means ‘‘textbook’’ this may be close to true, but
note must be made here at least of the 1976 text of Zucrow
and Hoffman (Gas Dynamics Vol. 1, admittedly based at least
in part on a well-known 1958 book of Zurcrow) and of the
quite recent (1982) text of J.D. Anderson (Modern Com-
pressible Flow, With Historical Perspective).

Although there are various ways, depending on individual
tastes and interests, of treating the subject of compressible
flow, the 577-page text of Schreier’s can serve quite well as the
basis of at least a one-year graduate course on compressible
flow. It could also be used for self-study. In fact, the ex-
planations here are sufficiently detailed so that the text may
be considered as essentially self-contained, although a
knowledge of vector analysis is assumed and a previous
knowledge of basic incompressible fluid mechanics and
elementary thermodynamics would be desirable. An ap-
preciable variety of topics is covered, including: the Navier-
Stokes equations; sound waves, shock waves, and expansion
waves; steady and unsteady one-dimensional flows with and
without shock waves; two and three-dimensional steady
subsonic and supersonic flow; characteristics; transonic flow
(in unusual detail); (classical) compressible laminar and
turbulent boundary layers; real gas effects, especially
dissociating boundary layers; and computational methods,
with emphasis on numerical solution of ordinary differential
equations and finite-difference solutions of the standard
partial differential equations, with the addition of a more
complicated example, involving supersonic flow. A set of 241
references and certain working tables for compressible flow
calculations are included. Moreover, a set of useful and in-
teresting exercises for each chapter is given at the end of the
book.

In summary this book may be regarded as a quite useful
addition to the textbook literature on compressible flows.
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